非线性规划

合集下载

非线性规划

非线性规划

1. 非线性规划我们讨论过线性规划,其目标函数和约束条件都是自变量的线性函数。

如果目标函数是非线性函数或至少有一个约束条件是非线性等式(不等式),则这一类数学规划就称为非线性规划。

在科学管理和其他领域中,很多实际问题可以归结为线性规划,但还有另一些问题属于非线性规划。

由于非线性规划含有深刻的背景和丰富的内容,已发展为运筹学的重要分支,并且在最优设计,管理科学,风险管理,系统控制,求解均衡模型,以及数据拟合等领域得到越来越广泛的应用。

非线性规划的研究始于三十年代末,是由W.卡鲁什首次进行的,40年代后期进入系统研究,1951年.库恩和.塔克提出带约束条件非线性规划最优化的判别条件,从而奠定了非线性规划的理论基础,后来在理论研究和实用算法方面都有很大的发展。

非线性规划求解方法可分为无约束问题和带约束问题来讨论,前者实际上就是多元函数的极值问题,是后一问题的基础。

无约束问题的求解方法有最陡下降法、共轭梯度法、变尺度法和鲍威尔直接法等。

关于带约束非线性规划的情况比较复杂,因为在迭代过程中除了要使目标函数下降外,还要考虑近似解的可行性。

总的原则是设法将约束问题化为无约束问题;把非线性问题化为线性问题从而使复杂问题简单化。

求解方法有可行方向法、约束集法、制约函数法、简约梯度法、约束变尺度法、二次规划法等。

虽然这些方法都有较好的效果,但是尚未找到可以用于解决所有非线性规划的统一算法。

非线性规划举例[库存管理问题] 考虑首都名酒专卖商店关于啤酒库存的年管理策略。

假设该商店啤酒的年销售量为A 箱,每箱啤酒的平均库存成本为H 元,每次订货成本都为F 元。

如果补货方式是可以在瞬间完成的,那么为了降低年库存管理费用,商店必须决定每年需要定多少次货,以及每次订货量。

我们以Q 表示每次定货数量,那么年定货次数可以为QA,年订货成本为Q A F ⨯。

由于平均库存量为2Q,所以,年持有成本为2Q H ⨯,年库存成本可以表示为:Q HQ A F Q C ⨯+⨯=2)( 将它表示为数学规划问题:min Q H Q A F Q C ⋅+⋅=2)( ..t s 0≥Q其中Q 为决策变量,因为目标函数是非线性的,约束条件是非负约束,所以这是带约束条件的非线性规划问题。

非线性规划

非线性规划

非线性规划非线性规划是一种涉及非线性目标函数和/或非线性约束条件的优化问题。

与线性规划不同,非线性规划可能存在多个局部最优解,而不是全局最优解。

非线性规划在许多领域都有广泛的应用,如经济学、工程学和管理学等。

非线性规划的一般形式可以表示为:最小化或最大化 f(x),其中 f(x) 是一个非线性函数,x 是决策变量向量。

满足一组约束条件g(x) ≤ 0 和 h(x) = 0,其中 g(x) 和 h(x) 是非线性函数。

为了求解非线性规划问题,可以使用不同的优化算法,如梯度下降法、牛顿法和拟牛顿法等。

这些算法的目标是找到目标函数的最小值或最大值,并满足约束条件。

非线性规划的难点在于寻找全局最优解。

由于非线性函数的复杂性,这些问题通常很难解析地求解。

因此,常常使用迭代算法来逼近最优解。

非线性规划的一个重要应用是在经济学中的生产计划问题。

生产活动通常受到多个因素的限制,如生产能力、原材料和劳动力等。

非线性规划可以帮助确定最佳的生产数量,以最大化利润或最小化成本。

另一个应用是在工程学中的优化设计问题。

例如,优化某个结构的形状、尺寸和材料以满足一组要求。

非线性规划可以帮助找到最佳设计方案,以最大程度地提高性能。

在管理学中,非线性规划可以用于资源分配和风险管理问题。

例如,优化一个公司的广告预算,以最大程度地提高销售额。

非线性规划可以考虑多种因素,如广告投入和市场需求,以找到最佳的广告投放策略。

总之,非线性规划是一种重要的优化方法,用于解决涉及非线性目标函数和约束条件的问题。

它在经济学、工程学和管理学等领域有广泛的应用。

尽管非线性规划的求解难度较大,但通过合适的优化算法,可以找到最佳的解决方案。

非线性规划知识点讲解总结

非线性规划知识点讲解总结

非线性规划知识点讲解总结1. 非线性规划的基本概念非线性规划是指目标函数和/或约束条件包含非线性项的优化问题。

一般来说,非线性规划问题可以表示为如下形式:\[\min f(x)\]\[s.t. \ g_i(x) \leq 0, \ i=1,2,...,m\]\[h_j(x)=0, \ j=1,2,...,p\]其中,\(x \in R^n\)是优化变量,\(f(x)\)是目标函数,\(g_i(x)\)和\(h_j(x)\)分别表示不等式约束和等式约束。

目标是找到使目标函数取得最小值的\(x\)。

2. 非线性规划的解决方法非线性规划问题的求解是一个复杂的过程,通常需要使用数值优化方法来解决。

目前,常用的非线性规划求解方法主要包括梯度方法、牛顿方法和拟牛顿方法。

(1)梯度方法梯度方法是一种基于目标函数梯度信息的优化方法。

该方法的基本思想是在迭代过程中不断沿着梯度下降的方向更新优化变量,以期望找到最小值点。

梯度方法的优点是简单易实现,但缺点是可能陷入局部最优解,收敛速度慢。

(2)牛顿方法牛顿方法是一种基于目标函数的二阶导数信息的优化方法。

该方法通过构造目标函数的泰勒展开式,并利用二阶导数信息来迭代更新优化变量,以期望找到最小值点。

牛顿方法的优点是收敛速度快,但缺点是计算复杂度高,需要计算目标函数的二阶导数。

(3)拟牛顿方法拟牛顿方法是一种通过近似求解目标函数的Hessian矩阵来更新优化变量的优化方法。

该方法能够克服牛顿方法的计算复杂度高的问题,同时又能保持相对快速的收敛速度。

拟牛顿方法的典型代表包括DFP方法和BFGS方法。

3. 非线性规划的应用非线性规划方法在实际生活和工程问题中都有着广泛的应用。

以下将介绍非线性规划在生产优化、资源分配和风险管理等领域的应用。

(1)生产优化在制造业中,生产线的优化调度问题通常是一个非线性规划问题。

通过对生产线的机器设备、生产工艺和生产速度等因素进行建模,并设置相应的目标函数和约束条件,可以使用非线性规划方法来求解最优的生产调度方案,以最大程度地提高生产效率和减少成本。

运筹学非线性规划

运筹学非线性规划

二 、模型的解及相关概念
1.可行解与最优解
★可行解:约束集D中的X。
★最优解:如果有 X * D,对于任意的 X D , 都有 f ( X *) f ( X ) ,则称 X *为(NLP)的最优
解,也称为全局最小值点。
★局部最优解:如果对于 X 0 D ,使得在 X 0的邻 域 B(X 0, ) {X |P X X 0 P } 中的任意 X D 都有f (X 0 ) f (X ) ,则称 X 0 为(NLP)的局部最
: 风险系数;ij : 第i种与第j种股票收益的协方差
n
nn
max f (x) j xj
xi x j
j 1i1 j1源自s.t.n j 1Pj x j
B
x
j
0
2.模型
min f ( X )
(
NLP
)s.t.
hi
g
( X ) 0,i j ( X ) 0,
1,L , j 1,L
f
(X
)=f
(X0
)
f
(X0
)(T X-X0)
1 2
(X
X0
)T
H
( X0 )(
X
X0)
o(P X-X 0 P2)
其中:o(P X
X0
P2 )是当X
X

0
PX
X0
P2
的高阶无穷小。
例2:写出 f ( X ) 3x12 sin x2 在X 0 [0, 0]T 点的二阶泰勒展开式
解: f ( X ) [6x1 cos x2 ]T , f ( X 0 ) [0 1]T
0
解得:=-f (Xk )T Pk
PkT H ( X k )Pk

非线性规划的基本概念及问题概述

非线性规划的基本概念及问题概述

牛顿法在凸优化问题上表现较好,但在非凸问题 上可能陷入局部最优解。
拟牛顿法
01
拟牛顿法是一种改进的牛顿法,通过构造海森矩阵 的近似来降低计算成本。
02
拟牛顿法在每一步迭代中更新搜索方向,并逐渐逼 近最优解。
03
拟牛顿法在处理大规模非线性规划问题时表现较好 ,但仍然需要计算目标函数的二阶导数。
共轭梯度法
共轭梯度法结合了梯度法和牛 顿法的思想,通过迭代更新搜 索方向来寻找最优解。
共轭梯度法的迭代方向是梯度 方向和上一次迭代方向的线性 组合,可以加快收敛速度。
共轭梯度法适用于大规模优化 问题,尤其在约束条件较多或 非凸函数情况下表现较好。
05
非线性规划的挑战与解决方 案
局部最优解问题
局部最优解问题
案例二:生产计划优化问题
总结词
生产计划优化问题旨在通过合理安排生 产计划,降低生产成本并满足市场需求 。
VS
详细描述
生产计划优化问题需要考虑生产过程中的 各种因素,如原材料需求、设备能力、劳 动力成本等。目标函数通常是非线性的, 因为生产成本和产量之间的关系是非线性 的。约束条件可能包括资源限制、交货期 限制等。
例子
最小化成本函数,其中成本是生产量 的函数,生产量受到资源、生产能力 等约束。
最大化问题
最大化目标函数
在给定的约束条件下,找到一组变量 ,使得目标函数达到最大值。
例子
最大化收益函数,其中收益是销售量 的函数,销售量受到市场需求、价格 等约束。
约束条件下的优化问题
01
在满足一系列约束条件下,寻找最优解,使得目标函数达到最 优值。
梯度法适用于目标函数和约束条件比较简单的情况,但对于非凸函数或约束条件复 杂的情况可能不收敛或收敛到局部最优解。

第5章 非线性规划

第5章 非线性规划

(水力约束) (水力摩阻系数约束)
KD GC
L (热力约束)
(粘温关系约束)
(工艺要求约束) (管道强度约束)
在目标函数中,f1(TR)、f2(Pd)一般为非线性函数,约束条 件中亦存在不少非线性函数,显然是一个NLP问题。
非线性规划的基本概念和定理
例3:最小二乘问题:该问题大量存在于工业生产和科学 实验的数据处理中。例如原油的粘度可以表示为:
凹函数的几何意义:
对 于 一 元 函 数 f(x) , 若
函数曲线上任意两点之 间的连线永远不在曲线
的 上 方 , 则 f(x) 为 凹 函
数(参见右图) 。
非线性规划的基本概念和定理 f(X)
f [X 1 (1 ) X 2 ]
对于二元函数 f(x1,x2), 若函数曲面上任意两点 之间的连线永远不在曲 面的上方,则f(x1,x2)为 凹函数(参见右图)。
1、一元函数:
①必要条件:f(x)在x*处取得极值的必要条件是f'(x*)=0;
②充分条件:若f"(x*)<0,则x*为极大点; 若f"(x*)>0,则x*为极小点。 2、多元函数: ①必要条件: f(X)在D域内存在极值点X*的必要条件为 * f ( X ) 0 (即f(X)在X*处的所有一阶偏导数等于0)。
非线性规划的基本概念和定理
根据定义,线性函数既是凸函数,又是凹函数。 凸函数的几何意义: 对 于 一 元 函 在曲线的下方, 则 f(x) 为 凸 函 数 ( 参 见 右
图) 。
非线性规划的基本概念和定理 f(X)
f ( X 1 ) (1 ) f ( X 2 )
§5.1 非线性规划的基本概念和定理
一、什么是非线性规划?

非线性规划

非线性规划

日运输计划,使总的吨·公里数最小.(2)为减少总的吨·公
里数,该公司拟放弃现有的两个料场 A1, A2,重新建设两个日 存储量仍均为20吨的新料场,试为新料场选址.
d
(单位:吨)见
i
下表:
工 地
1
2
3
4
5
6
xi 1.25 8.75 0.5 5.75 3 7.25 yi 1.25 0.75 4.75 5 6.5 7.75 di 3 5 4 7 6 11
该公司现有2个存放水泥的料场:A1(5,1)和 A2 (2,7),存储
量均为20吨.料场与工地之间均有直线道路相通.(1)试制定
min f ( X ), X Rn
s.t.

gi hj
(X (X
) )

0, i 0,
1, 2, j 1, 2,
,m ,l
3.求解 (1)非线性规划问题目前还没有适合于各种问题的一般 算法,每一个算法都有各自的适用范围。 (2)非线性规划问题的最优值不一定在可行域的边界达 到。 (3)一般求得是局部最优解,但局部最优解并不一定是 全局最优解。 (4)迭代法是主要求解方法: 通常从一个初始解出发, 在可行域中沿着使得目标函数降低的方向前进到下一个 解。 (5)一般求解方法:最速下降法,罚函数法,拉格朗日 乘子法等,或者采用智能算法,如:遗传算法,模拟退火 算法,蚁群算法,神经网络等。 (6)软件求解,借助于 Lingo 和 Matlab 可以求解非线 性规划问题。
4.例 1 抛物面 z x2 y2被平面 x y z 1截成一椭
圆,求原点到这椭圆的最短距离。 该问题可以用拉格朗日乘子法求解。下面我们把问
题归结为数学规划模型,用 Lingo 软件求解。 设原点到椭圆上点(x, y, z)的距离最短,建立如下的

非线性规划

非线性规划

非线性规划(nonlinear programming)1.非线性规划概念非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

目标函数和约束条件都是线性函数的情形则属于线性规划。

2.非线性规划发展史公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为0.618,称为黄金分割比。

其倒数至今在优选法中仍得到广泛应用。

在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。

例如阿基米德证明:给定周长,圆所包围的面积为最大。

这就是欧洲古代城堡几乎都建成圆形的原因。

但是最优化方法真正形成为科学方法则在17世纪以后。

17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。

以后又进一步讨论具有未知函数的函数极值,从而形成变分法。

这一时期的最优化方法可以称为古典最优化方法。

最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。

反之,某些最优化方法可适用于不同类型的模型。

最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。

(1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。

求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。

(2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。

此时可采用直接搜索的方法经过若干次迭代搜索到最优点。

这种方法常常根据经验或通过试验得到所需结果。

对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1节 最优性条件
考虑非线性规划的某一可行点X(0) ,对该点的任一方向D来说,若存在实数 λ' ,0 使对任意 λ [0, λ'] 均有
f ( X (0) λD) f ( X (0) )
就称方向D为X(0)点的一个下降方向。 将目标函数f(X)在点X(0)处作一阶泰勒展开,可知满足条件
f ( X (0) )T D 0
第1节 最优性条件
库恩-塔克条件:
设X*是非线性规划(7-3)式的极小点,而且在X*点的各起作用
约束的梯度线性无关,则存在向量
*
(1*, 2*,L
,
* l
),T 使下述条件成立:
f ( X *)
l
* j
g j ( X *)
0
* j
g
j
(
X
*
)
j 1
0,
j 1, 2,L ,l
* j
0,
j 1, 2,L ,l
x*
5,
* 2
4
,不是K-T点。
(4) 令
1*
* 2
0
,解之,得
x*
3,此为K-T点,其目标函数值
f
( x* )
0
由于该非线性规划问题为凸规划,故 x* 3 就是其全局极小点。该点 是可行域的内点,它也可直接由梯度等于零的条件求出。
例题:求
min f (x1, x2 ) (x1 2)2 (x2 3)2
s.t
(2
x1 )3
x2
0
2x1 x2 1
它的K T点及全局最优解。
解: f ( x) (2( x1 2),2( x2 3))T
g ( x)
3(2
1
x1 )2
,
h( x)
(2,1)T
2( 2(
x1 x2
2) 3 (2 x1)2 3) 0
2
0
故K T条件为: ( x2 (2 x1)3 ) 0
的方向D必为X(0)点的下降方向。
如果方向D既是X(0)点的可行方向,又是这个点的下降方向,就称它 是该点的可行下降方向。假如X(0)点不是极小点,继续寻优时的搜索方向 就应从该点的可行下降方向中去找。显然,若某点存在可行下降方向, 它就不会是极小点。另一方面,若某点为极小点,则在该点不存在可行 下降方向。
第1节 最优性条件
该问题的K-T条件为:2(x*
* 1
x*
3) 0
* 1
* 2
0
1*
* 2
(5
x*
)
0
* 1
³,
* 2
0
为解上述方程组,考虑以下几种情形:
(1)

1*
0,
* 2
0
,无解。
(2) 令
1*
0,
* 2
0
,解之,得 x* 0,
1* 6 ,不是K-T点。
(3) 令
1*
0,
* 2
0
,解之,得
*
)
的非负线性组合。也就是说,在这种情况下存在实数1 0 和 2 0 ,使
f ( X *) 1g1( X *) 2g2 ( X *) 0
第1节 最优性条件
图7-2 如上类推,可以得到
f (X *) j g j (X *) 0 jJ
图7-3
第1节 最优性条件
为了把不起作用约束也包括进式(7-9)中,增加条件Βιβλιοθήκη 使下述条件成立:* j
g
j
(
X
*
)
i 1
0,
j 1
j 1, 2,L ,l
* j
0,
j 1, 2,L ,l
(7-11)
(7-10)式和(7-11)式中的 λ1*, λ1*,L ,λ*m 以及
1* , 1* ,L
,
* l
称为广义拉格朗日乘子。
第1节 最优性条件
例1 用库恩-塔克条件解非线性规划
包括:无约束极值问题,约束极值问题
约束优化问题的最优解及其必要条件
一、局部最优解与全局最优解
对于具有不等式约束的优化问题,若目标函数是凸集上 的凸函数,则局部最优点就是全局最优点。如左图所示,无 论初始点选在何处,搜索将最终达到唯一的最优点。否则, 目标函数或可行域至少有一个是非凸性的,则可能出现两个 或更多个局部最优点,如右图所示,此时全局最优点是全部 局部最优点中函数值最小的一个。
x2
2 x1
1
0
0
下面分两种情况讨论:
(1) 0
2(x1 2) 2 0 2(x2 3) 0
x2 2x1 1 0
解得:x1=2,x2=3, 0
代入原问题,它不是可行解,故不是K T点。
(2) 0
2( 2(
x1 x2
2) 3)
3 (2 x1 )2 0
2
0
( x2 (2 x1 )3 ) 0
第1节 最优性条件
1.2 库恩-塔克条件 假定X*是非线性规划(7-3)式的极小点,该点可能位于可行域的内部,也 可能处于可行域的边界上。若为前者,这事实上是个无约束问题,X*必 满足条件
f (X*) 0
若为后者,情况就复杂得多了。
下面讨论当极小点位于可行域边界的情形。
第1节 最优性条件
不失一般性,设X*位于第一个约束条件形成的可行域边界上,即第 一个约束条件是X*点的起作用约束( g1(X*) 0 )。若X*是极小点,则 g1(X *) 0必与 f ( X *) 在一条直线上且方向相反。
否则,在该点就一定存在可行下降方向(图7-2中的X*点为极小点;X点不满 足上述要求,它不是极小点,角度β表示了该点可行下降方向的范围)。 上面的论述说明,在上述条件下,存在实数 1 0 ,使
f (X *) 1g1(X *) 0
第1节 最优性条件
若X*点有两个起作用约束,例如说有
g1(X *) 0 g2 (X *) 0
g j (X ) 0, j 1, 2,L ,l
(7-2)
问题(7-2)也常写成
min f ( X ), X R En
R X g j ( X ) 0, j 1, 2,L ,l
(7-3)
第1节 最优性条件
1.1 起作用约束和可行下降方向的概念 现考虑上述一般非线性规划,假定f(X)、hi(X)和g j (X )(i 1, 2,L ,m; j 1,2,L ,l) 具有一阶连续偏导数。 设 X (是0) 非线性规划的一个可行解。现考虑某一不等式约束条件
min f (x) (x 3)2 0x5 解: 先将该非线性规划问题写成以下形式
min f (x) (x 3)2
g1(x) x 0
g2(x) 5 x 0
写出其目标函数和约束函数的梯度:
f (x) 2(x 3), g1(x) 1, g2 (x) 1
对第一个和第二个约束条件分别引入广义拉格朗日乘子,设K-T点为X*, 则可以得到该问题的K-T条件。
设X*是非线性规划(7-1)式的极小点,而且X*点的所有起作用约束的梯度 hi (X*)(i 1, 2,L ,m) 和 g j (X *)( j J ) 线性无关,则存在向量
*
(λ1*, λ*2 L
,λ*m )T
和 *
(
* 1
,
* 2
,L
,
* l
)T
f ( X *) m λ*i hi ( X *) m *jg j ( X *) 0
(7-10)
条件(7-10)式常简称为K-T条件。满足这个条件的点(它当然也满足非线 性规划的所有约束条件)称为库恩-塔克点(或K-T点)。
第1节 最优性条件
现考虑带有等约束非线性规划(7-1)式的库恩-塔克条件,我们用
hih(iX( X)
0 )
0
代替约束条件 hi ( X ) 0
即可使用条件(7-10),得到库恩-塔克条件如下:
对所有起作用约束,当λ>0足够小时,只要
g j (X (0) )T D 0, j J (7-6)
就有
g j (X (0) λD) 0, j J
图7-1
此外,对X(0)点的不起作用约束,由约束函数的连续性,当λ>0足够小时亦有 上式成立。从而,只要方向D满足(7-6)式,即可保证它是X(0)点的可行方向。
在这种情况下,f (X *) 必处于 g1(X *) 和 g2 (X *) 的夹角之内。
如若不然,在X*点必有可行下降方向,它就不会是极小点(图7-3)。由此可
和见,如g2果(XX*)*线是性极无小关点,,则而可且将X*点f的( X起*)作表用示约成束条g件1(的X *梯) 和度g2(gX1
(X *)
第1节 最优性条件
定理1 设X*是非线性规划(7-3)式的一个局部极小点,目标函数 f(X)在 X*处可微,而且
g j (X ) 在X*处可微,当 j J
g j (X ) 在X*处连续,当 j J
则在X*不存在可行下降方向,从而不存在向量D同时满足:
f ( X *)T D 0 g j ( X *)T D 0, j J
就称方向D是X(0)点的一个可行方向。
第1节 最优性条件
若D是可行点X(0)处的任一可行方向,则对该点的所有起作用约束
均有
gj(X) 0 g j (X (0) )T D 0, j J
(7-5)
其中J为这个点所有起作用约束下标的集合。 另一方面,由泰勒公式
g j (X (0) λD) g j (X (0) ) λg j (X (0) )T D o(λ)
x2 2 x1 1 0
解得:x1=1,x2=1, 2, 2
经检验x=(1,1)T是原问题的可行解,故 它是K-T点。
相关文档
最新文档