(2020届成都高三)二诊文科数学试题和答案
2020届四川省成都市高中毕业班第二次诊断性检测文科数学试题 word

2020届四川省成都市高中毕业班第二次诊断性检测数学(文科) 第I 卷(选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数z 满足z(l+i)-2(i 为虚数单位),则z 的虚部为(A)i (B) -i (C)-l (D)l2.设全集U=R .集合M={x|x<l},N={x|x>2},则(C ∪M)∩N=(A){x|x>2} (B){x|x ≥l} (C){x|l<x<2} (D){x|x ≥2)3.某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n 的样本,若样本中高中生恰有30人,则n 值为(A)20 (B) 50 (C)40 (D) 604.曲线y=x 3-x 在点(1,0)处的切线方程为(A)2x-y=0 (B)2x+y-2=0 (C)2x+y+2=0 (D)2x-y-2=05.已知锐角α满足2sin2α= l-cos2α,则tan α=(A) 21 (B)l (C)2 (D)4 6.函数)1ln(cos )(2x x x x f -+⋅=在[1,1]的图象大致为7.执行如图所示的程序框图,则输出S 的值为(A)16 (B)48 (C)96 (D)1288.已知函数0)4(),0)(2sin()(=<<+=ππωπωf x x f 则函数f(x)的图象的对称轴方程为(A) Z k kx x ∈-=,4π (B) Z k kx x ∈+=,4π (C) Z k k x ∈=,21π (D) Z k k x ∈+=,421ππ 9.在正方体ABCD-A 1B 1C 1D 1中,点P ,Q 分别为AB ,AD 的中点,过点D 作平面α使B 1P ∥平面α,A 1Q ∥平面α若直线B 1D ∩平面α=M ,则11MB MD 的值为 (A) 41 (B) 31 (C) 21 (D) 32 10.如图,双曲线C: 2222by a x -=l(a>0,b>0)的左,右焦点分别是F 1(-c ,0),F 2(c ,0),直线abc y 2=与双曲线C 的两条渐近线分别相交于A ,B 两点,若321π=∠F BF ,则双曲线C 的离心率为 (A)2 (B) 324 (C) (D) 332 11已知EF 为圆(x-l)2+(y+1)2=l 的一条直径,点M(x ,y)的坐标满足不等式组⎪⎩⎪⎨⎧≤≥++≤+-103201y y x y x ,则⋅ 的取值范围为(A)[ 29,13] (B)[4,13] (C)[4,12] (D)[ 27,12] 12.已知函数x x x f ln )(=,g(x)=xe -x ,若存在x l ∈(0,+∞),x 2∈R ,使得f(x 1)=g(x 2)=k(k<0)成立,则k e x x 212)(的最大值为 (A)e 2 (B)e (C)24e (D) 21e 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.已知函数f(l)= ⎪⎩⎪⎨⎧≤>0,20,1x x x x 则f(f(x-1))= .14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知B=3π,a=2,b=3,则△ABC 的面积为 .15.设直线l :y=x-l 与抛物线y2=2px (p>0)相交于A ,B 两点,若弦AB 的中点的横坐标为2,则p 的值为16.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上,若球O 的表面积为28π,则该三棱柱的侧面积为____.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17(本小题满分12分)已知{a n }是递增的等比数列,a 1=l ,且2a 2,23a 3,a 4成等差数列. (I)求数列{a n }的通项公式;(Ⅱ)设2212log log 1++⋅=n n n a a b ,n ∈N*,求数列{bn}的前n 项和S n . 18(本小题满分12分)如图,在四棱锥P-ABCD 中,O 是边长为4的正方形ABCD 的中心,PO ⊥平面ABCD ,M ,E 分别为 AB ,BC 的中点.(I)求证:平面PAC ⊥平面PBD ;(Ⅱ)若PE=3,求三棱锥B-PEM 的体积.19. (本小题满分12分)某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润,该公司2013年至2019年的年利润y 关于年份代号x 的统计数据如下表(已知该公司的年利润与年份代号线性相关):(I)求y 关于x 的线性回归方程,并预测该公司2020年(年份代号记为8)的年利润;(Ⅱ)当统计表中某年年利润的实际值大于由(I)中线性回归方程计算出该年利润的估计值时,称该年为A 级利润年,否则称为B 级利润年将(I)中预测的该公司2020年的年利润视作该年利润的实际值,现从2015年至2020年这6年中随机抽取2年,求恰有1年为A 级利润年的概率.参考公式:20.(本小题满分12分)已知椭圆E: 12222=+b y a x (a>b>0)的左,右焦点分别为F 1(-l ,0),F 2(1,0),点P(1,22)在椭圆E 上.(I)求椭圆E 的标准方程;(Ⅱ)设直线l :x=my+1(m ∈R)与椭圆E 相交于A ,B 两点,与圆x 2+y 2=a 2相交于C ,D 两点,当|AB|▪|CD|2的值为82 时,求直线x 的方程.21.(本小题满分12分)已知函数f(x)=x 2-mx-mlnx ,其中m>0.(I)若m=l ,求函数,(l)的极值;(Ⅱ)设g(x)=f(x)+mx .若g(x)> x1在(1,+∞)上恒成立,求实数m 的取值范围. 请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分,作答时,用 2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧==m y m x 22(m 为参数)以坐标原点O 为 极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ-ρcos θ+1=0.(I)求直线l 的直角坐标方程与曲线C 的普通方程;(Ⅱ)已知点P(2,1),设直线l 与曲线C 相交于M ,N 两点,求||1||1PN PM +的值 23.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|x-1|+|x+3|.(I)解不等式f(x)≥6;(Ⅱ)设g(x)=-x 2+2ax ,其中a 为常数,若方程f(x)=g(x)在(0,+∞)上恰有两个不相等的实数根,求实数a 的取值范围,。
2020届四川省成都七中高三二诊数学模拟(文)试题(解析版)

(Ⅱ)若直线 AB 、 OC 的斜率都存在,求证: kAB kOC 为定值.
21.设函数 f x ex ax2 x 1, a R .
(Ⅰ) a 0 时,求 f (x) 的最小值;
(Ⅱ)若 f (x) 0 在 0, 恒成立,求 a 的取值范围.
22.在直角坐标系
xOy
中,直线
l
的参数方程为
第 6 页 共 27 页
【答案】D
【解析】利用诱导公式和同角三角函数的基本关系求出 cos2 ,再利用二倍角的正弦公
式代入求解即可.
【详解】
因为 tan( ) 3 , 4
由诱导公式可得, tan
sin cos
3 4
,
即 sin 3 cos , 4
因为 sin2 cos2 1 ,
A.x 3 x 2
B.x 2 x 2
C.x 6 x 2
D.x 1 x 2
【答案】D 【解析】利用一元二次不等式的解法和集合的交运算求解即可. 【详解】
由题意知,集合 A x 1 x 6 , B x x 2 , 由集合的交运算可得, A B x 1 x 2 .
日用水量
0,0.1 0.1,0.2 0.2,0.3 0.3,0.4 0.4,0.5 0.5,0.6
频数
1
5
13
10
16
5
(1)在答题卡上作出使用了节水龙头 50 天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,同一组
(Ⅰ) 若 a 1 ,求不等式 f (x) 4 的解集;
(Ⅱ) m (0,1) , x0
20届高三文科数学二诊模拟考试试卷答案

参考答案
一、选择题
题目
12
答案
D
C
34 DA
56 DD
78 AB
9 10 11 12 BCBC
二、填空题 13.90 三、解答题
14. 2 5 5
15. 3,0 (3,)
16. 3 3
17.解:(Ⅰ)设 an 的公差为 d ,依题意有
a1 a22
1 a1
省
川
四
供
仅
a5
a1 1
a1 d 2
a1
(a1
且d 4d)
0
da1
1 2
………4
分
所以 an 1 2n 1 2n 1
Sn
na1
2
an
n2
………6
分
(Ⅱ)因为
bn
1 an21 1
1
4nn 1
1 4
1 n
1 n 1
……8
分
所以 Tn
1 4
1
1 1 2 2
1 ... 1 3 n
n
1
m 1m m 1m 5 4m 1 m 1m m
5 2使用14mm
1 m m
9 (当 m
1 3
时等号成立)……8
分
学 依题意, m (0,1中) , x0
进
R ,有 1 m
4 1 m
f (x0 )
协 德
则
a
1
9
树 市
解之得 10 a 8
故实成数都a 的取值范围是 (10,8) ……10 分
1
1 1 1 4 n 1
18.(Ⅰ )频 率4(分nn布1直) …方…图…如…下学1图使2 所分用示:
2020-2021学年四川省高三第二次诊断性测试数学(文)试题及答案解析

高三第二次诊断性测试数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页.考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.满分150分,考试时间120分钟. 考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题,共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.一、选择题:本大题共10个小题,每小题5分,共50分;在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}11A x x =-≤≤,{}03B x x =<<,则A B =I(A) {}01x x <≤(B) {}01x x << (C){}13x x -≤< (D){}13x x ≤<2.在复平面内,复数31i 1i++对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为(A) 5 (B) 6 (C) 7 (D) 10 4.下列函数中,最小正周期为π且图象关于y 轴对称的函数是(A) cos(2)2y x π=+(B) sin y x =(C) 2sin ()4y x π=-(D) sin 2cos 2y x x =+5.执行如图所示的程序框图,若输入x 的值为5-,则输出y 的值是(A) -1 (B) 1 (C) 2 (D) 146.已知函数2()x f x a-=,()log a g x x =(其中0a >且1a ≠),若(5)(3)0f g ⋅->,则()f x ,()g x 在同一坐标系内的大致图象是(A) (B) (C) (D)7.已知直线2100x y +-=过双曲线22221(0,0)x y a b a b-=>>的焦点且与该双曲线的一条渐近线垂直,则该双曲线的方程为(A)221169x y -= (B)221205x y -= (C) 221520x y -= (D) 221916x y -=8.设5()ln(f x x x =+,则对任意实数a ,b ,“0a b +≥”是“()()0f a f b +≥”的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件(D) 既不充分也不必要条件9.设实数x ,y 满足约束条件324040120x y x y x y a ⎧⎪-+≥⎪+-≤⎨⎪⎪--≤⎩,已知2z x y =+的最大值是7,最小值是26-,则实数a 的值为(A) 6(B) 6- (C) 1- (D) 110.已知抛物线2:4C y x =的焦点为F ,它的准线与对称轴的交点为,H 过点H 的直线与抛物线C 交于A B 、两点,过点A 作直线AF 与抛物线C 交于另一点1B ,过点1A B B 、、的圆的圆心坐标为,a b (),半径为r ,则下列各式成立的是(A) 2214a r =-(B) a r = (C) 2214a r =+(D)221a r =+第Ⅱ卷(非选择题,共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.试题卷上作答无效.二、填空题:本大题共5小题,每小题5分,共25分.11.计算:51log 25lg100++ . 12.已知等腰三角形ABC 的底边AB 的长为4,则AC AB ⋅=u u u r u u u r.13.已知βα,3(,)4ππ∈,4cos()5αβ+=,5cos()413πβ-=-,则sin()4πα+=________.14.某三棱锥的正视图,侧视图,俯视图如图所示,则该三棱锥的表面积是 .15.若存在实数0x 和正实数x ∆,使得函数)(x f 满足00()()4f x x f x x +∆=+∆,则称函数)(x f 为“可翻倍函数”,则下列四个函数 ① ()f x x =②2()2,[0,3]f x x x x =-∈;③()4sin f x x =; ④ ()ln x f x e x =-. 其中为“可翻倍函数”的有 (填出所有正确结论的番号).三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.不能答试卷上,请答在答题卡相应的方框内.16.(本小题满分12分)已知等比数列{}n a 的各项均为正数,且21231761,9a a a a a +==.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设3132333log log log log n n b a a a a =++++L ,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 17.(本小题满分12分)某人设置一种游戏,其规则是掷一枚均匀的硬币4次为一局,每次掷到正面时赋值为1,掷到反面时赋值为0,将每一局所掷4次赋值的结果用(,,,)a b c d 表示,其中,,,a b c d 分别表示掷第一、第二、第三、第四次的赋值,并规定每局中“正面次数多于反面次数时获奖”.(Ⅰ)写出每局所有可能的赋值结果;(Ⅱ)求每局获奖的概率;(Ⅲ)求每局结果满足条件“+++2a b c d ≤”的概率. 18.(本小题满分12分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若()()a b c a b c bc +--+=. (Ⅰ)求A 的值;(Ⅱ)已知向量m (1)c =,n (,2)b =,若m 与n 共线,求tan C .19.(本小题满分12分)如图,在四棱锥O ABCD -中,底面ABCD 是边长为2的正方形,侧棱OB ⊥底面ABCD ,且侧棱OB 的长是2,点,,E F G 分别是,,AB OD BC 的中点. (Ⅰ)证明:EF //平面BOC ; (Ⅱ)证明:OD ⊥平面EFG ; (Ⅲ)求三棱锥G EOF -的体积.20.(本小题满分13分)已知椭圆Γ:22221(0)x y a b a b +=>>的离心率等于2,椭圆Γ上的点到它的中心的距离的最小值为2. (Ⅰ)求椭圆Γ的方程;(Ⅱ)过点(0,4)E 作关于y 轴对称的两条直线分别与椭圆Γ相交,y 轴左边的交点由上到下依次为A B ,,y 轴右边的交点由上到下依次为,C D ,求证:直线AD 过定点,AC并求出定点坐标.21.(本小题满分14分)已知函数()2xf x me x =--.(其中e 为自然对数的底数).(Ⅰ)若曲线()y f x =过点(0,1)P ,求曲线()f x 在点(0,1)P 处的切线方程; (Ⅱ)若()0f x >在R 上恒成立,求m 的取值范围;(Ⅲ)若()f x 的两个零点为12,x x ,且12x x <,求21211()()x xx x y e e m e e =--+的值域.数学(文史类)参考答案说明:一、本解答给出了一种解法供参考,如果考生的解法与本解答不同,可比照评分意见制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半,如果后继部分的解答有较严重的错误,就不再给分. 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分. 一、选择题11.12 12.8 13.3365- 14. 15. ①④ 三、解答题16.解:(Ⅰ)设等比数列公比为为q ,因各项为正,有0q > …………………….…(1分)由1121122426317111616139913a a a a a q a a a a q a q q ⎧=⎪+=+=⎧⎧⎪⇒⇒⎨⎨⎨==⎩⎩⎪=⎪⎩……………………………….…(5分) 1()3n n a ∴= (n *∈N ) …………………………………………….…. …(6分)(Ⅱ)n n a a a a b 3332313log log log log ++++=Λ312log ()n a a a =⋅⋅⋅⋅⋅⋅12+31log ()3n ++=L (1)2n n +=- …………………………………………………...(9分)12112()(1)1n b n n n n ∴=-=--++………………………………………….…(10分) ∴⎭⎬⎫⎩⎨⎧n b 1的前n 项和12111111111+212231n n S b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫=++=--+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L L 21n n =-+…(12分)17.解:(Ⅰ)每局所有可能的赋值结果为:(1,1,1,1), (1,1,1,0),(1,1,0,1),(1,1,0,0),(1,0,1,1),(1,0,1,0),(1,0,0,1),(1,0,0,0),(0,1,1,1), (0,1,1,0),(0,1,0,1),(0,1,0,0),(0,0,1,1),(0,0,1,0),(0,0,0,1),(0,0,0,0) ……………………………..…(4分)(Ⅱ)设每局获奖的事件为A ,以(Ⅰ)中结果为基本事件,A 所含的基本事件有5个,∴每局获奖的概率P A =()516………………………………………..………(8分) (III )设满足条件“+++2a b c d ≤”的事件为B ,由(Ⅰ)知B 所含的的基本事件有11个,∴ P B ()=1116…………………………………………..…..(12分) 法2:+++2a b c d ≤⇔所掷4次中至多2次正面向上,为(Ⅱ)中A 的对立事件A ,∴ 51111616P A =-=() 18.解: (Ⅰ)Q ()()a b c a b c bc +--+=∴2222a b c bc bc --+=∴222b c a bc +-= ………………………………………..(3分)由余弦定理知:Q 2222cos b c a bc A +-= ………………..…(5分)∴1cos 2A = Q 0A π<< ∴ 3A π=…………………………….(6分)(Ⅱ)Q m 与n 共线∴21)c b = ……………………………...(7分)由正弦定理知:2sin 1)sin C B = …………….………...(8分) 又Q 在ABC ∆中, sin sin()B A C =+∴2sin 1)sin()3C C π=+ ……………………………………..(10分)即:12sin sin )2C C C =+(33)cos C C =∴tan 2C =+ ………………………………………….(12分)19.(Ⅰ)证明:作OC 的中点H ,连接,FH BH ,,F H Q 分别是,OD OC 的中点 ∴FH //12CD ……………………………………………………(1分) 又Q 在正方形ABCD 中,E 是AB 的中点∴EB //12CD …………………………………………………………(2分)∴EB //FH∴四边形BEFH 是平行四边形∴//EF BH ,又Q EF ⊄平面BOC ,BH ⊂平面BOC∴EF //平面BOC ………………………………………………(4分)(Ⅱ)证明:Q 四边形ABCD 是边长为2的正方形,E 是AB 的中点,∴DE =又Q 侧棱OB ⊥底面ABCD ,AB ⊂面ABCD∴OB ⊥AB又Q 2,1OB EB ==∴OE =∴DE OE ==∴ODE ∆是等腰三角形, F Q 是OD 的中点,∴EF OD ⊥ ………………………………………….……………..(5分)同理DG DG ==∴ODG ∆是等腰三角形, F Q 是OD 的中点,FG OD ∴⊥ ……………………………………………………….(6分) EF FG F =Q I,EF FG ⊂面EFGOD ⊥平面EFG ……………………………………………………(8分)(Ⅲ)解:Q 侧棱OB ⊥底面ABCD ,BD ⊂面ABCD∴OB ⊥BDQ 2,OB DB ==∴OD =由(Ⅱ)知:OD ⊥平面EFGOF 是三棱锥O 到平面EFG 的距离F Q 分别是OD 的中点OF = …………………………………………………………(9分)DE OE ==EF OD ⊥,∴EF =DG DG ==FH OD ⊥∴FG =Q 四边形ABCD 是边长为2的正方形,,E G 是,AB BC 的中点∴EG =∴三角形EFG 是等边三角形∴EFG S =V ……………………………………………………………(11分) 01132G EOF EFG V V Sh --=== …………………………………………(12分)20.解:(Ⅰ)由已知2222c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩, ……………………………………………..……(2分)得2a b ⎧=⎪⎨=⎪⎩, 椭圆Γ的方程为22184x y += ……………..…(4分)(Ⅱ)证明:由已知可设AB 方程为4(0),y kx k =+>代入22184x y += 得22(12)16240k x kx +++=………………………………………..……(5分)设1122(,),(,)A x y B x y ,则1212221624,1212k x x x x k k+=-=++.…..……(6分)由对称性知22(,)D x y -,AD ∴方程为121112(),y y y y x x x x --=-+.……(8分) 11224,4y kx y kx =+=+Q ,AD ∴方程可化为121112()()4k x x y x x kx x x -=-+++……………………………………..……(9分) 1212111212()()4k x x k x x x x kx x x x x --=-++++2122121121212224()2()124241612k x x x k x x k x kx x k k x x x x x x k --+=++=+⨯++++-+ 1212()1k x x x x x -=++ …………………………………………………..……(12分)AD ∴恒过定点,定点为(0,1)……………………………………………..……(13分)其它证法,参照给分。
2020年四川省成都市高考数学二诊试卷(文科) (含答案解析)

2020年四川省成都市高考数学二诊试卷(文科)一、单项选择题(本大题共12小题,共60.0分)1.若z=(i+1)(i−2),则复数z的虚部是()A. 1B. −1C. 3D. −32.已知全集U={−2,−1,0,1,2},集合M={0,1},N={0,1,2},则(∁U M)∩N=()A. {0,2}B. {1,2}C. {2}D. {0}3.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,若从高三年级抽取25名学生,则n为()A. 75B. 85C. 90D. 1004.曲线y=x3+x+1在点(1,3)处的切线方程是()A. 4x−y−1=0B. 4x+y−1=0C. 4x−y+1=0D. 4x+y+1=05.已知α为锐角,sinα=13,则sin2α等于()A. 89B. 4√29C. −79D. −896.函数f(x)=sinx⋅ln x−1x+1的大致图象为()A. B.C. D.7.执行如图所示的程序框图,则输出的结果为()A. 5B. 4C. 3D. 28. 函数y =3sin(2x +π3)的对称轴方程是( )A. x =kπ+π3,k ∈Z B. x =kπ2+π12,k ∈ZC. x =2kπ−π12,k ∈ZD. x =2kπ−π3,k ∈Z9. 如图,已知四棱锥P −ABCD 中,底面ABCD 是平行四边形,BC ⊥平面PAB ,PA ⊥AB ,M 为PB 的中点,PA =AD =2,AB =1.则点A 到平面MBC 的距离为( ).A. √52 B. 2√55 C. 2√33 D. √5310. 已知倾斜角为135°的直线交双曲线x 2a 2−y 2b 2=1(a >0,b >0)于A ,B 两点,若线段AB 的中点为P(2,−1),则双曲线的离心率是( )A. √3B. √2C. √62D. √5211. 已知⊙O :x 2+y 2=4及点A(1,3),BC 为⊙O 的任意一条直径,则AB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =( ) A. 6B. 5C. 4D. 不确定12. 函数f(x)满足,若存在a ∈[−2,1],使得f(2−1m )≤a 3−3a −2−e 成立,则m 的取值范围是( )A. [23,1]B. [23,+∞)C. [1,+∞)D. [12,23]二、填空题(本大题共4小题,共20.0分)13. 设函数{2x +1(x ≥0)2x (x <0),已知f[f(x)]=2,则x =______.14. 在△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c.若∠A =π3,AC =4,S △ABC =3√3,则a+b sinA+sinB=___________15.已知直线y=x−1与抛物线y2=2px(p>0)交于A,B两点;若直线过抛物线的焦点,则抛物线的准线方程为__________,若OA⊥OB,则p的值为__________.16.已知底面是直角三角形的直三棱柱ABC−A1B1C1的所有顶点都在球O的球面上,且AB=AC=1,若球0的表面积为3π,则这个直三棱柱的体积是___________.三、解答题(本大题共7小题,共82.0分)17.已知公差不为0的等差数列{a n}满足a3=9,a2是a1,a7的等比中项.(1)求{a n}的通项公式;(2)设数列{b n}满足b n=1,求{b n}的前n项和S n.n(a n+7)18.如图,正四棱锥P−ABCD中,底面ABCD的边长为4,PD=4,E为PA的中点,(Ⅰ)求证:平面EBD⊥平面PAC;(Ⅱ)求三棱锥E−PBD的体积.19. 某企业为了提高企业利润,从2015年至2019年每年都对生产环节的改进进行投资,投资金额x(单位:万元)与年利润增长量y(单位:万元)的数据如表:(1)记ω=年利润增长量−投资金额,现从2015年至2019年这5年中抽出两年进行调查分析,求所抽两年都是ω>2万元的概率;(2)请用最小二乘法求出y 关于x 的回归直线方程;如果2020年该企业对生产环节改进的投资金额为10万元,试估计该企业在2020年的年利润增长量为多少?参考公式:b ̂=i −x )(i −y )ni=1∑(x −x )2n =∑x i y i −nxyni=1∑x i2−nx2n i=1,a ˆ=y −b ˆx ; 参考数据:∑x i y i 5i=1=286,∑x i 2n i=1=190.20. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(−1,0)、F 2(1,0),上、下顶点分别为B 1、B 2,且△B 1F 1F 2为等边三角形. (1)求椭圆E 的方程;(2)设点M(4,0),直线B 1M 与椭圆E 相交于另一点A ,证明:A ,F 2,B 2三点共线.21. 函数(1)当−2<a <0时,求f(x)在(0,1)上的极值点;(2)当m ≥1时,不等式f(2m −1)≥2f(m)−f(1)恒成立,求实数a 的取值范围.22. 在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =1+tcosα,y =tsinα.(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2:ρ=4cosθ. (1)求曲线C 2的直角坐标方程;(2)若点A (1,0),且C 1和C 2的交点分别为点M ,N ,求1|AM |+1|AN |的取值范围.23.已知函数f(x)=|x|+|2x−1|.(1)求不等式f(x)<3的解集;(2)若存在α∈(0,π),使得关于x的方程f(x)=msinα恰有一个实数根,求m的取值范围.【答案与解析】1.答案:B解析:解:z=(i+1)(i−2)=−3−i.则复数z的虚部是−1.故选:B.直接利用复数代数形式的乘除运算化简得答案.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.答案:C解析:本题主要考查集合的基本运算,比较基础.根据集合补集和交集的定义进行求解即可.解:由条件可得∁U M={−2,−1,2},则(∁U M)∩N={2}.故选:C.3.答案:C解析:解:由分层抽样的定义得10001400+1200+1000=25n,即10003600=25n,得n=90,故选:C.根据分层抽样的定义建立比例关系即可得到结论.本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.4.答案:A解析:解:∵y=x3+x+1,∴y′=3x2+1令x=1得切线斜率4,∴切线方程为y−3=4(x−1),即4x−y−1=0故选A.求出导函数,将x=1代入求出切线的斜率,利用点斜式求出直线的方程.本题主要考查导数的几何意义:在切点处的导数值为切线的斜率、考查直线的点斜式,属于基础题.5.答案:B解析:本题考查了二倍角公式和同角三角函数基本关系式,属于基础题.通过已知条件求出,再通过二倍角公式求出.解:∵sinα=13,α为锐角,∴cosα=2√23,∴sin2α=2sinα·cosα=2×13×2√23=4√29.6.答案:D解析:本题主要考查函数图象的识别和判断,利用函数的奇偶性和对称性以及函数值的符号是否对应,属于一般题.判断函数的奇偶性和图象的对称关系,结合f(3)的符号是否对应,进行排除即可.解:由题可得,f(x)的定义域为(−∞,−1)∪(1,+∞),f(−x)=−sinx⋅ln −x−1−x+1=−sinx⋅lnx+1x−1=sinx⋅ln x−1x+1=f(x),则函数f(x)是偶函数,图象关于y轴对称,排除A,C,f(3)=sin3ln12<0,排除B,故选:D.7.答案:A解析:本题主要考查了循环结构的程序框图的应用问题,是基础题目.解:模拟程序框图的运行过程,如下;S=20,i=2,否;S=10,i=3,否;S=103,i=4,否;S=103×4=56<1,i=5,是,输出i=5.故选A.8.答案:B解析:本题考查正弦函数的图象与性质,是基础题.令2x+π3=kπ+π2,k∈Z,解得x即可.解:令2x+π3=kπ+π2,k∈Z,得x=12kπ+π12(k∈Z),即函数f(x)图象的对称轴为x=12kπ+π12(k∈Z),故选B.9.答案:B解析:解:∵BC⊥平面PAB,AD//BC,∴AD⊥平面PAB,∴PA⊥AD,∵PA⊥AB,且AB∩AD=A,∴PA⊥平面ABCD,取AB的中点F,连结MF,则MF//PA,∴MF⊥平面ABCD,且MF=12PA=1,设点A 到平面MBC 的距离为h , 由V A‐MBC =V M‐ABC ,得13S △MBC ·ℎ=13S △ABC ·MF ,∴ℎ=S △ABC ·MF S △MBC=12·BC·AB·MF 12·BC·MB =2√55.通过线面垂直的判定定理可得PA ⊥平面ABCD ,取AB 的中点F ,连结MF ,设点A 到平面MBC 的距离为h ,利用V A−MBC =V M−ABC ,计算即可.本题考查直线与平面平行的判定,点到面的距离,棱锥体积公式,考查空间想象能力、计算能力,注意解题方法的积累,属于中档题.10.答案:C解析:本题考查双曲线的方程和性质,主要考查了离心率的范围和直线与圆锥曲线的位置关系,考查了学生综合分析问题和解决问题的能力,属于中档题目.设出AB 的坐标,利用中点坐标公式,化简,通过平方差法求出直线的斜率,然后推出双曲线的离心率即可.解:设A(x 1,y 1),B(x 2,y 2),因为AB 的中点为P(2,−1),所以{x 1+x 2=4y 1+y 2=−2,又{x 12a −y 12b =1x 22a 2−y 22b 2=1两式相减并整理可得k AB =y 1−y 2x1−x 2=−2b 2a 2=−1=tan135°.解得2c 2−2a 2=a 2,可得:e =√62.故选:C .11.答案:A解析:解:由题意可得|OB|=|OC|=2,|AO|=√10.设∠AOB =θ,则∠AOC =π−θ. ∴AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ )⋅(AO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=AO ⃗⃗⃗⃗⃗ 2+AO ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ =10+√10×2cosθ+√10×2cos(π−θ)+2×2cosπ=6, 故选A .由题意可得|OB|=|OC|=2,|AO|=√10.设∠AOB =θ,则∠AOC =π−θ.再根据AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ )⋅(AO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ),利用两个向量的数量积的定义求得结果.本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于中档题.12.答案:A解析:本题考查了函数的单调性、最值问题,考查导数的应用,是中档题.由已知可设函数f(x)=e x lnx−e x,结合函数的导数以及单调性求出m的范围即可.解:∵f′(x)=f(x)+e xx ,x∈[12,+∞),∴令f(x)=e x lnx−e x,则f′(x)=e x lnx+e xx −e x=f(x)+e xx,由f′(x)=e x lnx+e xx −e x=e x(lnx+1x−1),令t(x)=lnx+1x −1,则t′(x)=1x−1x2=x−1x2,当x=1时,t(x)取得最小值为0,∴f′(x)≥0,则f(x)在(0,+∞)上是增函数.若存在a∈[−2,1],使得f(2−1m)≤a3−3a−2−e成立,只需求出a∈[−2,1]时,a3−3a−2−e的最大值且使f(2−1m)小于等于这个最大值.设g(a)=a3−3a−2−e,a∈[−2,1],g′(a)=3a2−3=3(a+1)(a−1),当a∈(−2,−1)时,g′(a)>0,g(a)为增函数,当a∈(−1,1)时,g′(a)<0,g(a)为减函数,∴当a=−1时,g(a)max=−e,即当a=−1时,g(a)=−e.又∵f(x)=e x lnx−e x是增函数且f(1)=−e.∴12≤2−1m≤1,∴m∈[23,1].故选A.13.答案:−1解析:解:函数{2x +1(x ≥0)2x (x <0), f[f(x)]=2,可得2f(x)+1=2,解得f(x)=12,所以2x =12,解得x =−1.故答案为:−1.利用f[f(x)]=2,求出f(x)的值,然后利用方程求解x 即可.本题考查分段函数的应用,函数的最值以及方程思想的应用,考查计算能力.14.答案:2√393解析:【试题解析】本题考查三角形面积公式及正余弦定理,属基础题目.由三角形面积公式得c =3,利用余弦定理得a , 再由正弦定理即可得出答案.解:因为∠A =π3,AC =4,S △ABC =3√3=12AC ⋅AB ⋅sinA =12×4×AB ×√32,解得c =AB =3, 所以由余弦定理可得a =BC =√42+32−2×3×4×12=√13, 则a+b sinA+sinB =a sinA =√13√32=2√393.故答案为2√393. 15.答案:x =−1; 12解析:解:由题意知抛物线的焦点在x 轴,y =x −1,令y =0,x =1,求出直线与x 轴的交点,即为抛物线的焦点(1,0),所以抛物线的方程为y 2=4x ,所以准线方程为:x =−1;若OA ⊥OB ,设A(x,y),B(x′,y′),直线与抛物线联立:x 2−(2+2p)x +1=0,∴x +x′=2+2p ,xx′=1,∴yy′=xx′−(x +x′)+1=−2p若OA ⊥OB ,则OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =0, ∴xx′+yy′=0,即1−2p =0,解得p =12;故答案分别为:x =−1,12.由直线过抛物线的焦点,求出焦点坐标及p 的值,进而求出准线方程;由若OA ⊥OB ,可得数量积为令求出p 的值.考查直线与抛物线的综合应用,属于中档题. 16.答案:12解析:本题考查球的内接体与球的关系,球的半径的求解,考查计算能力,是中档题.通过球的内接体,说明几何体的中心是球的直径,由球的表面积求出球的半径,设出三棱柱的侧棱长为h ,然后由棱柱的体积公式得答案.解:因为球O 的表面积为3π,所以球的半径为4πR 2=3π,所以4R 2=3,因为底面是直角三角形的直三棱柱ABC −A 1B 1C 1的所有顶点都在球O 的球面上,且AB =AC =1,设三棱柱的侧棱长为h ,所以AB 2+AC 2+ℎ2=4R 2,解得ℎ=1,所以这个直三棱柱的体积是1×12×1×1=12,故答案为12.17.答案:解:(1)设等差数列{a n }的公差为d(d ≠0),则{a 1+2d =9(a 1+d)2=a 1⋅(a 1+6d)解得 d =4或d =0(舍去),a 1=1, ∴a n =1+4(n −1)=4n −3.(2)∵b n =1n(a n +7)=14(1n −1n+1), ∴S n =b 1+b 2+b 3+⋯+b n =14[(11−12)+(12−13)+⋯+(1n −1n +1)] =14(1−1n+1)=n4n+4.解析:(1)根据条件列方程组,求出首项和公差即可得出通项公式;(2)利用裂项相消法求和.本题考查了等差数列的通项公式,考查了利用裂项相消进行数列求和的方法,属于基础题. 18.答案:证明:(I)设AC ,BD 交点为O ,连结PO.则O 为正方形ABCD 的中心,∴PO ⊥平面ABCD.∵BD ⊂平面ABCD ,∴PO ⊥BD .∵四边形ABCD 是正方形,∴BD ⊥AC.又AC ⊂平面PAC ,PO ⊂平面PAC ,AC ∩PO =O ,∴BD ⊥平面PAC ,又BD ⊂平面EBD ,∴平面EBD ⊥平面PAC .(Ⅱ)因为BO =12BD =12×4√2=2√2,由(I)可得PO ⊥平面ABCD ,PO ⊥BD ,∴PO =√PD 2−DO 2=2√2,因为E 为PA 的中点, 故V E−PBD =12V P−ABD =12×13×S △ABD ×PO =12×13×12×4×4×2√2=8√23.解析:本题考查了面面垂直的判定,空间向量的应用与线面角的计算,(I)设AC ,BD 交点为O ,连结PO ,则PO ⊥平面ABCD ,于是PO ⊥BD ,又BD ⊥AC ,故而BD ⊥平面PAC ,于是平面EBD ⊥平面PAC ;(Ⅱ)由(I)可得PO ⊥平面ABCD ,PO ⊥BD ,求得PO 的长,故由V E−PBD =12V P−ABD =12×13×S △ABD ×PO 可得答案. 19.答案:解:(1)2015年至2019年的ω分别记为:ω1=2,ω2=2,ω3=3,ω4=4,ω5=4,抽取两年的基本事件有:(ω1,ω2),(ω1,ω3),(ω1,ω4),(ω1,ω5),(ω2,ω3),(ω2,ω4),(ω2,ω5),(ω3,ω4),(ω3,ω5),(ω4,ω5),共10种,其中两年都是ω>2的基本事件有:(ω3,ω4),(ω3,ω5),(ω4,ω5),共3种,故所求概率为P =310.(2)∵x =6,y =9,5xy =270,则b ∧=x i 5i=1y i −5xy∑x 2−5x 25=286−270190−180=1.6,a ̂=y −b̂x =9−1.6×6=−0.6, 所以回归直线方程为ŷ=1.6x −0.6,将x =10代入上述方程得y ̂=15.4, 即该企业在该年的年利润增长量大约为15.4万元.解析:本题考查古典概型概率公式及利用最小二乘法求回归直线方程及回归分析,属于基础题目.(1)列出基本事件利用古典概型概率计算公式求出即可;(2)利用最小二乘法求出回归直线方程即可得出.20.答案:解:(1)由题设知c =1,因为△B 1F 1F 2为等边三角形,则a =2c =2,又a 2=b 2+c 2,所以b =√3,则E 的方程为x 24+y 23=1.(2)由(1)知B1(0,√3),B2(0,−√3),又M(4,0),所以直线B1M:x4+√3=1,B1M与椭圆E的另一个交点A(85,3√35),直线B2F2:x3=1,因为853√353=1,故点A在直线B2F2上.所以A,F2,B2三点共线.解析:本题考查直线方程与椭圆方程的综合应用,椭圆的标准方程的求法,考查分析问题解决问题的能力,属于中档题.(1)利用题设条件得a=2c,再结合a2=b2+c2,求得a,b即可;(2)由(1)得直线B1M的方程及直线B2F2的方程,即可得证.21.答案:解:(1)∵f′(x)=x+1+ax(x>0),令g(x)=x2+x+a,∵−2<a<0,∴g(x)的判别式△=1−4a>0,令f′(x)=0,得x=−1+√1−4a2.当−2<a<0时,0<−1+√1−4a2<1,所以f(x)在(0,−1+√1−4a2)上单调递减,在(−1+√1−4a2,1)上单调递增,即f(x)在(0,1)上有1个极值点x0=−1+√1−4a2.(2)不等式f(2m−1)≥2f(m)−f(1)⇔−(2m−1)+aln(2m−1)≥−m2+2alnm,即−(2m−1)+aln(2m−1)≥−m2+alnm2,令g(x)=−x+alnx.∵m2≥2m−1≥1,∴要使不等式−(2m−1)+aln(2m−1)≥−m2+alnm2恒成立,只需g(x)=−x+alnx在[1,+∞)上单调递减,g′(x)=−1+ax,令g′(x)≤0,即a≤x在[1,+∞)上恒成立,可得实数a的取值范围是(−∞,1].解析:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,是一道中档题.(1)求出函数的导数,解关于导函数的不等式,求出函数的极值点即可;(2)令g(x)=−x +alnx ,根据m 2≥2m −1≥1,问题转化为g(x)=−x +alnx 在[1,+∞)上单调递减,根据函数的单调性求出a 的范围即可.22.答案:解:(1)曲线C 2:ρ=4cosθ.根据{x =ρcosθy =ρsinθ,可得ρ2=4ρcosθ,可得x 2+y 2−4x =0.(2)将{x =1+tcosαy =tsinα代入C 2的直角坐标方程, 得(1+tcosα)2+(tsinα)2−4(1+tcosα)=0,即有t 2−2tcosα−3=0,所以t 1+t 2=2cosα,t 1⋅t 2=−3.则1|AM|+1|AN|=|AM|+|AN||AM|⋅|AN|=|t 1|+|t 2||t 1t 2|=|t 1|+|t 2|3=|t 1−t 2|3=√(t 1+t 2)2−4t 1⋅t 23=√4cos 2α+123=2√cos 2α+33∈[2√33,43].解析:(1)直接利用转换关系,把参数方程、极坐标方程和直角坐标方程之间进行转换.(2)利用一元二次方程根和系数关系式的应用求出结果.本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.23.答案:解:(1)①当x ≤0时,得−x +(1−2x )<3解得x >−23,所以−23<x ≤0;②当0<x <12时,得x +(1−2x )<3解得,x >−2,所以0<x <12;③当x ≥12时,得x −(1−2x )<3,解得x <43,所以12≤x <43.综上,不等式的解集为(−23,43).(2)f (x )={ −3x +1,x ≤0−x +1,0<x <123x −1,x ≥12, 若关于x 的方程f(x)=msinα恰有一个实数根,则msinα=12有解,又,m =12sinα,所以m ∈[12,+∞).解析:本题考查绝对值不等式和函数的零点与方程的根.(1)对x 分类讨论,去绝对值解出不等式的解集即可;(2)根据函数f (x )与y =msinα恰有一根,可得msinα=12有解,即m =12sinα,,求出m 的范围.。
2020届成都七中高三文科数学二诊模拟考试试卷答案

成都七中高2020届高三二诊模拟考试 数学文科参考答案一、选择题二、填空题13.90 14.55215.()),3(0,3+∞- 16.33三、解答题17.解:(Ⅰ)设{}n a 的公差为d ,依题意有⎩⎨⎧⋅==512211a a a a ()0)4(111211≠⎩⎨⎧+⋅=+=⇒d d a a d a a 且⎩⎨⎧==⇒211d a ………4分 所以()12121-=-+=n n a n ()212n a a n S n n =+=………6分 (Ⅱ)因为()⎪⎭⎫⎝⎛+-=+=-=+111411411121n n n n a b n n ……8分所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=111...312121141n n T n ⎪⎭⎫ ⎝⎛+-=11141n)1(4+=n n…………12分18.(Ⅰ )频率分布直方图如下图所示: …4分(Ⅱ)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48;…7分(Ⅲ)该家庭未使用节水龙头50天日用水量的平均数为()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=…9分该家庭使用了节水龙头后50天日用水量的平均数为()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=.…11分估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=. …12分 仅供四川省崇州市崇庆中学使用四川省崇州市崇庆中学使用仅供21.(Ⅰ)0=a 时,1)(--=x e x f x ,则1)(-='xe xf 令0)(='x f 得0=x …2分 当()0,∞-∈x 时,0)(<'x f ,)(x f 在()0,∞-单调递减;当()+∞∈,0x ,0)(>'x f ,)(x f 在()+∞,0单调递增;…………4分所以0)0()(min ==f x f …5分(Ⅱ)12)(--='ax e x f x,注意到0)0(=f ,故0)(≥x f 的充分条件是012)(≥--='ax e x f x恒成立. 令12)()(--='=ax e x f x h x,则a e x h x2)(-='即0)(≥x h 在[)+∞,0恒成立,又注意到0)0(=h , 则0)(≥x h 其必要条件是021)0(≥-='a h ,解得21≤a .……10分 事实上,21≤a 时,1)(2---=x ax e x f x 0112)(≥--≥--='x e ax e x f xx(由(Ⅰ)易知) 即)(x f 在[)+∞,0单调递增,则0)0()(=≥f x f 恒成立. 综上, a 的取值范围是]21,(-∞.……………12分22解 :(Ⅰ )直线l的参数方程为322t x y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数),消去参数t 可得l0y -+=; 曲线C 的极坐标方程为24cos 30ρρθ-+=,可得C 的直角坐标方程为22430x y x +-+=.……………5分仅供四川省崇州市崇庆中学使用(Ⅱ)C 的标准方程为()2221x y -+=,圆心为()2,0C ,半径为1,所以,圆心C 到l的距离为d ==所以,点P 到l的距离的取值范围是1,122⎡⎤-+⎢⎥⎣⎦.……………10分 23、解: (Ⅰ)当1=a 时,⎪⎩⎪⎨⎧-≤-<<-≥=++-=.1,2,11,2,1,211)(x x x x x x x x f …………2分⎩⎨⎧>≥⇔>4214)(x x x f ,或⎩⎨⎧><<-4211x ,或⎩⎨⎧>--≤421x x2>⇔x ,或2-<x故不等式4)(>x f 的解集为),2()2,(+∞--∞ ;………………5分 (Ⅱ)因为1)1()(1)(+=--+≥++-=a x a x a x x x f)1,0(∈∀m ,[])1()141(141m m m m m m -+-+=-+m mm m -+-+=1145911425=-⋅-+≥mm m m (当31=m 时等号成立)……8分依题意,)1,0(∈∀m ,R x ∈∃0,有)(1410x f m m >-+则91<+a解之得810<<-a故实数a 的取值范围是)8,10(- ……10分仅供四川省崇州市崇庆中学使用。
2020年四川成都高三二模数学试卷(文科)
2020年四川成都高三二模数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)1.复数满足(为虚数单位),则的虚部为( ).A. B. C. D.2.设全集,集合,,则( ).A. B. C. D.3.某中学有高中生人,初中生人.为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为的样本.若样本中高中生恰有人,则的值为( ).A. B. C. D.4.曲线在点处的切线方程为( ).A.B.C.D.5.已知锐角满足,则( ).A.B.C.D.6.函数在的图象大致为( ).A.B.C.D.7.执行如图所示的程序框图,则输出的值为( ).开始结束否是,输出()A.B.C.D.8.已知函数,则函数的图象的对称轴方程为( ).A.B.C.D.9.在正方体中,点,分别为,的中点.在平面中,过的中点作平面的平行线交直线于,则 的值为( ).A.B.C.D.10.如图,双曲线 的左,右焦点分别是,,直线与双曲线的两条渐近线分别相交于,两点,若,则双曲线的离心率为().A.B.C.D.11.已知为圆的一条直径,点的坐标满足不等式组,则的取值范围为( ).A.B.C.D.12.已知函数,,若存在,,使得:成立,则的最小值为( ).A.B.C.D.二、填空题(本大题共12小题,每小题5分,共60分)13.已知函数,则 .,,14.在中,内角,,的对边分别为,,,已知,,,则的面积为 .15.设直线与抛物线相交于,两点,若弦的中点的横坐标为,则的值为 .16.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球的表面上.若球的表面积为,则该三棱柱的侧面积为 .三、解答题(本大题共5小题,每小题12分,共60分)17.已知是递增的等比数列,,且,,成等差数列.(1)(2)求数列的通项公式.设,,求数列的前项和.(1)(2)18.如图,在四棱锥中,是边长为的正方形的中心,平面,,分别为,的中点.求证:平面平面.若,求三棱锥的体积.(1)(2)19.某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关):年份年份代号利润(单位:亿元)求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润.当统计表中某年年利润的实际值大于由()中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将()中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.参考公式:,.(1)(2)20.已知椭圆的左、右焦点分别为,,点在椭圆上.求椭圆的标准方程.【答案】解析:∵,∴,∴虚部为.故选.解析:∵,设直线与椭圆相交于,两点,与圆相交于,两点,当的值为时,求直线的方程.(1)(2)21.已知函数,其中.若,求函数的极值.设.若在上恒成立,求实数的取值范围.四、选做题(本大题共2小题,选做1道,共10分)(1)(2)22.在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求直线的直角坐标方程与曲线的普通方程.已知点,设直线与曲线相交于,两点,求的值.(1)(2)23.已知函数.解不等式.设,其中为常数,若方程在上恰有两个不相等的实数根,求实数的取值范围.C1.A2.∴,∴.故选.解析:∵高中生初中生,∴,∴.故选.解析:∵,∴,∴时,,时,,∴,即.故选:.解析:∵,∴,∴,∴.故选:.解析:∵,B 3.D 4.C 5.B 6.∴为奇函数,排除、,又,∴选.解析:∵,,∴,,否,,,否,,,是,输出.故选.解析:由函数,令,,,故选:.解析:B 7.C 8.B 9.由图知,,而、分别为与中点,∴,故.又平面,平面,∴平面,故为中点,∴,故选.解析:∵渐近线方程为,∴时,,∴,故,,∴ ,∴.故选.解析:设圆心为,A 10.D 11.,,∴,到距离为,∴,,∴,故.故选.解析:首先,我们要得到函数和的图象如下图所示:将两个函数放入一个坐标系得:D 12.分析知,若出现满足题目条件的情况,则需,,又知,由知于上单调递增,则得:,那么,现令,则,则得:于递减,于递增,则,故选.解析:∵,∴时,∴.解析:∵,,,∴,,∴,13.,,14.(1),∴.解析:,即,又已知中点横坐标为,∴,∴.解析:∵,∴,设棱长为,∴,,,在中有,∴∴.解析:设数列的公比为,由题意及,知,∵,,成等差数列,∴,15.16.侧(1).(2).17.(2)(1)(2)∴,即,解得或(舍去),∴,∴数列的通项公式为.∵,∴.解析:∵是正方形,∴.∵平面,平面,∴.∵,平面,且,∴平面.又平面,∴平面平面.设三棱锥的高为.∴.连接.∵平面,平面,∴.∵,,(1)证明见解析.(2).18.(1)(2)(1)∴.∴.解析:根据表中数据,计算可得,,.又,∴.∵,∴.∴关于的线性回归方程为.将代入,∴(亿元).∴该公司年的年利润的预测值为亿元.由()可知年至年的年利润的估计值分别为,,,,,(单位:亿元),其中实际利润大于相应估计值的有年.故这年中,被评为级利润年的有年,分别记为,;评为级利润年的有年,分别记为,,,.从年至年中随机抽取年,总的情况分别为:,,,,,,,,,,,,,,.共计种情况.其中恰有一年为级利润年的情况分别为:,,,,,,,.共有种情况.记“从年至年这年的年利润中随机抽取年,恰有一年为级利润年”的概率为.故所求概率.解析:∵在椭圆上,(1)关于的线性回归方程为.该公司年的年利润的预测值为亿元.(2).19.(1)所求椭圆的标准方程为.(2)所求直线的方程为或.20.(2)(1)∴,又,,∴,则,∵,,∴,故所求椭圆的标准方程为.设,,联立消去,得,∴,,,∴,设圆的圆心到直线的距离为,则,∴,∴,∵,∴,解得,经验证符合题意,故所求直线的方程为或.解析:当时,,则,,令,解得(舍去),,当时,,∴在上单调递减,当时,,(1)极小值为,无极大值.(2).21.(2)∴在上单调递增,∴,无极大值.,若在上恒成立,即在上恒成立,构造函数,,则,令,,∴,()若,可知恒成立,∴在上单调递增,∴,①当,即时,在上恒成立,即在上恒成立,∴在上恒成立,∴满足条件;②当即时,∵,,∴存在唯一的,使得,当时,,即,∴在单调递减,∴,这与矛盾,()若,由,可得(舍去),,易知在上单调递减,∴在上恒成立,即在上恒成立,∴在上单调递减,极小值(1)(2)(1)(2)∴在上恒成立,这与矛盾,综上,实数的取值范围为.解析:由,,可得直线的直角坐标方程为.由曲线的参数方程,消去参数,可得曲线的普通方程为.易知点在直线上,直线的参数方程为(为参数),将直线的参数方程代入曲线的普通方程,并整理得,设,是方程的两根,则有,,∴.解析:原不等式即,①当时,化简得,解得;②当时,化简得,此时无解;③当时,化简得,解得,综上,原不等式的解集为.由题意,设方程两根为,,①当时,方程等价于方程,易知当,方程在上有两个不相等的实数根,此时方程在上无解,∴满足条件;②当时,方程等价于方程,此时方程在上显然没有两个不相等的实数根;(1),.(2).22.(1).(2).23.③当时,易知当,方程在上有且只有一个实数根,此时方程在上也有一个实数根,∴满足条件,综上,实数的取值范围为.。
成都七中2020届高三二诊模拟考试数学(文)试题及答案
成都七中2020届高三二诊模拟考试数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2560A x x x =--<,{}20B x x =-<,则A B =I ( ) A. {}32x x -<< B. {}22x x -<< C. {}62x x -<<D. {}12x x -<<2.设(1)1i z i +⋅=-,则复数z 的模等于( ) A.2 B. 2 C. 1D.33.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A.1225B. 1225-C.2425D. 2425-4.设3log 0.5a =,0.2log 0.3b =,0.32c =,则,,a b c 的大小关系是( ) A. a b c <<B. a c b <<C. c a b <<D. c b a <<5.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A. 1月至8月空气合格天数超过20天的月份有5个B. 第二季度与第一季度相比,空气达标天数的比重下降了C. 8月是空气质量最好的一个月D. 6月份的空气质量最差.6.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( ) A.43π B. 16πC.163πD.323π 7.设等比数列{}n a 的前n 项和为n S , 则“1322a a a +<”是“10a <”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.设x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A. 5-B. 2C. 3D. 没有最小值9.设函数22sin ()1x xf x x =+,则()y f x =,[],x ππ∈-的大致图象大致是的( )A. B.C. D.10.对任意x ∈R ,不等式0x e kx -≥恒成立,则实数k 的取值范围是( ) A. [)0,eB. (]0,eC. []0,eD. (],e -∞ 11.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,23c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( ) A.3B.217C.2112D.5712.如图所示,三棱椎P ABC -的底面ABC 是等腰直角三角形,90ACB ︒∠=,且2PA PB AB ===,3PC=,则点C到面PAB的距离等于( )A.13B.63C.33D.23二、填空题:本题共4小题,每小题5分,共20分.13.已知某校高一、高二、高三的人数分别为400、450、500,为调查该校学生的学业压力情况,现采用分层抽样的方法抽取一个容量为270的样本,则从高二年级抽取的人数为__________.14.已知(1,2)a=r,(1,1)b=-r,则ar与a b+r r夹角的余弦值为________.15.已知()f x是定义在R上的奇函数,当0x>时,2()2f x x x=-,则不等式()f x x>的解集用区间表示为__________.16.已知椭圆Г:22221(0)x ya ba b+=>>,F1、F2是椭圆Г的左、右焦点,A为椭圆Г的上顶点,延长AF2交椭圆Г于点B,若1ABFV为等腰三角形,则椭圆Г的离心率为___________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.17.设数列{}n a是公差不为零的等差数列,其前n项和为n S,11a=,若1a,2a,5a成等比数列. (Ⅰ)求n a及n S;(Ⅱ)设211(N*)1nnb na+=∈-,求数列{}nb的前n项和nT.18.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)0,0.1[)0.1,0.2[)0.2,0.3[)0.3,0.4[)0.4,0.5[)0.5,0.6[)0.6,0.7频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表 日用水量 [)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数 151310 16 5(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)19.如图所示,在四棱锥A BCD -中,2AB BC BD ===,23AD =2CBA CBD π∠=∠=,点E 为AD的中点.(Ⅰ) 求证:AD ⊥BC ;(Ⅱ)求证:平面ACD ⊥平面BCE ; (Ⅲ)若F 为BD的中点,求四面体CDEF 的体积.20.已知椭圆22221x y a b +=(0a b >>)经过点(0,1),离心率为32,A 、B 、C 为椭圆上不同的三点,且满足0OA OB OC ++=u u u r u u u r u u u r r,O 为坐标原点.(Ⅰ)若直线1y x =-与椭圆交于M ,N 两点,求MN ;(Ⅱ)若直线AB 、OC 的斜率都存在,求证:AB OC k k ⋅为定值. 21.设函数()21xf x e ax x =--+,a R ∈.(Ⅰ)0a =时,求()f x 的最小值;(Ⅱ)若()0f x ≥在[)0,+∞恒成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,直线l 的参数方程为323t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=. (1)求l普通方程及C 的直角坐标方程;(2)求曲线C 上点P 到l 距离的取值范围. 23.已知()1f x x x a =-++()a R ∈. (Ⅰ) 若1a =,求不等式()4f x >的解集; (Ⅱ)(0,1)m ∀∈,0x R ∃∈,014()1f x m m+>-,求实数a 的取值范围.成都七中高2020届高三二诊数学模拟考试 (文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2560A x x x =--<,{}20B x x =-<,则A B =I ( ) A. {}32x x -<< B. {}22x x -<< C. {}62x x -<< D. {}12x x -<<【答案】D 【解析】 【分析】利用一元二次不等式的解法和集合的交运算求解即可. 【详解】由题意知,集合}{16A x x =-<<,}{2B x x =<, 由集合的交运算可得,}{12A B x x ⋂=-<<. 故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题. 2.设(1)1i z i +⋅=-,则复数z 的模等于( )A.B. 2C. 1D.【答案】C 【解析】 【分析】利用复数的除法运算法则进行化简,再由复数模的定义求解即可. 【详解】因为(1)1i z i +⋅=-,所以()()()211111i iz i i i i --===-++⋅-,由复数模的定义知,1z ==.故选:C【点睛】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题. 3.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A.1225B. 1225-C.2425D. 2425-【答案】D 【解析】 【分析】利用诱导公式和同角三角函数的基本关系求出2cos α,再利用二倍角的正弦公式代入求解即可. 【详解】因为3tan()4πα+=-, 由诱导公式可得,sin 3tan cos 4ααα==-, 即3sin cos 4αα=-, 因为22sin cos 1αα+=, 所以216cos 25α=, 由二倍角的正弦公式可得,23sin 22sin cos cos 2αααα==-,所以31624sin 222525α=-⨯=-. 故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.4.设3log 0.5a =,0.2log 0.3b =,0.32c =,则,,a b c 的大小关系是( ) A. a b c << B. a c b <<C. c a b <<D. c b a <<【答案】A【解析】 【分析】选取中间值0和1,利用对数函数3log y x =,0.2log y x =和指数函数2x y =的单调性即可求解. 【详解】因为对数函数3log y x =在()0,∞+上单调递增, 所以33log 0.5log 10<=,因为对数函数0.2log y x =在()0,∞+上单调递减, 所以0.20.20.20log 1log 0.3log 0.21=<<=, 因为指数函数2xy =在R 上单调递增, 所以0.30221>=, 综上可知,a b c <<. 故选:A【点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.5.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A. 1月至8月空气合格天数超过20天的月份有5个B. 第二季度与第一季度相比,空气达标天数的比重下降了C. 8月是空气质量最好的一个月D. 6月份的空气质量最差. 【答案】D 【解析】由图表可知5月空气质量合格天气只有13天,5月份的空气质量最差.故本题答案选D .6.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( ) A.43π B. 16πC.163π D.323π 【答案】D 【解析】 【分析】设圆柱的底面半径为r ,则其母线长为2l r =,由圆柱的表面积求出r ,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为r ,则其母线长为2l r =, 因为圆柱的表面积公式为2=22S r rl ππ+圆柱表, 所以222224r r r πππ+⨯=,解得2r =, 因为圆柱的体积公式为2=2V Sh r r π=⋅圆柱, 所以3=22=16V ππ⨯⨯圆柱,由题知,圆柱内切球的体积是圆柱体积的23, 所以所求圆柱内切球的体积为2232=16=333V V ππ=⨯圆柱.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.7.设等比数列{}n a 的前n 项和为n S , 则“1322a a a +<”是“10a <”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】利用等比数列的通项公式,结合充分条件和必要条件的定义进行判断;【详解】因为22131,a a q a a q ==,所以若1322a a a +<成立,即21112a q q a a +<成立,整理可得,()2110a q -<成立, 因为1q =时,1322a a a +=, 所以1q ≠,即()210q ->, 所以可得10a <,即“1322a a a +<”是“10a <”的充分条件; 若10a <成立,因为()210q -≥,所以可得()2110a q -≤,即1322a a a +≤成立, 即由10a <不能推出1322a a a +<,故“1322a a a +<”不是“10a <”的必要条件;综上可知,“1322a a a +<”是“10a <”的充分不必要条件. 故选: A【点睛】本题考查等比数列通项公式和充分条件与必要条件的判断;考查逻辑推理能力和运算求解能力;根据充分条件和必要条件的定义,结合等比数列的通项公式是求解本题的关键;属于中档题.8.设x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A. 5-B. 2C. 3D. 没有最小值【答案】B 【解析】 【分析】作出不等式组表示的平面区域,作出直线0:0l x y +=,根据目标函数z 的几何意义平移直线0l ,当直线:l z x y =+经过平面区域内的点A 时目标函数z 有最小值,联立方程求出点A 坐标,代入目标函数求解即可.【详解】根据题意,作出不等式组表示的平面区域如图所示:作出直线0:0l x y +=,因为目标函数z 的几何意义为直线y x z =-+的纵截距, 所以平移直线0l ,当直线:l z x y =+经过平面区域内的点A 时目标函数z 有最小值, 联立方程24220x y x y +=⎧⎨--=⎩,解得20x y =⎧⎨=⎩,所以点A 坐标为()2,0,把点A 的坐标代入目标函数z x y =+可得目标函数z 的最小值为2. 故选:B【点睛】本题考查简单的线性规划问题;考查数形结合思想和运算求解能力;理解目标函数的几何意义是求解本题的关键;属于中档题、常考题型.9.设函数22sin ()1x xf x x =+,则()y f x =,[],x ππ∈-的大致图象大致是的( )A. B.C. D.【答案】B 【解析】 【分析】采用排除法:通过判断函数的奇偶性排除选项A ;通过判断特殊点(),2f f ππ⎛⎫⎪⎝⎭的函数值符号排除选项D和选项C 即可求解.【详解】对于选项A:由题意知,函数()f x 的定义域为R ,其关于原点对称,因为()()()()()2222sin sin 11x x x xf x f x x x ---==-=-+-+, 所以函数()f x 为奇函数,其图象关于原点对称,故选A 排除;对于选项D:因为2222sin 2202412f ππππππ⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎝⎭⎝⎭==> ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,故选项D 排除; 对于选项C:因为()()22sin 01f ππππ==+,故选项C 排除; 故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型. 10.对任意x ∈R ,不等式0x e kx -≥恒成立,则实数k 的取值范围是( ) A. [)0,e B. (]0,eC. []0,eD. (],e -∞ 【答案】C 【解析】 【分析】由题意知,x e kx ≥对任意x ∈R 恒成立,设()g x kx =,则函数()g x 为过原点,斜率为k 的直线,求出直线()g x kx =与曲线x y e =相切时的k 值,利用数形结合即可求出实数k 的取值范围.【详解】由题意可知, x e kx ≥对任意x ∈R 恒成立, 设()g x kx =,则函数()g x 为过原点,斜率为k 的直线, 根据题意作图如下:易知0k ≥,由图可知,当直线()g x kx =与曲线xy e =相切时k 有最大值,因为xy e '=,设切点坐标为()00,x y ,由导数的几何意义知,000x x e k kx e⎧=⎪⎨=⎪⎩,解得01x k e =⎧⎨=⎩, 所以实数k 的取值范围为[]0,e . 故选:C【点睛】本题考查利用导数求切线的斜率及不等式恒成立问题的求解;考查数形结合思想和转化与化归能力;把不等式恒成立问题转化为两函数图象所对函数值的大小问题是求解本题的关键;属于中档题. 11.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,23c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( ) A.37B.217C.2112D.5719【答案】B 【解析】 【分析】利用两角差的正弦公式和边角互化思想可求得3tan B =,可得出6B π=,然后利用余弦定理求出b 的值,最后利用正弦定理可求出sin C 的值. 【详解】31sin sin cos sin 32b A a B B a B π⎛⎫=-=-⎪⎝⎭Q ,即31sin sin sin cos sin sin22A B A B A B=-,即3sin sin3sin cosA B A A=,sin0A>Q,3sin3cosB B∴=,得3tan3B=,0BQπ<<,6Bπ∴=.由余弦定理得2232cos112212372b ac ac B=+-=+-⨯⨯⨯=,由正弦定理sin sinc bC B=,因此,123sin212sin77c BCb⨯===.故选:B.【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.12.如图所示,三棱椎P ABC-的底面ABC是等腰直角三角形,90ACB︒∠=,且2PA PB AB===,3PC=,则点C到面PAB的距离等于( )A.13B.6C.3D.23【答案】C【解析】【分析】取AB的中点G,连接,PG CG,作CH PG⊥,垂足为H,利用线面垂直的判定定理证明AB⊥平面PCG,由线面垂直的性质可得AB CH⊥,进而证得CH⊥平面PAB,在PCG∆中,利用余弦定理和同角三角函数的基本关系求出sin PGC∠,在Rt CHG∆中求出CH即可.【详解】取AB的中点G,连接,PG CG,作CH PG⊥,垂足为H,如图所示:因为2PA PB AB ===,所以PAB ∆为等边三角形, 因为G 为AB 中点,所以PG AB ⊥, 又ABC ∆为等腰直角三角形,90ACB ︒∠=, 所以CG AB ⊥,又PG CG G =I , 所以AB ⊥平面PCG ,又CH ⊂平面PCG , 所以AB CH ⊥,因为CH PG ⊥,PG AB G ⋂=, 所以CH ⊥平面PAB ,即CH 即为点C 到面PAB 的距离, 因为在等边PAB ∆中,362PG ==, 在ABC ∆为等腰直角三角形中,22CG ==, 在PCG ∆中,由余弦定理可得,2222226233cos 23622PG CG PCPGC PG CG +-+-⎝⎭⎝⎭∠===-⋅⨯⨯,所以2236sin 1cos 133PGC PGC ⎛⎫∠=-∠=--= ⎪ ⎪⎝⎭, 在Rt CHG ∆中,263sin 233CH CG CGP =⋅∠==, 所以点C 到面PAB 3故选:C【点睛】本题考查利用线面垂直的判定定理和性质定理求点到面的距离;考查数形结合思想和逻辑推理能力;灵活运用线面垂直的判定与性质是求解本题的关键;属于中档题、常考题型.二、填空题:本题共4小题,每小题5分,共20分.13.已知某校高一、高二、高三的人数分别为400、450、500,为调查该校学生的学业压力情况,现采用分层抽样的方法抽取一个容量为270的样本,则从高二年级抽取的人数为__________. 【答案】90 【解析】 【分析】利用分层抽样方法:利用频率、频数与样本容量的关系按比例抽取即可. 【详解】由题意知,全校共有学生人数为1350人,其中高二年级有450人, 设高二年级抽取的人数为x 人,根据分层抽样按比例抽取可得,270450901350x =⨯=.故答案为: 90【点睛】本题考查利用分层抽样按比例抽取样本;考查运算求解能力;属于基础题.14.已知(1,2)a =r ,(1,1)b =-r ,则a r 与a b +r r夹角的余弦值为________.【解析】 【分析】根据题意,利用向量坐标的线性运算求出a b +r r 的坐标,分别求出,a a b +v v v ,()a b a +⋅r r r,代入夹角公式求解即可.【详解】由题意知,()0,3a b +=vv ,因为(1,2)a =r ,所以()01326a b a +⋅=⨯+⨯=v v v,由向量模的定义知,3a a b ==+==vv v ,由平面向量数量积的夹角公式可得,()cos a b a a a b θ+⋅===⋅+v v v v v v .故答案为【点睛】本题考查平面向量坐标的线性运算及平面向量数量积的坐标表示和夹角公式;考查运算求解能力;熟练掌握平面向量数量积的坐标表示和夹角公式是求解本题的关键;属于中档题.15.已知()f x 是定义在R 上的奇函数,当0x >时,2()2f x x x =-,则不等式()f x x >的解集用区间表示为__________.【答案】(3,0)(3,)-⋃+∞ 【解析】设0x < ,则0x -> ,由题意可得222222f x f x x x x x f x x x -=-=---=+∴=--()()()(),(),故当0x < 时,22f x x x ().=-- 由不等式f x x ()> ,可得20 2x x x x ⎧⎨-⎩>> ,或202x x x x ⎧⎨--⎩<,> 求得3x > ,或30x -<<, 故答案为(303,)(,).-⋃+∞ 16.已知椭圆Г:22221(0)x y a b a b+=>>,F 1、F 2是椭圆Г的左、右焦点,A 为椭圆Г的上顶点,延长AF 2交椭圆Г于点B ,若1ABF V 为等腰三角形,则椭圆Г的离心率为___________.【答案】3【解析】 【分析】由题意可得等腰三角形的两条相等的边,设2BF t =,由题可得1BF 的长,在三角形1ABF 中,三角形12BF F 中由余弦定理可得1ABF ∠的值相等,可得,a c 的关系,从而求出椭圆的离心率【详解】如图,若1ABF ∆为等腰三角形,则|BF 1|=|AB |.设|BF 2|=t ,则|BF 1|=2a −t ,所以|AB |=a +t =|BF 1|=2a −t ,解得a =2t ,即|AB |=|BF 1|=3t ,|AF 1|=2t ,设∠BAO =θ,则∠BAF 1=2θ,所以Г的离心率e =22||||OF c a AF ==sin θ,结合余弦定理,易得在1ABF ∆中,21cos 212sin 3θθ==-,所以21sin 3θ=,即e =sin θ故答案为:3.【点睛】此题考查椭圆的定义及余弦定理的简单应用,属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.17.设数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,11a =,若1a ,2a ,5a 成等比数列. (Ⅰ)求n a 及n S ; (Ⅱ)设211(N*)1n n b n a +=∈-,求数列{}n b 的前n 项和n T .【答案】(Ⅰ)21n a n =-,2n S n =;(Ⅱ)4(1)n nT n =+.【解析】 【分析】(Ⅰ)设数列{}n a 的公差为d ,利用等比中项和等差数列通项公式得到关于1,a d 的方程,求出1,a d 代入公式即可;(Ⅱ)根据(Ⅰ)求出数列{}n b 的通项公式,利用裂项相消法求和即可. 【详解】(Ⅰ)设{}n a 的公差为d ,依题意有122151a a a a =⎧⎨=⋅⎩,即()()1211114a a d a a d =⎧⎪⎨+=⋅+⎪⎩, 解得112a d =⎧⎨=⎩或11a d =⎧⎨=⎩(舍去),所以()12121n a n n =+-=-()122n n n a a S n +== ;(Ⅱ)因为()211111114141n n b a n n n n +⎛⎫===- ⎪-++⎝⎭所以1111111...42231n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦11141n ⎛⎫=- ⎪+⎝⎭4(1)nn =+.【点睛】本题考查等比中项、等差数列的通项公式和前n 项和公式及裂项相消法求和;考查运算求解能力;利用等比中项和等差数列通项公式正确求出1,a d 是求解本题的关键;属于中档题.18.某家庭记录了未使用节水龙头50天日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:0.35m的概率;(2)估计该家庭使用节水龙头后,日用水量小于3(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)47.45m.【答案】(1)直方图见解析;(2)0.48;(3)3【解析】【分析】(1)根据题中所给的使用了节水龙头50天的日用水量频数分布表,算出落在相应区间上的频率,借助于直方图中长方形的面积表示的就是落在相应区间上的频率,从而确定出对应矩形的高,从而得到直方图;(2)结合直方图,算出日用水量小于0.35的矩形的面积总和,即为所求的频率;(3)根据组中值乘以相应的频率作和求得50天日用水量的平均值,作差乘以365天得到一年能节约用水m,从而求得结果.多少3【详解】(1)频率分布直方图如下图所示:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48;(3)该家庭未使用节水龙头50天日用水量的平均数为 ()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=. 【点睛】该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.19.如图所示,在四棱锥A BCD -中,2AB BC BD ===,23AD =,2CBA CBD π∠=∠=,点E 为AD的中点.(Ⅰ) 求证:AD ⊥BC ;(Ⅱ)求证:平面ACD ⊥平面BCE ;(Ⅲ)若F 为BD 的中点,求四面体CDEF 的体积.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)6. 【解析】【分析】(Ⅰ)利用线面垂直的判定定理证明CB ⊥平面ABD ,再由线面垂直的性质定理即可得证;(Ⅱ)由(Ⅰ)知AD ⊥BC ,由题可知,BE AD ⊥,利用线面垂直的判定定理证得AD ⊥平面BCE ,再由面面垂直的判定定理即可得证;(Ⅲ)由(Ⅰ)知BC ⊥平面ABD ,由此可得CB 即为点C 到平面ABD 的距离,利用三角形的面积公式求出DEF ∆的面积,代入三棱锥的体积公式求解即可.【详解】(Ⅰ)证明:因为2CBA CBD π∠=∠=,所以,BC BA BC BD ⊥⊥,又BA BD B =I ,由线面垂直的判定定理知,CB ⊥平面ABD ,因为AD ⊂平面ABD ,所以AD ⊥BC .(Ⅱ)证明:由(Ⅰ)知AD ⊥BC ,又AB BD =,点E 为AD 的中点,所以BE AD ⊥,因为BE BC B =I ,由线面垂直的判定知,AD ⊥平面BCE ,又AD ⊂平面ACD ,由面面垂直的判定定理知,平面ACD ⊥平面BCE .(Ⅲ)解:由(Ⅰ)知BC ⊥平面ABD ,因为2,AB BD AD ===所以在ABD ∆中由余弦定理可得, (222222221cos 22222AB BD AD ABD AB BD +-+-∠===-⋅⨯⨯,所以120ABD ∠=o ,又EF 为ABD ∆的中位线,所以120EFD ∠=o , 所以13C DEF DEF V S CB -∆=⋅ 11(sin120)32EF FD CB ︒=⋅⋅⋅⋅11(11232=⋅⨯⨯⨯=. 【点睛】本题考查利用线面垂直的判定与性质证明线线垂直、面面垂直及三棱锥体积的求解;考查逻辑推理能力和运算求解能力;熟练掌握线面垂直的判定与性质是求解本题的关键;属于中档题、常考题型.20.已知椭圆22221x y a b +=(0a b >>)经过点(0,1)A 、B 、C 为椭圆上不同的三点,且满足0OA OB OC ++=u u u r u u u r u u u r r ,O 为坐标原点.(Ⅰ)若直线1y x =-与椭圆交于M ,N 两点,求MN ;(Ⅱ)若直线AB 、OC 的斜率都存在,求证:AB OC k k ⋅为定值.【答案】;(Ⅱ)证明见解析. 【解析】【分析】(Ⅰ)根据题意知1b =,结合离心率和,,a b c 之间的关系求出椭圆方程,然后与直线1y x =-联立求出交点M ,N 两点的坐标,代入两点间的距离公式求解即可;(Ⅱ)设()11,A x y ,()11,B x y ,()33,C x y ,由0OA OB OC ++=u u u r u u u r u u u r r ,利用平面向量坐标的线性运算求出123,,x x x 之间的关系和123,,y y y 之间的关系,把,A B 两点坐标代入椭圆方程利用点差法求解即可得证.【详解】(Ⅰ)解:依题有2221b c aa b c =⎧⎪⎪=⎨⎪=+⎪⎩2241a b ⎧=⇒⎨=⎩ , 所以椭圆方程为2214x y +=,由122110114y x x x y y =-⎧=⎧⎪⇒⎨⎨=-+=⎩⎪⎩,或228535x y ⎧=⎪⎪⎨⎪=⎪⎩,所以MN ==(Ⅱ)证明:设()11,A x y ,()11,B x y ,()33,C x y , 则()123123,OA OB OC x x x y y y ++=++++u u u v u u u v u u u v ,由0OA OB OC ++=u u u r u u u r u u u r r知,123123,x x x y y y +=-+=-,由()()()()222211221212121244,4440+=+=⇒+-++-=x y x y x x x x y y y y , 所以()121212124AB y y x x k x x y y -+==--+, 因为321321OC y y y k x x x +==+, 所以AB OC k k ⋅14=-为定值. 【点睛】本题考查椭圆的方程及其性质、直线与椭圆的位置关系、点差法的运用、平面向量坐标的线性运算;考查运算求解能力和逻辑推理能力和知识的综合运用能力;属于中档题、常考题型.21.设函数()21x f x e ax x =--+,a R ∈. (Ⅰ)0a =时,求()f x 的最小值;(Ⅱ)若()0f x ≥在[)0,+∞恒成立,求a 的取值范围.【答案】(Ⅰ)2;(Ⅱ)214e a -≤. 【解析】【分析】(Ⅰ)对函数()f x 进行求导,利用导数判断函数()f x 的单调性求最值即可;(Ⅱ)由题知,()020f =>对任意a R ∈恒成立,当0x >时,()0f x ≥恒成立等价于210x e ax x --+≥对任意0x >恒成立,即21x e x a x -+≤对任意0x >恒成立,令()21x e x h x x -+=,0x >,对函数()h x 进行求导判断其单调性求()0,∞+上的最小值即可.【详解】(Ⅰ)0a =时,()1xf x e x =-+, 则()1x f x e =-' , 令()0f x '=,得0x =,当(),0x ∈-∞时,()0f x '<,()f x 在(),0-∞单调递减;当()0,x ∈+∞,()0f x '>,()f x 在()0,∞+单调递增;所以()()min 02f x f ==;(Ⅱ)由题意知,()020f =>对任意a R ∈恒成立,当0x >时,()0f x ≥恒成立等价于210x e ax x --+≥对任意0x >恒成立, 即21x e x a x-+≤对任意0x >恒成立, 令()21x e x h x x -+=,0x >,则()()()'321x x e h x x-+=, 所以当02x <<时,()'0h x <,函数()h x 单调递减; 当2x >时,()'0h x >,函数()h x 单调递增, 所以当2x =时函数()h x 有最小值为()2124e h -=, 所以此时a 的取值范围为214e a -≤, 综上可知所求a 的取值范围为214e a -≤. 【点睛】本题考查利用导数判断函数的单调性求最值、利用构造函数法求解不等式的恒成立问题;考查运算求解能力、转化与化归的能力、逻辑推理能力;灵活运用函数的单调性与导数之间的关系是求解本题的关键;属于综合型强、难度大型试题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,直线l的参数方程为322t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=.(1)求l 的普通方程及C 的直角坐标方程;(2)求曲线C 上的点P 到l 距离的取值范围.【答案】(10y -+=,22430x y x +-+=.(2)1,122⎡⎤-+⎢⎥⎣⎦ 【解析】【分析】(1)根据直线l的参数方程为3,2t x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数t ,即可求得的l 的普通方程,曲线C 的极坐标方程为24cos 30p ρθ-+=,利用极坐标化直角坐标的公式:cos sin x y ρθρθ=⎧⎨=⎩ ,即可求得答案; (2)C 的标准方程为22(2)1x y -+=,圆心为(2,0)C ,半径为1,根据点到直线距离公式,即可求得答案. 【详解】(1)直线l参数方程为3,2t x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数t∴l 0y -+=.曲线C 的极坐标方程为24cos 30ρρθ-+=,利用极坐标化直角坐标的公式:cos sin x y ρθρθ=⎧⎨=⎩ ∴C 的直角坐标方程为22430x y x +-+=.(2)C 的标准方程为22(2)1x y -+=,圆心为(2,0)C ,半径为1∴圆心C 到l 距离为d ==,∴点P 到l的距离的取值范围是1,122⎡⎤-+⎢⎥⎣⎦. 【点睛】本题解题关键是掌握极坐标化直角坐标的公式和点到直线距离公式,考查了分析能力和计算能力,属于中档题.23.已知()1f x x x a =-++()a R ∈.(Ⅰ) 若1a =,求不等式()4f x >的解集;(Ⅱ)(0,1)m ∀∈,0x R ∃∈,014()1f x m m+>-,求实数a 的取值范围. 【答案】(Ⅰ)(,2)(2,)-∞-+∞U ;(Ⅱ)(10,8)-.【解析】【分析】(Ⅰ)利用零点分段讨论法把函数()f x 改写成分段函数的形式,分1,11,1x x x ≥-<<≤-三种情况分别解不等式,然后取并集即可;(Ⅱ)利用绝对值三角不等式求出()f x 的最小值,利用均值不等式求出141m m +-的最小值,结合题意,只需()min min141f x m m ⎛⎫<+ ⎪-⎝⎭即可,解不等式即可求解. 【详解】(Ⅰ)当1a =时,2,1()112,112,1x x f x x x x x x ≥⎧⎪=-++=-<<⎨⎪-≤-⎩,1()424x f x x ≥⎧>⇔⎨>⎩,或1124x -<<⎧⎨>⎩,或124x x ≤-⎧⎨->⎩ 2x ⇔>,或2x <-所以不等式()4f x >的解集为(,2)(2,)-∞-+∞U ; (Ⅱ)因为()1()(1)1f x x x a x a x a =-++≥+--=+(0,1)m ∀∈,又[]1414()(1)11m m m m m m+=++--- 4151m m m m-=++-59≥+=(当13m =时等号成立),依题意,(0,1)m ∀∈,0x R ∃∈,有014()1f x m m+>-, 则19a +<,解之得108a -<<,故实数a 的取值范围是(10,8)-.【点睛】本题考查由存在性问题求参数的范围、零点分段讨论法解绝对值不等式、利用绝对值三角不等式和均值不等式求最值;考查运算求解能力、分类讨论思想、逻辑推理能力;属于中档题.。
2020-2021学年度四川省成都市高三第二次诊断性检测数学(文)试题及答案
高中毕业班第二次诊断性检测数学(文科)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|11}P x x =-<,{|12}Q x x =-<<,则P Q =I ( ) A .1(1,)2-B .(1,2)- C .(1,2)D .(0,2)2.已知向量(2,1)a =r ,(3,4)b =r ,(,2)c k =r .若(3)//a b c -r r r,则实数的值为( )A .8-B .6-C .1-D .3.若复数满足3(1)12i z i +=-,则z 等于( ) AB .32C.2D .124.设等差数列{}n a 的前项和为n S .若420S =,510a =,则16a =( ) A .32-B .12 C .16 D .325.已知m ,是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( ) A .若m α⊂,则m β⊥ B .若m α⊂,n β⊂,则m n ⊥ C .若m α⊄,m β⊥,则//m αD .若m αβ=I,n m ⊥,则n α⊥6.在平面直角坐标系中,经过点P)A .22142x y -= B .221714x y -= C .22136x y -= D .221147y x -= 7.已知函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示.现将函数()f x 图象上的所有点向右平移4π个单位长度得到函数()g x 的图象,则函数()g x 的解析式为( )A .()2sin(2)4g x x π=+B .3()2sin(2)4g x x π=+C .()2cos 2g x x =D .()2sin(2)4g x x π=-8.若为实数,则“2222x ≤≤”是“22223x x+≤≤”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为( )A .863π B .86π C .6π D .24π 10.执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是( )A .7?n ≤B .7?n >C .6?n ≤D .6?n >11.已知数列{}n a 满足:当2n ≥且*n N ∈时,有1(1)3n n n a a -+=-⨯.则数列{}n a 的前200项的和为( )A .300B .200C .100D . 12.已知函数()1ln m f x n x x =--(0,0)m n e >≤≤在区间[1,]e 内有唯一零点,则21n m ++的取值范围为( ) A .22[,1]12e e e e ++++ B .2[,1]12e e ++ C .2[,1]1e +D .[1,1]2e+ 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知132a =,231()2b =,则2log ()ab =.14.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为.15.已知抛物线C :22(0)y px p =>的焦点为F ,准线与轴的交点为A ,P 是抛物线C 上的点,且PF x⊥轴.若以AF 为直径的圆截直线AP 所得的弦长为,则实数p 的值为. 16.已知函数21()cos 2f x x x =--,则不等式(1)(13)0f x f x +--≥的解集为. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()3cos 22x x f x =21cos 22x -+. (1)求函数()f x 的单调递减区间;(2)若ABC ∆的内角A ,B ,C 所对的边分别为,,,1()2f A =,3a =sin 2sin B C =,求. 18.近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP 中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出200条较为详细的评价信息进行统计,车辆状况的优惠活动评价的22⨯列联表如下:对优惠活动好评对优惠活动不满意合计对车辆状况好评 100 30 130对车辆状况不满意40 30 70 合计14060200(2)为了回馈用户,公司通过APP 向用户随机派送骑行券.用户可以将骑行券用于骑行付费,也可以通过APP 转赠给好友.某用户共获得了张骑行券,其中只有张是一元券.现该用户从这张骑行券中随机选取张转赠给好友,求选取的张中至少有张是一元券的概率. 参考数据:2()P K k ≥0.150 0.100 0.050 0.025 0.010 0.005 0.0012.0722.7063.8415.0246.6357.87910.828参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.如图,D 是AC 的中点,四边形BDEF 是菱形,平面BDEF ⊥平面ABC ,60FBD ∠=o,AB BC ⊥,2AB BC ==.(1)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (2)求六面体ABCEF 的体积.20.已知椭圆C :22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,左顶点为A ,上顶点为(0,1)B ,1ABF ∆21-. (1)求椭圆C 的方程;(2)设直线:(1)y k x =+与椭圆C 相交于不同的两点M ,N ,P 是线段MN 的中点.若经过点2F 的直线m 与直线垂直于点Q ,求1PQ FQ ⋅的取值范围.21.已知函数()ln 1f x x x ax =++,a R ∈.(1)当时0x >,若关于的不等式()0f x ≥恒成立,求的取值范围; (2)当(1,)x ∈+∞时,证明:(1)ln xe x x e-<2x x <-. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑。