空间几何体测试题及答案
空间几何体单元测试卷答案

空间几何体单元测试卷答案 一、选择题 (每小题5分, 共30分)1. D2. B3. C4. B5. C6. C、 填空题 (每小题5分, 共 20 分)7. 球 8. R 9. . 2 10. 50cm 2三、 解答题 (共3小题,共 50分)11. 解:(1)设正四棱柱的底面边长为 a ,高为h , 由题意2a 2 + h 2= 81 ① ............................................................................ 2 分 2a 2 + 4ah = 144 即 a 2 + 2ah = 72 ② ........................ 4 分 ①X 8 —②X 9 得 7a 2— 18ah + 8h 2= 0 即(7a — 4h ) ( a -2h )= 0, ......... 6 分 因此7a — 4h = 0或a = 2h ,由此可见由①②构成方程组有两组满足条件的解,故 满足这些条件的正四棱柱有 2个. .................................. 8分(2)由(1)得,正四棱柱的底面边长a 和高h 满足7a = 4h 或a = 2h , 当7a = 4h 时,代入①可求得 a = 4,h=7;此时正四棱柱的体积为V=a 2h=42X 7=112(cm 3).当a = 2h 时,同理可得r 30 360… 八 当x = cm 时,S 取到最大值 cm 2. ............................................... 16分 7 72 3 113.解:(1)依题意,可得—r - 108 ① ................................ 3分3 6 且-r 3r 2h 108 ② ................... 6分 3 3 r 27 ,.•• r 3 (cm);代入②可求得 h 10 (cm).…9分(2)若将试管垂直放置,并注水至水面离管口 4cm 处,此时水的体积为2 3 2 2 212分a = 6, h=3;此时正四棱柱的体积为 V=a 2h=62X 3=108(cm 3). 12.解:如图SAB 是圆锥的轴截面,其中 SO = 12, OB = 5. 设圆锥内接圆柱底面半径为 0Q = 乂,由厶SO 1CSOB ,SO 1 _ SO O 1C OB ,SO 1 = SO OBOO 1 = SO — SO 1= 12—玛, 5 则圆柱的表面积19分 S = S 侧+ 2S 底=2 nx + 2 n x 2 = 2 n 7 2 12x — X 5 由①得 16分V r3r2(h 4) r2[ r (h 4)] ...............................3 32 2 33 [ 3 (10 4)] 72 (cm ) ....... ........................... 15分18分。
(完整版)空间几何体练习题含答案

第一章空间几何体一、选择题1.下图是由哪个平面图形旋转得到的()A B C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A. B. C. D.1:2:31:3:51:2:41:3:93.在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三18棱锥后,剩下的几何体的体积是()A. B. C. D.237645564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为和,则(1V2V12:V V=)A. B. C. D.1:31:12:13:15.如果两个球的体积之比为,那么两个球的表面积之比为( )8:27A. B. C. D.8:272:34:92:96.有一个几何体的三视图及其尺寸如下(单位),则该几何体的表面积及体积为:cmA. ,B. ,224cmπ212cmπ215cmπ212cmπC. ,D. 以上都不正确224cmπ236cmπ二、填空题1. 若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是_______。
15π0602.一个半球的全面积为,一个圆柱与此半球等底等体积,则这个圆柱的全面积是.Q3.球的半径扩大为原来的倍,它的体积扩大为原来的_________ 倍.24.一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米329则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为,高为,则该棱台的体积为___________。
4,163三、解答题1. (如图)在底半径为,母线长为的圆柱,求圆柱的表面积242.如图,在四边形中,,,,,ABCD 090DAB ∠=0135ADC ∠=5AB =CD =,求四边形绕旋转一周所成几何体的表面积及体积.2AD =ABCD AD参考答案一、选择题1.A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2.B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l == 12312132::1:4:9,:():()1:3:5S S S S S S S S =--=3.D 111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥4.D 121:():()3:13V V Sh Sh ==5.C 121212:8:27,:2:3,:4:9V V r r S S ===6.A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面 2134123V ππ=⨯⨯=二、填空题1. 设圆锥的底面半径为,母线为,则,得,r l 123r l ππ=6l r =,得,圆锥的高226715S r r r r ππππ=+⋅==r =h =21115337V r h ππ==⨯=2. 109Q 22223,S R R R Q R πππ=+===全 32222221010,,2233339V R R h h R S R R R R Q πππππ==⋅==+⋅==3. 821212,8r r V V ==4. 12234,123V Sh r h R R ππ=====5. 28'11()(416)32833V S S h =++=⨯+⨯= 三、解答题1.解:圆锥的高,h ==1r =22(2S SS πππ=+=+=侧面表面底面 2.解:S S S S=++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=+ V V V=-圆台圆锥222112211()331483r r r r h r h πππ=++-=。
空间几何体测试题与答案

空间几何体测试题与答案空间几何体测试题(满分100分)一、选择题(每小题6分,共54分)1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对3.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()A .2倍 B.4倍 C.2倍 D .12倍 3.棱长都是1的三棱锥的表面积为()B.4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()A .25πB .50πC .125πD .都不对 5.正方体的内切球和外接球的半径之比为()AB2 C.2:36.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是()A .130 B .140 C .150 D .1607.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则12:V V =()A. 1:3B. 1:1C. 2:1D. 3:18.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A. 8:27B. 2:3C. 4:9D. 2:99.圆锥平行于底面的截面面积是底面积的一半,则此截面分圆锥的高为上、下两段的比为() A .1:( 2 -1) B .1:2 C .1: 2 D .1:4二、填空题(每小题5分,共20分)10.半径为R 的半圆卷成一个圆锥,则它的体积为________.主视图左视图俯视图11.右面三视图所表示的几何体是.12.已知,ABCD 为等腰梯形,两底边为AB,CD 且AB>CD ,绕AB 所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体. 13.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a ,则三棱锥11O AB D -的体积为____________三、解答题(每小题13分,共26分)14.将圆心角为0120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积15. (如图)在底半径为2,母线长为4求圆柱表面积。
空间几何体(习题及答案)

空间几何体(习题)1.判断正误,正确的打“√”,错误的打“×”①直角三角形绕一边所在直线旋转得到的旋转体是圆锥()②有两个面互相平行,其余各面都是等腰梯形的多面体是棱台()③棱台的上、下底面是相似多边形,并且互相平行()④直角梯形以其垂直于底边的腰所在直线为轴旋转所得的旋转体是圆台()⑤有两个面互相平行,其余各面都是平行四边形的多面体是棱柱()⑥有一个面是多边形,其余各面都是三角形的几何体叫棱锥()⑦所有侧面都是正方形的四棱柱一定是正方体()⑧一个棱锥可以有两条侧棱和底面垂直()⑨若正棱锥的底面边长与侧棱长相等,则该棱锥可以是六棱锥()2.如图,将装有水的长方体水槽ABCD-A1B1C1D1 固定底面棱BC 后,将水槽向右倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定13 3. 已知直角三角形的两直角边长分别为4 cm ,3 cm ,以其中一条直角边所在直线为轴旋转一周,得到的几何体的底面积为 ()A .9π cm 2B .16π cm 2C .9π cm 2 或 25 πcm 2D .9π cm 2 或 16π cm 24. 若一个圆锥的侧面展开图是面积为 2π的半圆面,则该圆锥的体积为.5. 已知高为3 的直棱柱ABC -A 1B 1C 1 的底面是边长为 2 的正三角形(如图所示),则三棱锥 B 1-ABC 的体积为 .第 5 题图第 6 题图6. 已知三棱锥的底面是边长为 a 的正三角形,则过各侧棱中点的截面的面积为( )A. 3 a 2 4B. 3 a 28C. 3 a 2 16D. 3 a 2327. 一个直角梯形的上底、下底、高的比为1:2: ,则由它旋转而成的圆台的上底面积、下底面积和侧面积的比为.8.将一钢球放入底面半径为2 cm 的盛有一定量水的圆柱形玻璃容器中,钢球完全没入水中(水也没有溢出),且水面升高1cm,则钢球的半径为.39.如图,棱锥的底面ABCD 是一个矩形,AC 与BD 交于点M,VM 是棱锥的高,若VM=4 cm,AB=4 cm,VC=5 cm,求棱锥的体积.10.如图,在正四棱台ABCD-A′B′C′D′中,上、下底面边长分别为4 cm 和16 cm,O,O′分别为两底面的中心,OO′=17 cm,E,E′分别为BC,B′C′的中点,连接EE′,O′E′,OE,求这个棱台的侧棱BB′和斜高EE′.【参考答案】1. × × √ √ × × × × ×2. A3. D4.3 π 35.6. C7. 1:4:68. 1cm9.10. 325cm33BB ' = 19cm ,EE ' = 5 13cm 3。
(完整版)高一数学必修2第一章空间几何体测试题(答案)

第一章章节测试题YC一、选择题:1.不共面的四点能够确立平面的个数为()A . 2 个B. 3 个C. 4 个 D .没法确立2.利用斜二测画法获得的①三角形的直观图必定是三角形;②正方形的直观图必定是菱形;③等腰梯形的直观图能够是平行四边形;④菱形的直观图必定是菱形 .以上结论正确的选项是()A .①②B.①C.③④ D .①②③④3.棱台上下底面面积分别为16 和 81,有一平行于底面的截面面积为36,则截面戴的两棱台高的比为()A .1∶ 1B. 1∶ 1C. 2∶ 3 D . 3∶44.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A .正方体B.正四棱锥C.长方体 D .直平行六面体5.已知直线 a、 b 与平面α、β、γ,以下条件中能推出α∥β的是()A .a⊥α且 a⊥βB.α⊥γ且β⊥γC.a α, b β, a∥ b D. a α, bα, a∥β, b∥β6.如下图,用符号语言可表达为()A .α∩β= m, nα, m∩ n=AB .α∩β= m,n∈α, m∩ n= AC.α∩β= m,nα, A m, A nD .α∩β= m, n∈α, A ∈ m, A ∈ n7.以下四个说法① a//α, b α ,则 a// b②a∩α= P, bα,则 a 与 b 不平行③ a α,则 a//α④a// α, b //α,则 a// b此中错误的说法的个数是()A .1 个B. 2 个C. 3 个 D . 4 个8.正六棱台的两底边长分别为1cm,2cm, 高是 1cm,它的侧面积为()97B.9 7 cm223 cm2 D . 3 2 cm2A .cm2C.239.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶ 4.再将它们卷成两个圆锥侧面,则两圆锥体积之比为()A .3∶ 4B. 9∶ 16C. 27∶64 D .都不对10.将边长为 a 的正方形ABCD 沿对角线AC 折起,使BD =a,则三棱锥D— ABC 的体积为()a3a33a32a3A .B.C. D .6121212二、填空题:11.螺母是由 _________和两个简单几何体组成的.12.一个长方体的长、宽、高之比为2:1: 3,全面积为 88cm2,则它的体积为 ___________ .13.如图,将边长为 a 的正方形剪去暗影部分后,围成一个正三棱锥,则正三棱锥的体积是.14.空间四边形、 、 G 、H 分别是ABCD 中, E F、 BC 、CD 、DA 的中点 .①若 AC=BD ,AB则四边形 EFGH 是;②若 ACBD , 则四边形 EFGH 是.三、解答题: 解答应写出文字说明、证明过程或演算步骤 (共 76 分 ).15.( 12 分)将以下几何体按构造分类填空①集装箱;②油罐;③排球;④羽毛球;⑤橄榄球;⑥氢原子;⑦魔方;⑧金字塔;⑨三棱镜;⑩滤纸卷成的漏斗;○11量筒;○ 量杯;○ 十字架.1213( 1)拥有棱柱构造特点的有 ;( 2)拥有棱锥构造特点的有 ;( 3)拥有圆柱构造特点的有 ;( 4)拥有圆锥构造特点的有 ;( 5)拥有棱台构造特点的有 ;( 6)拥有圆台构造特点的有 ;( 7)拥有球构造特点的有;( 8)是简单会合体的有;( 9)其余的有.16.( 12 分)已知: a,b ,a b A, P b, PQ // a.求证: PQ ..17.( 12 分)正四棱台的侧棱长为 3cm ,两底面边长分别为 1cm 和 5cm ,求体积.18.( 12 分)直平行六面体的底面是菱形,两个对角面面积分别为 Q 1, Q 2 ,求直平行六面体的侧面积.19.(14 分)已知四棱台上,下底面对应边分别是a,b,试求此中截面把此棱台侧面分红的两部分面积之比.20.( 14 分)如图,直三棱柱 ABC— A1B1C1中, AC = BC =1,∠ ACB = 90°, AA1= 2 ,D是 A1B1中点.(1)求证 C1 D ⊥平面 A1B ;( 2)当点 F 在 BB1上什么地点时,会使得 AB1⊥平面C1DF ?并证明你的结论.参照答案(五)一、 CBCDA ACADD .二、 11.正六棱柱,圆柱; 12.48cm 31313) 13a2; 14.菱形,矩形 .;.(212三、 15.⑴①⑦⑨;⑵⑧;⑶⑾;⑷⑩;⑸⒁;⑹⑿⒃;⑺③⑥⒂;⑻②④⒀;⑼⑤. 16.此题主要考察用平面公义和推论证明共面问题的方法.证明∵ PQ∥ a,∴PQ 与 a 确立一个平面,直线 a,点P.p b,b,p又 a与重合PQ17.解:正四棱台ABCD A1 B1C1 D1O1 , O是两底面的中心A1 C1 2 ,AC 5 2A1O12AO 5 2 222O1O 3 252212211 1 [125212 52]1[1 25 5]31( cm 3 )Vh[ S SSS ]333318.解:设底面边长为 a , 侧棱长为 l , 两对角线分别为c , d.c lQ 1 (1)则d l Q 2 (2)1 21 2c22da (3)2消去 c , d 由( 1)得 cQ 1,由( 2)得 dQ 2, 代入( 3)得ll221 Q 1 1 Q 2a 2Q 1 2 Q 2 2 4l 2a 22laQ 12Q 2 22 l 2 lS 侧 4al2 Q 1 2 Q 2219.解:设 A 1B 1C 1D 1 是棱台 ABCD -A 2B 2C 2D 2 的中截面,延伸各侧棱交于P 点.2 21 1a b∵ BC ∥B 11 S ∵ BC=a ,B C =b ∴ B C =C ∴2S(a b)2∴ S PB 1 C 14a2S PBCPBCa 2 PB 1C 1a b 2 ()2同理SPB 2 C 2b 2SPBCSB 1C 1CBSPB 1C 1SPBCa2∴S B C C BSPB C2SPB C2 2 1 121 1(a b) 24a2122ab2(b3a)(b a) b 3ab3ab 2 (ab) 23b 2 2ab a 2(3b a)(b a)3b aa 24a 2同理:SABB 1 A 1S DCC 1 D 1SADD 1 A 1b 3a SA 1B 1 B 2 A 1SD 1 C 1C 2 D 2SA 1D 1D 2 A 13b a由等比定理,得S 上棱台侧= 3a bS 下棱台侧a 3b20.( 1)证明:如图 ,∵ABC — A 1B 1C 1 是直三棱柱,∴ A 1C 1 = B 1C 1 = 1,且∠ A 1C 1B 1 =90°.又D 是B 的中点 ,∴CD ⊥ A B 1.A 1 111∵ AA 1 ⊥ 平面 A 1B 1C 1 , C 1D 平面 A 1B 1C 1 ,∴ AA 1 ⊥ C 1D ,∴ C 1D ⊥ 平面 AA 1B 1B .(2)解:作DE ⊥ AB 1 交 AB 1 于 E , 延伸 DE 交 BB 1 于 F , 连接 C 1F , 则 AB 1 ⊥ 平面 C 1DF , 点 F 即为所求.事实上,∵C1D ⊥平面 AA1BB , AB1平面 AA1B1B ,∴C1D ⊥AB1.又 AB1⊥DF , DF C1D = D ,∴AB 1⊥ 平面C1DF .。
数学《必修2》第一章“空间几何体”测试题与答案

数学《必修2》第一章“空间几何体”测试题一、选择题:(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的)1.利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是正方形;③等腰梯形的直观图一定是等腰梯形;④平行四边形的直观图一定是平行四边形。
以上结论正确的是()A.①②B.①④C.③④D. ①②③④2.下列说法正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展开成平面图形D.棱柱的各条棱都相等3.圆台的母线长为6,两底面半径分别为2、7,则圆台的侧面积为()A.54πB.8πC.4πD.164.给出下列结论:①圆柱的母线是其上底面圆周上任意一点与下底面圆周上任意一点的连线;②圆锥的母线是圆锥顶点与底面圆周上任意一点的连线;③圆台的母线是圆台上、下底面圆周上任意两点的连线。
其中正确的是()A.①②B.②③C.①③D.②。
5.已知底面为正方形的长方体的各顶点都在一个球面上,长方体的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π6.下列说法错误的是()A.棱柱最少有5个面B.棱锥最少有4个面C.棱台的底面有2个D.棱锥的底面边数和侧棱数不一定相同7.下列四个图形不是下图1中几何体的三视图之一的是()图1 A B C D8.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台 9.正方体的表面积是96,则正方体的体积是( )A. B.64 C.16 D. 96 10.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )二、填空题:(本大题共5个小题,每小题5分,共25分)11.半径为2的球的体积等于 ,表面积等于12.圆锥的侧面展开图为圆心角为120、半径为1的扇形,则圆锥的侧面积为 13.如下图所示,等腰梯形ABCD ,上底1CD =,腰AD CB ==3AB =,以下底所在直线为x 轴,则由斜二测画法画的直观图''''A B C D 的面积为 14.某几何体的三视图如下图所示, 则其体积为_______.15.某几何体的三视图如下图所示,则该几何体的体积是____________.第13题图14题图第15题图三、解答题:(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.求下列几何体的体积与表面积。
(完整版)空间几何体测试题及答案,推荐文档

而 l12 l22 4a2 , 即152 52 92 52 4a2 , a 8, S侧面积 ch 4 8 5 160
7.D
V1
: V2
(Sh) : (1 3
Sh)
3:1
8.C
V1 :V2 8 : 27, r1 : r2 2 : 3, S1 : S2 4 : 9
9.A
二、10、 3 R3
、
、
的几何体构成的组合体.
13.正方体 ABCD A1B1C1D1 中, O 是上底面 ABCD 中心,若正方体的棱长为 a ,
则三棱锥 O AB1D1 的体积为____________ 三、解答题(每小题 13 分,共 26 分) 14.将圆心角为1200 ,面积为 3 的扇形,作为圆锥的侧面,求圆锥的表面积和体积
空间几何体测试题
(满分 100 分)
一、选择题(每小题 6 分,共 54 分)
1.有一个几何体的三视图如下图所示,这个几何体应是一个( )
A.棱台
B.棱锥
C.棱柱
D.都不对
主视图
左视图
俯视图
3.对于一个底边在 x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三
角形面积的( )
A. 2 倍
C.1: 2
D.1:4
二、填空题(每小题 5 分,共 20 分) 10.半径为 R 的半圆卷成一个圆锥,则它的体积为________.
11.右面三视图所表示的几何体是
.
正视图
侧视图
俯视图
12.已知,ABCD 为等腰梯形,两底边为 AB,CD 且 AB>CD,绕 AB 所在的直线旋转一周
所得的几何体中是由
11、 2 :1 12、 六棱锥
空间几何体练习试题和答案解析

(数学 2 必修)第一章空间几何体[ 基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A. 棱台B. 棱锥C. 棱柱D. 都不对主视图左视图俯视图2.棱长都是1的三棱锥的表面积为()A. 3B. 2 3C. 3 3D. 4 33.长方体的一个顶点上三条棱长分别是3, 4,5 ,且它的8 个顶点都在同一球面上,则这个球的表面积是()A.25 B.50 C.125 D.都不对4.正方体的内切球和外接球的半径之比为()A. 3 :1 B.3: 2 C.2: 3 D.3:35.在△ABC中,AB BC ABC ,若使绕直线BC 旋转一周,2, 1.5, 120则所形成的几何体的体积是()A. 92B.72C.52D.326.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5 ,它的对角线的长分别是9和15 ,则这个棱柱的侧面积是()A.130 B.140 C.150 D.160二、填空题1.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,. .专业知识分享. .顶点最少的一个棱台有________条侧棱。
2.若三个球的表面积之比是1: 2 :3,则它们的体积之比是_____________。
3.正方体ABCD A1B1C1D1 中,O是上底面ABCD 中心,若正方体的棱长为a,则三棱锥O AB D 的体积为_____________。
1 14.如图,E,F 分别为正方体的面ADD1 A1 、面BCC1B1 的中心,则四边形B F D1E 在该正方体的面上的射影可能是____________ 。
5.已知一个长方体共一顶点的三个面的面积分别是 2 、 3 、 6 ,这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15 ,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体测试题
(满分100分)
一、选择题(每小题6分,共54分)
1.有一个几何体的三视图如下图所示,这个几何体应是一个( )
A.棱台
B.棱锥
C.棱柱
D.都不对
3.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )
A .2倍 B
.
4倍 C
.2倍 D .1
2
倍 3.棱长都是1的三棱锥的表面积为( )
B.
4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )
A .25π
B .50π
C .125π
D .都不对 5.正方体的内切球和外接球的半径之比为( )
A
B
2 C
.2:
3
6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长
分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160
7.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为1V 和2V ,则12:V V =( )
A. 1:3
B. 1:1
C. 2:1
D. 3:1
8.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A. 8:27 B. 2:3 C. 4:9 D. 2:9
9.圆锥平行于底面的截面面积是底面积的一半,则此截面分圆锥的高为上、下两段的比为
( ) A .1:( 2 -1) B .1:2 C .1: 2 D .1:4
二、填空题(每小题5分,共20分)
10.半径为R 的半圆卷成一个圆锥,则它的体积为________.
主视图 左视图 俯视图
11.右面三视图所表示的几何体是 .
12.已知,ABCD 为等腰梯形,两底边为AB,CD 且AB>CD ,绕AB 所在的直线旋转一周所
得的几何体中是由 、 、 的几何体构成的组合体. 13.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为____________
三、解答题(每小题13分,共26分)
14.将圆心角为0
120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积
15. (如图)在底半径为2,母线长为4
求圆柱表面积。
正视图
侧视图
俯视图
空间几何体答案
一、1. A 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台
2.B
3.A 因为四个面是全等的正三角形,则44S S ===表面积底面积
4.B 长方体的对角线是球的直径,
224502
l R R S R ππ====
== 5.D 正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是a
222a a r r r r r r ==
===内切球内切球外接球外接球内切球外接球
,,:6.D 设底面边长是a ,底面的两条对角线分别为12,l l ,而222222
12155,95,l l =-=-
而222124,l l a +=即22222
155954,8,485160a a S ch -+-====⨯⨯=侧面积
7.D 121:():()3:13
V V Sh Sh == 8.C 121212:8:27,:2:3,:4:9V V r r S S ===
9.A 二、10、
324
R 11、 2:1 12、 六棱锥 13、
3
16
a 画出正方体,平面11AB D 与对角线1A C 的交点是对角线的三等分点,
三棱锥11O AB D -的高23111,2333436
h a V Sh a a =
==⨯⨯⨯= 或:三棱锥11O AB D -也可以看成三棱锥11A OB D -,显然它的高为AO ,等腰三
角形11OB D 为底面。
三、14. 解:设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则
21203,3360l l ππ==;232,13
r r π
π⨯==; 2
4,S S S rl r πππ=+=+=侧面表面积底面
2111333
V Sh π=
=⨯⨯⨯=
15.解:圆锥的高h ==,圆柱的底面半径1r =,
22(2S S S πππ=+=+=+侧面表面底面 。