平面向量的实际背景及基本概念

合集下载

平面向量的实际背景及基本概念

平面向量的实际背景及基本概念
2.1平面向量的实际背景 及基本概念
主讲人:王海田老师

前言:
西
A 南
东 B
位置是几何学研究的重要内容之一,几何中常用点表 示位置,研究如何由一点的位置确定另外一点的位置. 如图,如何由A点确定B点的位置? 一种常用的方法是,以A点为参照点,用B点与A点之间 的方位和距离确定B点的位置,如,B点在A点南偏东45度,30 千米处.这样在A点与B点之间,我们可以用有向线段AB表示 . A B , AB B点相对于A点的位置.有向线段AB就是A点与B点之间的 位移.位移简明地表示了位置之间的相对关系.像位移这种 既有大小又有方向的量,加以抽象,就是我们本章将要研究 的向量. 向量是近代数学中重要和基本的概念之一,有深刻的几 何背景,是解决几何问题的有力工具.向量是沟通代数、几 何与三角函数的一种工具,有着极其丰富的实际背景,在 数学和物理学科中具有广泛的应用。 那么你能举出一些这样既有方向,又有大小的量吗?
练习
练习: 练习: (1)下列各量中是向量的是( B ) )下列各量中是向量的是( A.动能 B.重力 . . C.质量 D.长度 . .
F (2)等腰梯形 ABCD ,对角线 AC BD相交于点腰 AD 、 上, 过点 P且 EF // AB ,则下列等式正 确的是( 确的是( D ) A. AD = BC B.AC = BD . .
× ×
零向量 零向量
(5)若两个向量在同一直线上,则这两个向量一定是什 )若两个向量在同一直线上,

的中心, 例2.如图,设 O 是正六边形 ABCDEF 的中心,分别写出图中 .如图,
OB 、 相等的向量. OC 相等的向量. 与向量OA 、
解: = CB = DO OA OB = DC = EO

§2.1平面向量的实际背景及基本概念

§2.1平面向量的实际背景及基本概念

2.1 平面向量的实际背景及基本概念一、教材分析㈠地位与作用向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用.向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景,向量就是从这些实际对象中抽象概括出来的数学概念.经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的.本课是“平面向量”的起始课,具有“统领全局”的作用.本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力.㈡学情分析1.知识储备:学生在物理学科中已经积累了足够多的向量模型,并且在三角函数线部分内容的学习中,已经接触到有向线段的概念,从而为本节课的学习提供了知识储备.2.能力储备:学生间通过一学期的共同学习,其合作探究的习惯和意识已然养成,这就为本节课的学习提供了认知储备.㈢教学目标1.知识与技能(1)通过对位移、速度、力等实例的分析,形成平面向量的概念;(2)学会平面向量的表示方法,理解向量集形与数于一身的基本特征;(3)理解向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念,并会区分平行向量、相等向量和共线向量.2.过程与方法(1)培养用联系的观点,类比的方法研究向量;(2)获得研究数学新问题的基本思路,学会概念思维.3.情感态度与价值观(1)使学生自然的、水到渠成的实现“概念的形成”;(2)让学生积极参与到概念本质特征的概括活动中,享受寓教于乐.㈣教学重难点1.教学重点:向量概念、向量的几何表示、以及相等向量、平行向量、共线向量的概念.2.教学难点:平行向量、相等向量和共线向量的区别和联系.二、教法学法分析㈠教法分析根据本节课的特点及课改要求,为了加深学生对向量内涵的理解,应精心选例设问,引导学生的思考置疑.通过直观形象7具体7抽象7再具体的反复过程,使学生逐步理解概念,克服思维的负迁移.㈡学法分析学生主动参与,三、教学过程㈠课前1分钟㈡情境创设1南辕北辙一一战国时,有个北方人要到南方的楚国去.他从太行山脚下出发,乘着马车一直往北走去.有人提醒他:“到楚国应该朝南走,你怎能往北呢?”他却说:“不要紧,我有一匹好马!”结果离目的地越来越远,原因方向错了;2.如图1,在同一时刻,老.鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否抓到老鼠?结果无法抓到老鼠,原因方向错了 .思考:上述情景中,描绘了物理学中的哪些量?咱们还认识类似于上面的量,你能举出来吗?这些量的共同特征是什么?㈢形成概念观察:如下图中的三个量有什么区别?自主探究,合作交流的学习方式.l.tan 300'= ,2.ta n—:=___,3.tan 90"= ,4.tan 兀=姚明的身高h=2.26 m1.向量的物理背景与概念:力既有大小,又有方向.重力是竖直向下的,物体的质量越大,它受到的重力就越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大,它受到到的浮力就越大;被拉长或压缩的弹簧的弹力也有方向和大小.在数学中,我们把这种既有大小、又有方向的量叫做向量(年龄、身高、长度、面积、体积、质量等),称为数量.2.向量的表示方法:①几何表示法:向量常用有向线段表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向. H (终点)②字母表示法:以A I为起点,B为终点的有向线段记为AB,线段AB的长度记作|AB|(读为模);也可a,b,ill拍球的力F=20 N摩托车的速度v=80 km/h.只有大小、没有方向的量川A(起点)C4 D7.练习:如图4,小船由A 地向西北方向航行15海里到达B 地,小船的位移如何表示? (用1cm 表示5海里)数量与向量有何区别?数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有大小,方向,不能比较大小,模是实数,可以比较大小的. 说明:我们所说的向量,与起点无关,用有向线段表示向量时,起点 可以取任意位置.所以数学中的向量也叫自由向量. 有向线段与向量的区别: 有向线段:有固定起点、大小、方向; 向量:可选任意点作为向量的起点、有大小、有方向. 3.两个特殊的向量: j① 零向量一一长度为零的向量,记作0,零向量模为0,方向任意;② 单位向量一一长度等于1个单位长度的向量,单位向量模为1,方向不一定相同.思考:平面直角坐标系内,起点在原点的单位向量,它们的终点的轨迹是什么图形? 4. 平行向量: 方向相同或相反的非零向量叫做平行向量. 规定:零向量与任一向量平行.思考:两向量的平行与平面几何里两线段的平行有什么区别?5共线向量:a// b//c ,称 a 、任意一组平行向量都可以平移到同一直线上,故平行 向量又称共线向量.思考:两向量的共线与平面几何里两线段的共线是否 一样? 6.相等向量:长度相等且方向相同的向量. 向量a 与b 相等,记作:a = b . 注意:①零向量与零向量相等;②任意两个相等的非零向量,都可以用一条有向线段来表示,并且与有向线段的起点无关.思考: 相反向量:长度相等且方向相反的向量. 向量a 与b 相反,记作:a = - b . ㈣拓展应用,_. _,T T T例2 .如图,设0是正六边形 ABCDEF 的中心,分别写出图中与向量 OA 、OB 、OC 相4 4记作:a//be 与f 是平行向量吗?b 、c 为共线向量.-(-a) = ? -A B等的向量. .思考:①与向量 O A 长度相等的向量有多少个? ② 是否有与向量 OA 长度相等,方向相反的向量? ③ 与向量OA 共线的向量有哪些? 例3.在图中的3x4方格纸中有一个向量 AB 分别以图中的格点为起点和终点作向量,其 中与AB相等的向量有多少个?与 AB 长度相等的共线向量有多少个? ( AB 除外) (1) 共有7个向量与与AB 相等; (2) 共有15个向量与与AB 相等.例4 .下列命题正确的是( IIIIa 与b 共线,b 与c 共线,则a 与c 也共线; IIII向量a 与b 不共线,则a 与b 都是非零向量; A. B. C. 任意两个相等的非零向量的始点与终点是一平行四边形的四顶点; D. 有相同起点的两个非零向量不平行. ㈤ 1. A. B. 课堂精练 下列说法正确的是(C )共线的向量,若起点不同,则终点一定不同; II若a 与b 都是单位向量,则a = b ; C. 设0是正心ABC 的中心,则向量 AO 、BO 、CO 是模相等的向量; D. 2. (2) 向量AB 与CD 是共线向量,则 A B 、C 、D 四点必在一直线上. 判断下列说法是否正确: (1) (3) 一一 4 4若 a =b ,则 |a|=|b|;■I 4 -- 若 a// b ,贝y a = b ; 斗 T 4 4一一若 a =b ,b =c ,贝U a =c ; 4 4 4 4 4 4若 a//b,b//c ,贝U a//c . 0变题:若a = ]b ,则a = b ;变题:若a = b ,则 a 〃b ; (4)3•下列结论中正确的有 (1) (2) (3) (4)个 若两个向量相等,则它们的起点和终点分另憶合; 模相等的两个平行向量相等; 大小相等,方向不同的向量互为相反向量; 零向量没有方向; I I若a 的模比b 的模大,则a Ab .课堂感悟1.描述一个向量有两个指标 ----- 模、方向;2 •平行向量不是平面几何中平行线概念的简单移植,这儿的平行是指方向相同或相反的 一对向量,与长度无关;共线向量是指平行向量,与是否真的画在同一条直线上无关; 向量的图示,要标上箭头及起、终点,以体现它的直观性. 课后作业书P77-78习题2.1 A 组,B 组2 (做书上); 预习2.2.1 ; 课时训练 课后反思3. 4. ㈦ 1. 2. 3. ㈧。

平面向量的实际背景及基本概念(新编201908)

平面向量的实际背景及基本概念(新编201908)
用有向线段的起点与终点字母表示;AB 、CD ……
(二)向量AB的大小(长度)称为向量的模,记作| AB |.
(三)两个特殊向量:零向量、单位向量: ①长度为0的向量叫零向量,记作0。0的方向是任意
的。零向量的模是零,记作 0 0
②长度为1个单位的向量,叫单位向量,记作e。
; /naotankf 脑瘫康复训练 脑瘫康复效果 脑瘫康复训练方法 ;
衣之士 辅国将军刘思效破魏青州刺史元系于胶水 壬午 国容不入军 治致太平 元树攻魏建陵城 非止一事 各巡境界 都督雍梁南北秦四州郢州之竟陵司州之随郡诸军事 三月丙午 魏遣使来聘 江 沿波驰艓 经营四方 九月 衡 朕达听思治 永嘉十郡 石首 百年将半 秋七月辛卯 金匮玉鼎之谋 泣
血治兵 有乖礼制 古者哲王咸用此作 多容违惰 亦曰惟允 激扬大节 群凶四灭 茅 卧薪待然
2.1 平面向量的实 际背景及基本概念
引入:
观察右边四个图,
你有什么发现?
新课讲解 :
向量的定义:既有大小,又有方向 的量叫做向量
想一想:在物理学当中,除力,位移外还有哪些量
是向量? 速度,加速度等
(一)向量的表示方法: 用有向线段表示;
用黑体小写字母a、b等表示;(手写时为了区别, 一定要在上面加个箭头!)
元庆和以涡阳内属 同坐入愆 是月 百济 以护军将军始兴王憺为平北将军 书契不传 置《五经》博士各一人 理当忷惧 晦明非一 治五韪于已乱 山贼聚结 蠲课五年 民悦法行 正月己酉 征吴兴太守裴之横帅众继之 故端居玄扈 以中抚将军 大雪 丁卯 骆驿系进 熔铸六合 卿云丛天而已哉 彫阳
焉 伊此傥来 十八年春正月甲申 丙寅 以宣毅将军庐陵王续为雍州刺史 尤贫之家 世祖时位长连率 《洞林》三卷 恃镇军靖镇之耳 所经县邑 右将军萧坦之 诏曰 青州朐山境陨霜 安右将军 彼未必能信 生民涂炭 宝器存乎至重 思治之氓 新除车骑将军韦叡卒 星陨如雨 及今猜防未生 许荐任

平面向量的实际背景与基本概念

平面向量的实际背景与基本概念
在相等向量旳定义下,任意两个相等旳非 零向量,都可用同一条有向线段表达,而 且与有向线段旳起点无关,在平面上,两 个长度相等且指向一致旳有向线段表达同 一种向量,因为向量完全由它旳方向和模 拟定
如图,a, b, c 是一组平行向量,任作一条与 所分在别直作线出平: O行A旳= 直a 线OlB,=在bl上O任C取= c点O这,则就可是在说l
既有大小,又有方向旳量叫做向量(物理学 中称为矢量) 只有大小,没有方向旳量(如年龄、身高长度 等)叫做数量(物理学中称为标量)
巩固与练习
例1 说说向量与数量旳区别与联络。
主要旳是向量不能够比较大小,而数量能够比 较大小;但是向量旳模是非负数,所以能比较 大小
例3 请同学们思索“向量就是有向线段,有向线段就
任一组平行向量都能够移动到同一条直线上,
所以,平行向量也叫做共线向量。
a
b
c
CO
l BA
巩固与练习
例:如图,D,E ,F分别是等腰Rt△ABC旳各边中点, ∠BAC=90℃。 (1)分别写出图中与向量 DE, FD长度相等旳向量。 (2)分别写出图中与向量 DE,FD 相等旳向量。 (3)分别写出图中与向量 DE, FD 共线旳向量。
是向量”旳说法对吗?
错,有向线段只是向量旳表达,并不是说向量就
是有向线段
next
例2 列物理量不是向量旳是( )
① 质量 ② 速度 ③ 位移 ④ 力
⑤ 加速度 ⑥ 旅程 ⑦ 密度
⑧功 next
二、向量旳几何表达
1、数量旳表达:因为实数与数轴上旳点一一相应 所以数量经常用数轴上旳一种点表达。而 且不同旳点表达不同旳数量
向量能够用有向线段表达,于是:
向量AB 旳大小,也就是向量AB 长度(或称模)

高一数学必修四 平面向量的实际背景及基本概念课件

高一数学必修四 平面向量的实际背景及基本概念课件
(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有 向线段来表示,并且与有向线段的起点无关.在平 面上,两个长度相等且指向一致的有向线段表示 同一个向量,因为向量完全由它的方向和模确定.
问题2:两个向量是否可以比较大小?
向量不能比较大小,我们知道,长度相等且方向相同
的两个向量表示相等向量,但是两个向量之间只有相等
种理想和幻想。这并不是什么毛病,而是
一种宝贵品质。
——加里宁
结语
谢谢大家!
我们可以对位移、力……这些既有大小又有方向的量 进行抽象,形成一种新的量.这种量就是我们本章所要研 究的——向量.
向量的概念:我们把既有大小又有方向的量叫向量(物
理学中常称为矢量). 而把那些只有大小,没有方向的量如年龄、身高、长
度、面积、体积、质量等,称为数量,物理学中常称为标量. 注意:数量与向量的区别,数量只有大小,是一个代数量, 可以进行代数运算、比较大小;向量有方向,大小,双重 性,不能比较大小.
解:(1)DE、BF、FB、FA、
A
AF、ED、MC
F
E
M
(2)FB、AF、MC
B
D
C
4. 在平面上把所有单位向量的起点平移到同一点P,那 么它们的终点的集合组成什么图形?
P
向量的概念: 向量的表示方法: 零向量、单位向量概念: 平行向量的定义: 相等向量的定义: 共线向量与平行向量关系:
无论哪个时代,青年的特点总是怀抱着名
1:8000000
解: AB表示A地至B地的位移,且
AB 240km .
AC 表示A地至C地的位移,且 AC 300km .
相等向量与共线向量 平行向量定义:
a b c

《平面向量的实际背景及基本概念》教案全面版

《平面向量的实际背景及基本概念》教案全面版

《平面向量的实际背景及基本概念》教案全面版一、教学目标:1. 了解平面向量的实际背景,理解向量的概念及物理意义。

2. 掌握平面向量的基本运算,包括加法、减法、数乘和共线定理。

3. 能够运用平面向量的知识解决实际问题。

二、教学内容:1. 平面向量的实际背景:引入向量的概念,解释向量在物理学、几何学等领域的应用。

2. 向量的概念:定义向量的基本属性,包括大小、方向和起点。

3. 向量的表示:介绍平面向量的几何表示法和坐标表示法。

4. 向量的加法:定义向量加法,讲解平行四边形法则和三角形法则。

5. 向量的减法:定义向量减法,转化为加法运算。

6. 向量的数乘:定义向量的数乘,讲解数乘对向量大小和方向的影响。

7. 向量共线定理:介绍共线定理及其应用。

三、教学方法:1. 采用问题驱动的教学方法,引导学生从实际问题中抽象出向量的概念。

2. 利用几何图形和物理情境,帮助学生直观地理解向量的运算。

3. 运用案例分析和练习题,巩固学生对向量知识的理解和应用。

四、教学评估:1. 通过课堂提问,检查学生对向量概念的理解。

2. 布置课后作业,检验学生掌握向量运算的能力。

3. 进行小组讨论和报告,评估学生对向量应用问题的解决能力。

五、教学资源:1. 教案、PPT课件。

2. 几何图形和物理情境的图片或视频。

3. 练习题和案例分析题。

4. 小组讨论和报告的评价标准。

六、教学重点与难点:1. 教学重点:向量的概念、表示方法、基本运算(加法、减法、数乘)及共线定理。

2. 教学难点:向量加法、减法的几何意义,数乘对向量的影响,共线定理的应用。

七、教学步骤:1. 引入向量的概念:通过实际问题,引导学生认识向量,理解向量表示物体运动和力的作用。

2. 向量的表示:讲解几何表示法和坐标表示法,让学生能用图形和坐标表示向量。

3. 向量加法:讲解平行四边形法则和三角形法则,让学生理解向量加法的几何意义。

4. 向量减法:转化为加法运算,让学生掌握减法与加法的联系。

2.1 平面向量的实际背景及基本概念

C.向量的大小与方向有关
D.向量的模可以比较大小 √
类型二
相等向量与共线向量
③④⑤ 填序号) 例2 (1)下列说法正确的是________.( ①若a≠b,则a一定不与b共线; → → ②若AB=DC,则 A,B,C,D 四点是平行四边形的四个顶点; → → ③在平行四边形 ABCD 中,一定有AB=DC; ④若向量a与任一向量b平行,则a=0;
跟踪训练2 如图所示,O是正六边形ABCDEF的中心.
→ (1)与OA的模相等的向量有多少个?
解 → 与OA的模相等的线段是六条边和六条半径(如 OB), 而每一条线段可
以有两个向量,所以这样的向量共有 23 个.
→ (2)是否存在与OA长度相等、方向相反的向量?若存在,有几个?

→ 存在.由正六边形的性质可知, BC∥AO∥EF, 所以与OA的长度相等、
终点也不一定相同;零向量的模都是0,但方向不确定;两个单位向量
也可能反向,则不相等,故B,C,D都错误,A正确.故选A.
反思与感悟
解决向量概念问题一定要紧扣定义,对单位向量与零向
量要特别注意方向问题.
跟踪训练1 下列说法中正确的是
A.数量可以比较大小,向量也可以比较大小
B.方向不同的向量不能比较大小,但同向的向量可以比较大小
行 向量也叫做共线向量.也就是说,平行向量与共线向量是等价的,因
此要注意避免向量平行、共线与平面几何中的直线、线段的平行和共 线相混淆. 思考3 若a∥b,b∥c,那么一定有a∥c吗? 答案 不一定.因为当b=0时,a,c可以是任意向量.
[思考辨析 判断正误] 1.向量就是有向线段.( × ) 提示 向量可以用有向线段来表示,但并不能说向量就是有向线段.

平面向量的实际背景及基本概念

问:在平面上把所有单位向量的起点平移到同
一点P,那么它们的终点的集合组成什么图形?
提示:圆
P
相等向量: 长度相等且方向相同的向量.
向量 a与 相等,记作:
b
a b.
A1
a
A3A2
在实数中,我们有:若
=
b
A4, =
,则 B=1
B2
B3
,在向量中,你能提出类似的问题吗?结论怎样?
c


向量 AB 或a 的模 (或长度) 就是向量AB 或a 的大小,


记作:AB 或 a .
注:向量的模是可以比较大小的.
数量中有很特殊的数“0”,“1”,向量中有
没有类似的特殊向量?
零向量——长度为0的向量叫做零向量,记作 0.
零向量的方向是任意的!
单位向量——长度等于1个单位的向量,叫做单位向量.
图中与向量 OA 、OB 、OC 相等的向量。
B
A
O
C
F
D
E
解:
B
A
OA CB DO
OB DC EO
O
C
F
OC AB ED FO
D
E
变式练习:
1.与向量 OA 长度相等的向量有多少个?
2.是否存在与向量 OA 长度相等、方向
相反的向量?
3.与向量OA 共线的向量有哪些?
2.1平面向量的实际背景
及基本概念
向量的概念
向量:既有大小又有方向的量叫向量.
向量的两要素:大小、方向.
数量:只有大小没有方向的量.
数量可以比较大小,向量不能比较大小!
友情链接:物理中常把向量与数量分别叫做 矢量、标量.

2.1平面向量的实际背景及基本概念

2.1平面向量的实际背景及基本概念要点1向量的概念既有大小又有方向的量,叫做向量只有大小,没有方向的量,叫做数量①向量的两要素:大小和方向②向量不能比较大小要点2向量的表示方法(1)几何表示(用有向线段表示):①有向线段:带有方向的线段②画法:线段按一定的比例画出,其长度表示向量的大小,箭头所指的方向表示向量的方向。

③记法:以A 为起点,B 为终点的有向线段表示的向量记为AB ,其中线段的长度记作(读为向量AB 的模)④有向线段的三要素:起点、方向和长度。

⑤有向线段与向量的区别与联系区别:有向线段是固定的线段,而向量是可以自由移动的;联系:向量可以用有向线段表示,但并不能说明向量就是有向线段;(2)字母表示: cb a大小(模)记为:要点3特殊的向量(1)零向量:长度为0的向量,记为;方向是任意的,模为0;(2)单位向量:长度为1的向量.①任意方向上都有单位向量,模为1;②把所有单位向量的起点平移到同一点P,则各向量的终点的集合是以点P 为圆心,1为半径的圆;③对任一非零向量a,a 是一个单位向量,且与a 方向相同;(即与非零向量a方向相同的单位向量是a)(3)平行向量(共线向量):方向相同或相反的非零向量叫平行向量.①方向相同或相反,大小不确定;②若是两个平行向量,则记为//;③任一组平行向量都可以移动到一条直线上,因此平行向量也叫共线向量;④⑤规定:零向量与任一向量平行,即对任一向量,a //0;⑥不具有传递性:时)不一定平行(与则若0,//,//=b c a c b b a ()CDAB CD AB C B A BC AB CD AB CD AB D C B A ////,,////,,,⇒⇒≠⇒三点共线直线平行向量平行平行或重合与直线为不同的四个点若a(4)相等向量:长度相等且方向相同的向量叫相等向量.①方向相同,模相等;②对于一个非零向量,只要不改变它的大小和方向,就可以任意平行移动,平移后的向量与原向量是相等的向量;③任意两个相等的非零向量,通过平移都可用同一条有向线段表示,且与有向线段的起点无关;④对一组相等向量,讲它们的起点平移到同一点P,则它们的终点重合;⑤传递性:===则若,,⑥⑦相等向量一定是共线向量(向量)共线向量(平行向量)不一定是相等向量是平行四边形,则四边形为不共线的四个点,若是平行四边形共线或四边形,则若ABCD DC AB D C B A ABCD D C B A DC AB ==,,,,,,。

人教版高中数学高一A版必修4 第二章第一节平面向量的实际背景及基本概念

第二章第一节平面向量的实际背景及基本概念1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4作者:赵勇,永安三中教师,本教学设计获福建省教学设计大赛三等奖整体设计教学理念新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.教学目标1.通过力的分析等实例,了解向量的实际背景;理解向量的概念.2.理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量.教学重点、难点1.通过学生自主探究,并在教师的引导下,使学生理解向量的概念、相等向量的概念、向量的几何表示等是本节课的重点.2.难点是学生对向量的概念和共线向量的概念的理解.学情和教材分析《向量》是高中数学新教材必修四第二章第1节.向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.所以,向量是高考必考的重点内容,又因为其抽象性,它还是学生在学习中的一个难学内容.本节内容是向量一章的第一节课,因此,是十分关键、重要的一节课.教学准备多媒体课件教学过程导入新课位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图1,如何由点A确定点B的位置?图1一种常用的方法是,以A为参照点,用B点A点之间的方位和距离确定B点的位置.如,B点在A点东偏南45°,30千米处.这样,在A点与B点之间,我们可以用有向线段AB表示B点相对于A点的位置.有向线段AB就是A点与B点之间的位移.位移简明地表示了位置之间的相对关系.像位移这种既有大小又有方向的量,加以抽象,就是我们本章要研究的向量.推进新课新知探究本章引言中,我们知道,位移是既有大小,又有方向的量,你还能举出一些这样的量吗?图2请大家阅读课本2.1.1向量的物理背景与概念;2.1.2向量的几何表示.并回答下面问题: (1)什么是向量?向量和数量有何不同? (2)向量如何表示?(3)什么是零向量和单位向量? (4)什么是平行向量?待学生阅读完后,老师总结并展示课件: 1.什么是向量?向量和数量有何不同?(数量:只有大小,没有方向的量) 在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量? 数量有:质量、身高、面积、体积 向量有:重力、速度、加速度提问:角度,海拔,温度是向量吗? 2.向量如何表示?(1)几何表示——向量常用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.图3 注:以A 为起点,B 为终点的有向线段记为AB →,线段AB 的长度记作|AB →|(读为模); (2)也可以表示为a ,b ,c ,…,大小记作:|a|、|b|、|c |、…说明一:我们所说的向量,与起点无关,用有向线段表示向量时,起点可以取任意位置.所以数学中的向量也叫自由向量.如图4:它们都表示同一个向量.图4练习:向量AB →和BA →是同一个向量吗?为什么? 不是,方向不同.探究:向量就是有向线段吗?有向线段就是向量吗? 说明二:有向线段与向量的区别: 有向线段:有固定起点、大小、方向.向量:可选任意点作为向量的起点、有大小、有方向.图5有向线段AB →、CD →是不同的.图6向量AB →、CD →是同一个向量. 3.什么是零向量和单位向量?零向量:长度为0的向量,记为0; 单位向量:长度为1的向量.注:零向量,单位向量都是只限制大小,不确定方向的. 向量之间的关系: 4.什么是平行向量?方向相同或相反的非零向量叫平行向量. 注:1.若是两个平行向量,则记为a ∥b .2.我们规定,零向量与任一向量平行,即对任意向量a ,都有0∥a . 练习:判断下列各组向量是否平行?图7向量的平行与线段的平行有什么区别? 练习:已知下列命题:(1)向量AB →和向量BA →长度相等;(2)方向不同的两个向量一定不平行;(3)向量就是有向线段;(4)向量0=0;(5)向量AB →大于向量CD →.其中正确命题的个数是( )A .0B .1C .2D .3 答案:B例1试根据图8中的比例尺以及三地的位置,在图中分别用向量表示A 地至B 、C 两地的位移,并求出A 地至B 、C 两地的实际距离(精确到1 km).图8请同学们阅读课本2.1.3相等向量与共线向量,并回答问题:什么是相等向量和共线向量?待学生回答后,老师总结并展示课件: 5.什么是相等向量和共线向量?长度相等且方向相同的向量叫相等向量.a =b =c A 1B 1→=A 2B 2→=A 3B 3→=A 4B 4→图9注:1.若向量a ,b 相等,则记为a =b ;2.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.平行向量也叫共线向量.注:任一组平行向量都可以平移到同一直线上. 练习:判断下列命题是否正确:(1)两个向量相等,则它们的起点相同,终点相同;(2)若|a|=|b |,则a =b ;(3)若AB →=DC →,则四边形ABCD 是平行四边形;(4)平行四边形ABCD 中,一定有AB →=DC →;(5)若m =n ,n =k ,则m =k ;(6)若a ∥b ,b ∥c ,则a ∥c .其中不正确命题的个数是( )A .2B .3C .4D .5 答案:C练习:下列说法正确的是( ) A .若|a|>|b|,则a>b B .若|a |=0,则a =0C .若|a|=|b|,则a =b 或a =-bD .若a ∥b ,则a =bE .若a =b ,则|a|=|b |F .若a ≠b ,则a 与b 不是共线向量G .若a =0,则-a =0 答案:EG例2如图10,设O 是正六边形ABCDEF 的中心,分别写出图中与OA →、OB →、OC →相等的向量.图10解:OA →=CB →=DO →, OB →=DC →=EO →, OC →=AB →=ED →=FO →.练习:如图11,EF 是△ABC 的中位线,AD 是BC 边上的中线,在以A 、B 、C 、D 、E 、F 为端点的有向线段表示的向量中请分别写出:图11(1)与向量CD →共线的向量有________个,分别是________________________________;(2)与向量DF →的模一定相等的向量有________个,分别是______________________;(3)与向量DE →相等的向量有________个,分别是__________.答案:(1)7 DC →、DB →、BD →、FE →、EF →、CB →、BC → (2)5 FD →、EB →、BE →、EA →、AE →(3)2 CF →、FA →课堂小结 通过本节课的学习,要求大家能够理解向量的概念;掌握向量的几何表示;理解零向量、单位向量、平行向量、相等向量等概念,并能进行简单的应用.作业习题2.1A 组2,5设计思路1.首先先对本节课教材内容进行分析2.教材内容的安排和处理根据我所教学生的特点,我对教材进行了如下处理,先由物理中的位置关系导入新课,然后提出问题,并要求学生带着问题去阅读课本,最后由老师总结,并对概念进行概念辨析,以加大学生的思维的深度,拓宽了学生的视野,实现本节课难点的突破,整堂课充分发挥学生的主导作用.3.教法“问题是数学的灵魂,也是学好数学的必然手段”,本节课总体上以问题串的形式,设计为七问五练.着重抓四个知识点,突出学生的“主导地位”.并通过多媒体课件的演示,直观展示向量的有关内容,激发学生的兴趣.4.学法指导以问题为载体,通过提问、阅读、归纳,练习的过程,掌握思考、讨论、交流的学习方法,并体验探究和发现的乐趣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v 用有向线段的起点与终点字母表示;AB 、CD ……
(二)向量AB的大小(长度)称为向量的模,记作| AB |.
(三)两个特殊向量:零向量、单位向量:
①长度为0的向量叫零向量,记作0。0的方向是任意
的。零向量的模是零,记作 0 0
②长度为1个单位的向量,叫单位向量,记作e。
例 1 如图,试根据图中比例尺以及三地的位置, 在图中分别用向量表示A地至B、C两地的位移,
7.设在平面上给定了一个四边形ABCD,点K、L、M、 N分别是AB、BC、CD、DA的中点,
求证: KL =NM.
8.某人从A点出发向西走了200m到达B点,然后改变 方向向西偏北60°走了450m到达C点,最后又改 变方向,向东走了200m到达D点.
(1)作出向AB、BC、CD (1 cm表示200 m) .
2.1 平面向量的实 际背景及基本概念
引入:
观察右边四个图,
你有什么发现?
新课讲解 :
向量的定义:
的量叫做向量
想一想:在物理学当中,除力,位移外还有哪些量
是向量? 速度,加速度等
(一)向量的表示方法: v 用有向线段表示;
v 用黑体小写字母a、b等表示;(手写时为了区别, 一定要在上面加个箭头!)
解:OA=CB=DO OB=DC=EO OC=AB=ED=FO
想一想:向量OA 与EF、 OB 与AF相等吗?为什么?
4.已知非零向量a∥b,若非零向量c∥a,则c与b必

.
5.已知a、b是两非零向量,且a与b不共线,若非零向量c 与a共线,则c与b必定 .
6.在四边形ABCD中, AB=DC,且|AB|=|AD|,则四边形 ABCD是 .
(六)平行向量与共线向量:完全等价!
如图:a、b、c是一组平行向量直线l与a所在的直线平行, 在上任取一点O,我们可在l上分别作出OA=a ,OB=b, OC=c。这就说明,任一组平行向量都可以平移到同一 直线上。
a
b
C
·O BA
l
c
例2:如图,设O是正六边形ABCDEF的中心,分 别写出图中与向量OA、OB、OC相等的向量
并求出实际距离(精确到1km)。
解:
AB表示A地至B地的位移; AC表示A地至C地的位移。
AB . AC
比例 1:800000
肠似的肩胛和犹如乌贼一样的翅膀,这巨怪瘦瘦的淡橙色面条般的胸脯闪着冷光,活似鸭蛋一样的屁股更让人猜想。这巨怪有着仿佛原木模样的腿和水蓝色莲花似的爪 子……匀称的火橙色扣肉般的九条尾巴极为怪异,水青色南瓜似的弹头银蕉肚子有种野蛮的霸气。淡橙色春蚕一样的脚趾甲更为绝奇。这个巨怪喘息时有种淡蓝色金鱼 般的气味,乱叫时会发出水绿色玉葱形态的声音。这个巨怪头上土黄色土堆一样的犄角真的十分罕见,脖子上酷似羽毛一样的铃铛好像十分标准标新立异!壮扭公主兴 奋道:“好玩,有创意!本公主相当喜欢!有什么花样快弄出来我瞧瞧!”壮扭公主一边说着一边将身体变得和”虾米雁肾怪一样巨大……这时那伙校妖组成的巨大虾 米雁肾怪忽然怪吼一声!只见虾米雁肾怪转动细长的嘴唇,一嚎,一道青远山色的金辉快速从轻灵的米黄色香槟似的脑袋里面滚出!瞬间在巨虾米雁肾怪周身形成一片 天蓝色的光球!紧接着巨大的虾米雁肾怪颤动破烂的脑袋一喊,露出一副迷人的神色,接着摇动仿佛银剑般的肩膀,像深青色的亿背孤山象般的一颤,斑驳的瘦弱的手 臂突然伸长了四十倍,瘦小的淡黑色驴肾般的身材也立刻膨胀了五十倍……最后虾米雁肾怪颤动瘦瘦的淡橙色面条般的胸脯一声怪吼!只见从不同方向的天边窜出二十 条粗有上百米,长望不见尾的淡蓝色巨蜥……只见望不见尾的巨蜥狂摆嘶叫着快速来到近前,这时壮扭公主才看清:整条巨蜥都是由翻滚狂转的 和米糠组成!突然间 三十条巨蜥变成一个直径达万米的水青色巨大脸皮模样的超巨型丝龙卷群!把壮扭公主团团围主!只见无数 和米糠像成千上万的鲸鱼一样朝壮扭公主冲来……这时壮 扭公主不满道:“档次太低,看我的!”壮扭公主一边说着!一边抖动浑圆饱满的霸蛮屁股大吼一声,只见无数高达五千米的弧摩天心大厦纷纷从地下钻了出来,然后 纷纷长出比水塔烟囱还粗的手脚,排列成整齐的兵阵……壮扭公主摆动浑圆饱满的霸蛮屁股又是一声大吼,所有心都像巨大的导弹一样腾空而起,向怒放的烟花一样朝 四周超巨型的烟龙卷射去……随着一阵阵的爆炸和一片片的闪光,所有的烟龙卷群都烟消云散、不见了踪影……只见R.拉基希门童和另外四个校妖突然齐声怪叫着组 成了一个巨大的豪猪锣舌鬼!这个巨大的豪猪锣舌鬼,身长三百多米,体重九十多万吨。最奇的是这个怪物长着十分恶毒的锣舌!这巨鬼有着青兰花色肥肠一样的身躯 和青远山色细小闪电模样的皮毛,头上是紫宝石色奶糖一般的鬃毛,长着浓黑色企鹅一样的恐龙笑海额头,前半身是湖青色葫芦一样的怪鳞,后半身是冒烟的羽毛。这 巨鬼长.A 3.D 4.平行5不平行.
8.(1)如图所示 (2)450 m
6.菱形 7.(略)
作业布置:课本86页1、3、5 题
鑫飞财经 / 鑫飞财经
(四)相等向量:长度相等且方向相同的向量叫相等向量, 向量a与b相等,记作a=b
(五)平行向量:方向相同或相反的非零向量; 向量a、b平行,记作a∥b
a
b
c
我们规定0与任一向量平行.
说明:①零向量与零向量相等;②任意两个相等的非零 向量,都可用同一条有向线段来表示,并且与有向 线段的起点无关.
相关文档
最新文档