离子交换树脂吸附性及去硬度技术大全

合集下载

离子交换树脂常见难题及解决途径

离子交换树脂常见难题及解决途径

离子交换树脂常见难题及解决途径1. 引言离子交换树脂是一种广泛应用于水处理、废水处理、化学品分离纯化等领域的重要材料。

然而,在使用离子交换树脂的过程中,常常会遇到一些难题,如吸附容量降低、流动阻力增加、压力波动等。

针对这些常见难题,本文将介绍解决途径,帮助解决实际应用中可能遇到的问题。

2. 吸附容量降低当离子交换树脂长时间使用后,吸附容量可能会降低,造成效果下降。

解决这个问题的途径有以下几点:- 树脂再生:使用酸、碱等溶液进行树脂再生,去除吸附物,恢复树脂的吸附能力。

- 高温处理:将树脂暴露在高温下,能够除去附着在树脂上的有机物质,提高树脂的吸附能力。

- 曝气处理:通过曝气使树脂表面的污染物脱附,增加树脂的吸附容量。

3. 流动阻力增加随着使用时间的增长,离子交换树脂的颗粒会逐渐堆结,导致流动阻力增加,降低树脂的吸附效率。

以下是解决流动阻力增加的一些途径:- 调整进出水流量:适当调整进出水流量,控制流速,防止颗粒堆结过快。

- 清洗树脂床层:定期使用清水或清洗剂冲洗树脂床层,去除堆结的颗粒,恢复流动性。

- 筒罐倒转:定期倒转离子交换柱或筒罐,使床层颗粒重新混合,减少堆结。

4. 压力波动在使用离子交换树脂的过程中,压力波动是一个常见的问题,可能会影响系统的稳定性。

以下是一些解决压力波动的途径:- 检查进出水口是否堵塞:清洗或更换进出水口,保持流量畅通。

- 调整进出水流量:适时调整进出水流量,避免波动过大。

- 检查压力传感器:确保压力传感器的准确性,及时进行维护和更换。

5. 结论离子交换树脂在应用过程中常常会遇到吸附容量降低、流动阻力增加和压力波动等问题。

本文介绍了相应的解决途径,包括树脂再生、高温处理、曝气处理、调整进出水流量、清洗树脂床层、筒罐倒转、检查进出水口是否堵塞、调整进出水流量以及检查压力传感器等。

通过采取合适的解决措施,可以有效解决这些问题,保持离子交换树脂的良好工作状态。

离子交换树脂的再生方法

离子交换树脂的再生方法

离子交换树脂的再生方法离子交换树脂是一种广泛应用于水处理、化学工业和生物科学等领域的重要材料。

随着使用时间的增长,离子交换树脂会逐渐失去对离子的吸附能力,需要进行再生以恢复其吸附性能。

本文将介绍离子交换树脂的再生方法,包括酸洗法、碱洗法、盐洗法和热解法等。

1. 酸洗法酸洗法是一种常用的离子交换树脂再生方法,适用于强酸型阳离子交换树脂和强碱型阴离子交换树脂。

具体步骤如下:•将需要再生的离子交换树脂放入酸性溶液中浸泡,通常使用稀硫酸或盐酸;•在适当的温度下进行搅拌或循环,促使酸性溶液与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除酸性溶液。

酸洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。

但需要注意的是,酸洗法只适用于耐酸性的离子交换树脂。

2. 碱洗法碱洗法是一种适用于强碱型阳离子交换树脂和强酸型阴离子交换树脂的再生方法。

具体步骤如下:•将需要再生的离子交换树脂放入碱性溶液中浸泡,通常使用氢氧化钠或氢氧化钾;•在适当的温度下进行搅拌或循环,促使碱性溶液与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除碱性溶液。

碱洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。

但需要注意的是,碱洗法只适用于耐碱性的离子交换树脂。

3. 盐洗法盐洗法是一种适用于强酸型阳离子交换树脂和强碱型阴离子交换树脂的再生方法。

具体步骤如下:•将需要再生的离子交换树脂放入盐水中浸泡,通常使用氯化钠溶液;•在适当的温度下进行搅拌或循环,促使盐水与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除盐水。

盐洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。

但需要注意的是,盐洗法只适用于耐盐性的离子交换树脂。

4. 热解法热解法是一种适用于各种类型离子交换树脂的再生方法。

树脂软化除硬工艺详解

树脂软化除硬工艺详解

树脂软化除硬工艺详解一.强酸树脂软化可以使用Na+离子置换和除去水中结垢阳离子如Ca2+、Ba2+和Sr2+。

交换饱和后的离子交换树脂用NaCl再生,这一过程称为原水软化处理。

在这种处理过程中,进水pH不会改变。

因此,不需要采取脱气操作,但原水中的溶解气体CO2能透过膜进入产品侧,引起电导率的增加。

可以在软化后的水中加入一定量NaOH(直到pH8.2)以便将水中残留CO2转化成重碳酸根,重碳酸根能被膜所脱除,使反渗透产水电导率降低,反渗透膜的脱盐率在中性pH范围内较高。

选用强酸钠型离子交换树脂Ca2+、Ba2+和Sr2+的脱除效率大于99.5%,可消除各种碳酸盐或硫酸盐垢的危险。

如果及时进行再生的话,采用强酸阳离子交换树指进行软化是非常有效和保险的阻垢方法,但主要用于中小型苦咸水系统中,而海水淡化中不会使用软化法。

这一过程的主要缺点是相当高的氯化钠消耗,存在环境问题,也不经济。

二.弱酸树脂软化采用弱酸阳离子交换树脂脱碱度主要是大型苦咸水处理系统,它能够实现部分软化以达到节约再生剂的目的。

在这一过程中,仅仅与重碳酸根相同量的暂时硬度中的Ca2+、Ba2+和Sr2+等为H+所取代而被除去,这样原水的pH值会降低到4-5。

由于树脂的酸性基团为羧基,当pH达到4.2时,羧基不再解离,离子交换过程也就停止了。

因此,仅能实现部分软化,即与重碳酸根相结合的结垢阳离子可以被除去。

因此这一过程对于重碳酸根含量高的水源较为理想,重碳酸根也可转化为CO2在大多数情况下,并不希望产水中出现CO2,这时可以对原水或产水进行脱气来实现,但当存在生物污染嫌疑时(地表水,高TOC或高菌落总数),对产水脱气更为合适。

在膜系统中高CO2浓度可以抑制细菌的生长,当希望系统运行在较高的脱盐率时,采用原水脱气较合适,脱除CO2将会引起pH 的增高,进水pH>6时,膜系统的脱除率比进水pH<5时要高。

采用弱酸脱碱度的优点如下:(1)再生所需要的酸量不大于105%的理论耗酸量,这样会降低操作费用和对环境的影响;(2)通过脱除重碳酸根,水中的TDS减低,这样产水TDS 也较低;本法的缺点是:(1)残余硬度如果需要完全软化,可以增设强酸阳树脂的钠交换过程,甚至可放置在弱酸树脂同一交换柱内,这样再生剂的耗量仍比单独使用强酸树脂时低,但是初期投资较高,这一种组合仅当系统容量很大时才有意义。

离子交换树脂的处理及注意事项

离子交换树脂的处理及注意事项
将处理合格的树脂用医用纱布包裹, 将水沥干, 将潮湿状态的树脂贮存于干净的聚乙烯塑料瓶中, 在 常温状态下, 密闭保存。
3 注意事项
1) 在日常试验过程中发现, 处理好的树脂经检验 合格, 放置一段时间后, 会出现树脂发红的现象。继续 使用, 测定结果偏高。这是因为析出游离酸的原因。用 快速滤纸过滤, 热水冲洗几遍, 可除去游离酸。
没, 造成树脂处理不完全, 进而使检验结果偏低。
5) 在用水洗的过程中, 一定要采取逆洗。这样可
以除去离子交换树脂中夹杂的污垢和碎的树脂颗粒,
避免交换柱被胀破 ( 玻璃交换柱) 。同时可以调整树
脂的充填状态。
( 编辑 王新频)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2008.No.5
2.2 树脂的再生 2.2.1 装柱
离 子 交 换 柱 用 玻 璃 制 成 , 直 径 为 70mm、 长 度 为 1m, 在交换柱底部有漏板, 在漏板上铺上纱布( 防 止树脂漏下) , 上下两端有进出管口, 用内径 7mm 的 医用橡胶管连接。将交换柱底部玻璃活塞关闭, 往柱 中加入 13~15cm 的水。将预处理好的湿树脂装入离 子交换柱, 一直加到距离子交换柱上管口 15cm 处, 树脂上部要保留 5cm 高的水柱。 2.2.2 酸洗
因为新树脂中含有溶剂、未参加聚合反应的物质 和 少 量 低 聚 合 物 , 还 可 能 吸 附 铁 、铝 、铜 等 重 金 属 离 子,当新树脂与水、酸、碱或其它溶液相接触时, 上述 可溶性杂质就会转入溶液中, 影响使用,所以新树脂 在使用前要进行预处理。常规法在进行新树脂的预处 理时, 采用乙醇溶液浸泡 12h 以上, 然后倒出乙醇, 再 用水浸泡 6~8h, 待处理。为了降低成本, 我们使用饱 和食盐水, 取其量约等于被处理树脂体积的 2 倍, 将 树脂置于盐溶液中浸泡 18~20h, 然后逐渐稀释, 用清 水反复清洗至溶液不带黄褐色, 泡沫很少时为止, 并 浸泡过夜, 待处理。 2.1.2 需再生树脂的预处理

离子交换树脂的基本参数和使用方法

离子交换树脂的基本参数和使用方法

离子交换树脂的基本参数和使用方法离子交换树脂的基本参数:离子交换树脂的离子交换容量离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或 meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。

它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。

1-总交换容量:表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。

2-工作交换容量:表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。

3-再生交换容量:表示在一定的再生剂量条件下所取得的再生树脂的交换容量表明树脂中原有化学基团再生复原的程度。

通常,再生交换容量为总交换容量的50~90%(一般控制70~80%),而工作交换容量为再生交换容量的30~90%(对再生树脂而言),后一比率亦称为树脂的利用率。

在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。

现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。

离子树脂交换容量的测定一般以无机离子进行。

这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。

而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。

这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。

离子交换树脂的吸附选择性离子交换树脂分为阴阳两种类型,阳离子交换树脂又分为强酸性和弱酸性,阴离子交换树脂分为强碱性和弱碱性。

离子交换树脂对溶液中的不同离子有不同的亲和力,对它们的吸附有选择性。

各种离子受树脂交换吸附作用的强弱程度有一般的规律,但不同的树脂可能略有差异。

主要规律如下:1-对阳离子的吸附:高价离子通常被优先吸附,而低价离子的吸附较弱。

离子交换树脂对硬度去除的效果研究

离子交换树脂对硬度去除的效果研究

离子交换树脂对硬度去除的效果研究摘要:本文研究了离子交换树脂对硬度去除的效果,并通过实验验证了其有效性。

本文首先介绍了硬度的定义、种类及其在水处理中的影响,然后介绍了离子交换树脂的基本原理和种类,并阐述了其在水处理领域中的应用。

接着本文设计并进行了实验,通过不同种类的离子交换树脂进行硬度去除实验,并对实验结果进行了分析和比较。

最后,本文得出了结论并提出了进一步的展望。

关键词:离子交换树脂;硬度去除;水处理;实验分析硬度是一种常见的水质指标,通常指水中含有的镁、钙等离子的浓度。

硬度对于工业和生活用水都有着重要的影响,如管道堵塞、洗涤效果差等问题。

因此,硬度去除是水处理领域中的一个重要问题。

离子交换树脂是一种常见的水处理技术,它可以通过去除水中的离子来实现水质的改善。

而不同离子交换树脂对硬度的去除效果是不同的,应结合实际合理应用。

1.硬度的定义、种类及其在水处理中的影响硬度是水中含有的钙、镁等金属离子的浓度的度量,通常用毫克每升(mg/L)表示。

硬度的种类包括临时硬度和总硬度。

临时硬度是指水中的碳酸钙和碳酸镁,可以通过加热水来去除;总硬度则包括了所有的镁、钙离子。

硬度对于水处理有着重要的影响,如管道和设备的堵塞、洗涤效果差等问题。

此外,硬度还会影响饮用水的口感和洗浴水的泡沫性。

高硬度水使用后容易在设备、管道等地方留下水垢,不仅影响设备的寿命,还会增加清洗的难度和成本。

因此,在许多工业和民用领域,需要对硬度进行控制和处理。

水中的硬度可以通过不同的方法来测量,包括使用比色法、电位滴定法、EDTA滴定法等。

在水处理中,常用的硬度去除方法包括物理方法和化学方法。

物理方法包括加热、过滤等,而化学方法则包括加入化学剂或使用离子交换树脂等。

在水处理中,硬度的控制和去除是一个重要的问题。

离子交换树脂在硬度去除中具有高效、可控性强、操作简便等优点,已经被广泛应用于水处理中。

2.离子交换树脂的基本原理和种类离子交换树脂是一种广泛应用于水处理领域的技术。

离子交换树脂的硬度

离子交换树脂的硬度

离子交换树脂的硬度1.引言1.1 概述在离子交换树脂的硬度研究领域,随着对其特性和性能的深入分析和研究,越来越多的学者和研究人员开始关注硬度这一重要指标。

离子交换树脂的硬度是指交换树脂材料的抗压能力和刚性。

在实际应用中,交换树脂的硬度对其在各个领域的性能表现起着至关重要的作用。

交换树脂的硬度与其内部结构和化学组成密切相关。

其硬度值能够在一定程度上反映其分子结构的紧密程度和交联度。

随着交联度的增加,交换树脂的硬度也相应增加。

硬度高的交换树脂能够更好地保持其形状和结构,提供更强的物理支撑力,从而增强其在吸附和分离等过程中的稳定性和效率。

另外,硬度还受到交换树脂表面特性的影响。

不同表面改性方法对交换树脂的硬度具有显著影响,如聚合、交联度调节、表面变性等。

通过改变树脂表面的化学组成和结构,可以调节其硬度,并进一步改善其吸附和分离性能。

此外,离子交换树脂的硬度也受到环境因素的影响。

温度、湿度、溶剂等条件的变化都会对树脂的硬度产生一定的影响。

因此,在实际应用中,需考虑这些因素对交换树脂硬度的影响,并进行相应的控制和调整,以保证其性能的稳定和可靠。

综上所述,离子交换树脂的硬度作为其重要性能指标,在吸附、分离和过滤等领域具有广泛的应用。

未来的研究方向将聚焦于更深入地理解硬度与交换树脂结构、表面特性及环境因素之间的关系,并通过合适的改性和调控方法来优化和提高离子交换树脂的硬度,为其在工业和科学研究领域的应用提供更加可靠和高效的技术支持。

文章结构部分是用来介绍文章的整体框架和各个部分的内容安排。

在这一部分,可以简要介绍文章的章节安排和每个章节的主要内容。

以下是文章1.2文章结构部分的内容:本文将探讨离子交换树脂的硬度。

文章分为引言、正文和结论三个部分。

在引言部分,我们首先对离子交换树脂的硬度进行概述,介绍其在工业和科研领域的重要性。

然后,我们将介绍文章的整体结构和各个章节的主要内容,以帮助读者更好地理解本文的目的和主题。

有关离子交换树脂知识

有关离子交换树脂知识

有关离子交换树脂知识1、离子交换树脂的基本类型(1) 强酸性阳离子树脂这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。

树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。

这两个反应使树脂中的H+与溶液中的阳离子互相交换。

强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。

树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。

如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

(2) 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。

树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。

这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。

这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。

(3)强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R 为碳氢基团),能在水中离解出OH-而呈强碱性。

这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。

这种树脂的离解性很强,在不同pH下都能正常工作。

它用强碱(如NaOH)进行再生。

(4) 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。

这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。

这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。

它只能在中性或酸性条件(如pH1~9)下工作。

它可用Na2CO3、NH4OH进行再生。

2、离子交换树脂基体的组成离子交换树脂的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离子交换树脂吸附性及去硬度
技术大全
(1) 对阴离子的吸附
强碱性阴离子树脂对无机酸根的吸附的一般顺序为:
SO42-> NO3- > Cl- > HCO3- > OH-
弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:
OH-> 柠檬酸根3- > SO42- > 酒石酸根2- >草酸根2- >
PO43- >NO2- > Cl- >醋酸根- > HCO3-
(2) 对阳离子的吸附
高价离子通常被优先吸附,而低价离子的吸附较弱。

在同价的同类离子中,直径较大的离子的被吸附较强。

一些阳离子被吸附的顺序如下:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
(3) 对有色物的吸附
糖液脱色常使用强碱性阴离子树脂,它对拟黑色素(还原糖与氨基酸反应产物)和还原糖的碱性分解产物的吸附较强,而对焦糖色素
的吸附较弱。

这被认为是由于前两者通常带负电,而焦糖的电荷很弱。

通常,交联度高的树脂对离子的选择性较强,大孔结构树脂的选择性小于凝胶型树脂。

这种选择性在稀溶液中较大,在浓溶液中较小。

软化器是用来降低或基本消除原水硬度的装置,其出水残留硬度可降至0.03mmol/L(以1/2Ca2+计)以下。

在软化过程中,当水流过树脂层后的出水硬度超过某一规定值,水质已不符合水质的标准要求时,则交换器中的离子交换树脂将视为“失效”,不再起软化作用,这时,为恢复离子交换树脂的交换能力,通常采用工业食盐水溶液(5%-10%)对离子交换树脂进行再生,又称还原,也就是用食盐中的钠离子将树脂中吸附的钙镁离子置换出来。

其离子反应式:
Na++2RCa2+ =R2Na+2Ca+
Na++2RMg2+=R2Na+2Mg2+
采用钠型阳离子交换树脂C100E(RNa)来进行软化处理,用阳离
子交换树脂中可交换的阳离子(如Na+、H+),把水中所含的钙、镁离子交换出来,这一过程称为水的软化过程,该过程的离子反应式如下:Ca2++2RNa=R2Ca+2Na+
Mg2++2RNa=R2Mg+2Na+
水中的Ca2+ 、Mg2+被RNa型树脂中的Na+置换出来以后,就存留在树脂中,使离子交换树脂由RNa型变成R2Ca 或R2Mg型树脂。

相关文档
最新文档