太阳能电池漏电流种类
光伏系统漏电流检测及抑制研究

光伏系统漏电流检测及抑制研究作者:赵爱光王占永来源:《科学与财富》2018年第18期摘要:在非隔离的光伏并网发电系统中,检测及抑制漏电流是一个关键技术,成为光伏行业研究的热点,逆变器则在光伏系统中承担了检测及抑制漏电的作用,保证了光伏系统的安全。
本文主要解析光伏系统漏电流产生的原理,同时逆变器通过电路拓扑来抑制漏电流的产生,同时实时检测光伏系统的漏电流大小,如果漏电流超过安规值,则停止光伏发电系统。
关键词:光伏发电逆变器漏电流非隔离拓扑一、光伏并网发电系统简介光伏并网发电系统通常是由太阳电池板阵列、接线箱、逆变器、电表盘和电网组成,系统的核心是光伏并网逆变器。
太阳光照射在太阳电池板表面,太阳电池板阵列输出的直流电,经光伏并网逆变器最大功率点跟踪控制、逆变后,产生与电网电压同频、同相的交流电,送入电网中。
随着现在国家倡导的发展新动能,加快新旧动能转换,太阳能作为一种清洁能源得到了广泛应用,其中包括光伏并网发电系统。
传统的光伏并网发电系统是将光伏板与电网之间加工频变压器变压器隔离,实现电气隔离,保证系统及人身安全。
近几年为提高系统效率,降低系统成本,将工频变压器变压器省掉,但随之而来的就是系统会产生漏电流,如果不加以检测及抑制,势必会造成系统安全。
二、光伏并网发电系统产生漏电流的原理光伏系统漏电流,又称方阵残余电流,本质为共模电流,其产生原因是光伏系统和大地之间存在寄生电容,当寄生电容-光伏系统-电网三者之间形成回路时,共模电压将在寄生电容上产生共模电流。
当光伏系统中安装有工频变压器时,由于回路中变压器绕组间寄生电容阻抗相对较大,因此回路中共模电压产生的共模电流可以得到一定抑制。
然而在无变压器的光伏系统中,回路阻抗相对较小,共模电压将在光伏系统和大地之间的寄生电容上形成较大的共模电流,即漏电流。
三、光伏并网发电系统产生漏电流的危害由于光伏组件与公共电网是不隔离的,大面积的太阳能光伏组件与地之间存在较大的分布电容,因而形成了有寄生电容、滤波元件和电网阻抗组成的共模谐振回路。
太阳能电池分流__概述说明以及解释

太阳能电池分流概述说明以及解释1. 引言1.1 概述太阳能电池是一种直接将太阳能转化为电能的装置,通过光生电效应实现。
随着对环境友好和可再生能源需求的增加,太阳能电池逐渐成为人们关注的焦点。
然而,在实际应用过程中,太阳能电池存在一些问题,其中一个关键问题是分流现象。
分流指的是当连续多个太阳能电池通过串联或并联方式连接时,由于光照条件、工艺制造等原因造成部分太阳能电池工作不良或损坏。
这会导致系统产生非理想的效果,并降低整个系统的效率与稳定性。
因此,本文将重点探讨太阳能电池分流问题及其解决方案。
首先介绍太阳能电池的基本原理和应用场景,并阐述其存在的限制与挑战。
随后对太阳能电池分流原理、方式以及效果与优势进行详细说明。
最后,将解释太阳能电池分流的必要性和意义,包括其背景和发展历程、对系统稳定性的影响解析以及相关解决方案的优势介绍。
1.2 文章结构本文共分为五个主要部分。
引言部分对文章的背景、目的和主要内容进行概述。
第二部分将重点介绍太阳能电池分流的原理、方式以及效果与优势。
第三部分将对太阳能电池的基本原理、应用场景以及限制与挑战进行概述说明。
在第四部分,将解释太阳能电池分流的必要性和意义,包括其背景和发展历程、对系统稳定性的影响解析以及相关解决方案的优势介绍。
最后,在结论部分总结文章主要观点和论证结果,并提出未来研究方向。
1.3 目的本文旨在全面探讨太阳能电池分流问题,并提供有效的解决方案。
通过深入了解太阳能电池的基本原理和现有应用场景,帮助读者更好地理解太阳能电池分流现象带来的挑战和限制。
同时,通过对太阳能电池分流的背景和发展历程进行解析,展示该领域相关研究取得的进展与成果。
最终,通过总结主要观点和论证结果,并提出未来研究方向,为太阳能电池分流问题的进一步探索提供指导和参考。
2. 太阳能电池分流2.1 分流原理太阳能电池分流是指将从太阳能电池板中得到的直流电能进行分流处理的过程。
在太阳能发电系统中,太阳能电池板会产生特定的电压和电流。
漏电流测试方法

为了消除上述两种风险,逆变器可以安装 RCD及残余电流监控(RCM)来提供保护, 是否需要RCD额外保护,取决于接触电流 及着火漏电流是否满足规定限值,如果接 触电流大于30mA,着火漏电流大于 300mA(<30kVA逆变器),需要采用残余电流 检测保护。如果测得的接触电流及着火电 流小于限值要求,说明逆变器电气隔离及 绝缘电阻良好,没有潜在触电及着火风险, 不需要RCD及RCM边之 间寄生电容非常小,寄生阻抗会特别大, 极大的限制漏电流的大小 不带隔离变系统,如何电路拓扑及调制方 式不合理,共模电压不是常数的话,就会 产生漏电流,该漏电流值太大,就应该安 装RCD保护。
漏电流的检测方法
人接触不接地方阵输入端和地时有触电的风险, 当逆变器没有隔离,或者虽具有隔离措施,但不 能保证限制接触电流在某个合理范围内的逆变器, 当使用者同时接触方阵的带电部分和地时,电网 和地的连接(如接地中线)将为接触电流提供一 个回路,从而产生触电危险
共模电压
推导出
差模电压
为推导共模等效电路,用上述公式代替图1中 的桥式电路,由“叠加原理”可略去差模回路 和元件,仅保留共模回路和元件,对于高频 (开关频率及倍数次)共模等效电路,可以短接 电网电压源,可得如图2所示的等效电路。
残余电流的形成分析
将电路进一步简化,共模等效电流中有两个激励,共模电 压Ucm及Ucm-dm,电路和寄生参数一般都是对称的,故 Ucm-dm=0,所以漏电流主要是由共模电压激励产生,阵 列和地之间的寄生电容以及电路中的对地电容决定漏电流 的大小
漏电流的形成及检测方法分享
内容简介:
太阳电池暗电流分析

暗电流 2010-09-25 Sat⏹在没有光照的条件下,给PN结加反偏电压(N区接正,P区接负),此时会有反向的电流产生,这就是所谓的暗电流,对单纯的二极管来说,暗电流其实就是反向饱和电流,但是对太阳能电池而言,暗电流不仅仅包括反向饱和电流,还包括薄层漏电流和体漏电流具体来说:是指给PN结加一反偏电压时,外加的电压使得PN结的耗尽层变宽,结电场(即内建电场)变大,电子的电势能增加,P区和N区的多数载流子(P区多子维空穴,N区多子为电子)就很难越过势垒,因此扩散电流趋近于零,但是由于结电场的增加,使得N区和P区中的少数载流子更容易产生漂移运动,因此在这种情况下,PN结内的电流由起支配作用的漂移电流决定。
漂移电流的方向与扩散电流的方向相反,表现在外电路上有一个留入N区的反向电流,它是由少数载流子的漂移运动形成的。
由于少数载流子是由本征激发而产生的,在温度一定的情况下,热激发产生的少子数量是一定的,电流趋于恒定。
⏹漏电流:太阳能电池片可以分3层,即薄层(即N区),耗尽层(即PN结),体区(即P区),对电池片而言,始终是有一些有害的杂质和缺陷的,有些是硅片本身就有的,也有的是我们的工艺中形成的,这些有害的杂质和缺陷可以起到复合中心的作用,可以虏获空穴和电子,使它们复合,复合的过程始终伴随着载流子的定向移动,必然会有微小的电流产生,这些电流对测试所得的暗电流的值是有贡献的,由薄层贡献的部分称之为薄层漏电流,由体区贡献的部分称之为体漏电流。
⏹测试漏电流的目的:(1)防止击穿如果电池片做成组件时,电池片的正负极被接反,或者组件被加上反偏电压时,由于电池片的暗电流过大,电流叠加后会迅速的将电池片击穿,不过这样的情况很少发生,所以测试暗电流在这方面作用不是很大。
(2)监控工艺当电池片工艺流程结束后,可以通过测试暗电流来观察可能出现的工艺的问题,前面说过,暗电流是由反向饱和电流和薄层漏电流以及体漏电流组成的,分别用 J1,J2,J3表示,当我们给片子加反偏电压时,暗电流随电压的升高而升高,分3个区,1区暗电流由J2起支配作用,2区由J3起支配作用,3区由J1 起支配作用,3个区的分界点由具体的测试电压而决定的。
太阳能电池板性能分析与评估

太阳能电池板性能分析与评估随着越来越多的人关注环保和可持续性发展,太阳能电池板成为了一个备受关注的能源来源。
太阳能电池板的工作原理是将太阳能转化为电能,这种能源不受地域和时间限制,因此广泛应用于各种场合,从家庭用电到工业生产都有着广泛的应用。
太阳能电池板的性能分析和评估是为了评估太阳能电池板的质量和可靠性,从而提高电池板的生产效率和降低生产成本。
太阳能电池的主要性能指标包括转换效率、光谱响应、漏电流、开路电压和短路电流等。
太阳能电池板转换效率太阳能电池板的转换效率是指太阳能被转化为电能的比例,是衡量太阳能电池板质量的重要指标。
太阳能电池板的转换效率越高,说明太阳能电池板所转化的太阳能越多,电能输出越大。
太阳能电池板的转换效率受多个因素影响,包括太阳辐射、电池板材料质量、组件设计等因素。
对于家用太阳能电池板来说,转换效率通常在15%左右,而对于商用太阳能电池板,转换效率可达到20%左右。
太阳能电池板的光谱响应太阳能电池板的光谱响应是指太阳光谱的响应程度,即太阳能光谱中的可见光、红外线和紫外线等各部分的电能转换效率。
太阳能电池板的光谱响应影响了其能否将太阳能高效地转换为电能。
太阳能电池板对于可见光的响应比较高,而对于紫外线和红外线的响应相对较低,因此太阳能电池板的实际转化效率受到可见光占比的影响。
为了提高太阳能电池板的光谱响应,可以采用多晶硅、单晶硅等材料制作太阳能电池板。
太阳能电池板的漏电流太阳能电池板的漏电流是指在夜间或遮挡太阳光源时产生的电流,也称为暗电流。
太阳能电池板的漏电流会影响电池板的发电效率和寿命。
高质量的太阳能电池板漏电流很低,在没有太阳光源或被遮挡的情况下,产生的电流非常小。
因此,在选购太阳能电池板时,需要关注其漏电流指标。
太阳能电池板的开路电压和短路电流太阳能电池板的开路电压和短路电流是指太阳能电池板在特定光照条件下的输出电压和电流。
开路电压是指太阳能电池板在输出电流为零时的电压,短路电流是指在太阳能电池板短路时的电流。
电气工程中的太阳能光伏漏电流监测与分析

电气工程中的太阳能光伏漏电流监测与分析在当今的环保潮流中,太阳能光伏技术备受关注,因其可可再生性和可持续性而受到广泛应用。
然而,太阳能光伏系统在使用过程中可能会出现漏电流问题,这对系统的安全性和效率产生严重影响。
因此,太阳能光伏漏电流的监测与分析变得至关重要。
1. 太阳能光伏漏电流的定义和影响漏电流是指在电气设备或电源线路中由于绝缘或绝缘材料损坏而导致的非正常电流。
在太阳能光伏系统中,漏电流可能会由于组件绝缘破损、温度过高、湿度过大等因素导致。
漏电流的存在可能对系统产生多种负面影响。
首先,漏电流会耗费相当一部分太阳能光伏系统产生的电能,降低系统的效率。
其次,漏电流还会引起系统温度升高、电池寿命减少,甚至导致火灾等严重事故发生。
2. 太阳能光伏漏电流监测技术为了解决太阳能光伏漏电流问题,需要借助先进的监测技术和设备。
目前,常用的太阳能光伏漏电流监测技术主要有基于直流电阻法、交流电阻法和无线传感网络技术。
基于直流电阻法的监测技术通过在回路中串接直流电阻,测量回路电压与电流来判断是否存在漏电流。
这种技术成本较低,但需要断开回路进行安装和管理,存在一定的操作风险。
交流电阻法则通过在直流电路上增加短暂的交流电压,测量交变电压和电流的相位差来检测漏电流。
相较于直流电阻法,交流电阻法避免了断开回路的操作,更加安全可靠。
但该技术需要增加额外的交流电源,增加了系统的复杂度。
无线传感网络技术则基于无线传感器节点和数据传输网络,实时监测太阳能光伏系统中的漏电流信息。
这种技术可以实现远程监测和数据传输,无需人工操作,更加方便高效。
但由于无线传感网络的复杂性,该技术的成本较高。
3. 太阳能光伏漏电流分析方法除了监测,分析太阳能光伏漏电流的原因也是十分重要的。
常用的漏电流分析方法有以下几种。
首先是红外热成像技术。
该技术利用红外热像仪对太阳能光伏组件进行扫描,通过观察温度分布图来判断组件是否存在漏电流。
这种方法检测灵敏度高,可以较为准确地定位漏电点。
太阳电池EL漏电分析及可靠性评估

图1 酸抛后的漏电电池硅片PL测试,女,本科、助理工程师,主要从事光伏组件成品的质量管理与生产过程的质量管控、组件生产过程中的异常原图2 正常硅片PL测试3 漏电电池片酸抛后的硅片面少子寿命图4 正常硅片的面少子寿命1.2 酸抛后的漏电电池硅片参数测试漏电电池片酸抛后,对其进行少子寿命、电阻率及厚度测试,具体数据如表1所示。
表1 酸抛后的漏电电池硅片性能参数少子寿命/µs电阻率1.126 1.8000.913 1.0620.963 1.7771.651 1.5301.636 1.3330.974 1.5271.723 1.597少子寿命达到合格的标准是大于1.2测试数据来看,少子寿命存在不合格的情面少子寿命,均值为1.553 µs。
由于漏电电池片所使用硅片的少子寿命低于1.2 µs,因此不满足合格1.4 硅片晶向、位错测试晶向测试。
晶向测试是利用X射线仪进行晶向测定。
其原理为:当一束平行的单色射线射入晶体表面时,X射线照在相邻平面之间的光程差为其波长的整数倍时就会产生衍射。
利用计数器探测衍射线,根据其出现的位置确定单晶的晶向。
位错测试。
位错测试是利用化学择优腐蚀来显示缺陷,试样经择优腐蚀液腐蚀后,在有缺陷的位置会被腐蚀成浅坑或丘,可采用目视法结合金相显微镜进行观察。
片漏电电池片酸抛后进行晶向、位错测试,数据如表2所示。
5 第一次制成的电池片的EL测试结果图6 返工后的电池片EL测试结果2 工艺排查分析2.1 电性能参数对比将漏电电池片与正常电池片在同一测试条件下对比测试。
表3为正常电池片与漏电电池片的性能参数对比。
表3 正常电池片与漏电电池片性能参数对比参数U oc/V I sc/A FF/%N Cell/%I rev1/A 漏电电池10.6469.38281.08520.116 2.267漏电电池20.6479.42780.71620.158 1.839正常电池10.6439.49181.12020.2760.050正常电池20.6459.40681.52420.2600.002为反向电压-10 V时的漏电电流;I rev2流3可知,漏电电池片的并联电阻较小、漏流基本都大于2 A,说明此类电池片不合格。
太阳能电池漏电流标准

太阳能电池漏电流标准一、定义和术语1.太阳能电池:一种将太阳光转化为电能的设备。
2.漏电流:由于太阳能电池中的杂质或缺陷,在太阳能电池的阳极和阴极之间形成的微小泄漏电流。
3.漏电流标准:衡量太阳能电池漏电流大小的准则或标准。
二、漏电流测量方法1.使用数字万用表进行测量:将太阳能电池的阳极和阴极分别连接到数字万用表的两个端口上,设置万用表在电流档位,测量太阳能电池的漏电流。
2.使用专门的漏电流测试设备:使用专用的漏电流测试设备,设定相应的电压和电流值,模拟太阳光的照射条件,对太阳能电池进行漏电流测试。
三、漏电流限制值根据不同的应用场景和产品标准,漏电流的限制值会有所不同。
一般来说,对于商用太阳能电池,漏电流应小于或等于0.5mA/cm²;对于家用太阳能电池,漏电流应小于或等于0.25mA/cm²。
四、测试条件和要求1.测试环境:室内恒温环境,温度保持在(25±2)℃。
2.测试设备:数字万用表或专门的漏电流测试设备。
3.测试前准备:清洁太阳能电池表面,确保无杂质和灰尘。
4.测试时间:每个太阳能电池样品至少测试三次,取平均值作为最终结果。
五、测试设备1.数字万用表:用于测量电流和电压的电子测量仪器。
2.漏电流测试设备:模拟太阳光的照射条件,对太阳能电池进行漏电流测试的专用设备。
六、测试程序1.将太阳能电池放置在测试台上,连接数字万用表或漏电流测试设备。
2.根据产品标准设定相应的电压和电流值。
3.开始测试,记录测得的漏电流值。
4.重复测试三次,取平均值作为最终结果。
5.分析测试结果,判断太阳能电池是否符合漏电流标准。
6.对于不符合标准的太阳能电池,进行相应的改进和优化。
7.记录所有的测试数据和结果。
8.进行质量保证检查,确保测试结果的准确性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PROGRESS IN PHOTOVOLTAICS:RESEARCH AND APPLICATIONSProg.Photovolt:Res.Appl.2004;12:529–538Published online 29July 2004in Wiley InterScience ().DOI:10.1002/pip.544Shunt Types in CrystallineSilicon Solar CellsO.Breitenstein*,y ,J.P.Rakotoniaina,M.H.Al Rifai and M.WernerMax Planck Institute of Microstructure Physics,Weinberg 2,D-06120Halle,GermanyNine different types of shunt have been found in state-of-the-art mono-and multi-crystalline solar cells by lock-in thermography and identified by SEM investigation(including EBIC),TEM and EDX.These shunts differ by the type of their I –V char-acteristics (linear or nonlinear)and by their physical origin.Six shunt types are pro-cess-induced,and three are caused by grown-in defects of the material.The mostimportant process-induced shunts are residues of the emitter at the edge of the cells,cracks,recombination sites at the cell edge,Schottky-type shunts below grid lines,scratches,and aluminum particles at the surface.The material-induced shunts arestrong recombination sites at grown-in defects (e.g.,metal-decorated small-anglegrain boundaries),grown-in macroscopic Si 3N 4inclusions,and inversion layerscaused by microscopic SiC precipitates on grain boundaries crossing the wafer.Copyright #2004John Wiley &Sons,Ltd.key words :shunts;thermography;lock-in;silicon;monocrystalline;multicrystallineINTRODUCTIONA solar cell,as simulated by essentially one-dimensional models,is assumed to show a homogeneouscurrent flow across the whole area,both under illumination and in the dark.In the traditional inter-pretation of I –V characteristics of solar cells all nonlinear currents belonged to the cell,and only ohmic current paths across the pn junction have been attributed to ‘shunts’.With the availibility of precision lock-in thermography techniques these shunts can be made visible,so in the following all bright features visible in thermography have been called ‘shunts’.However,by later investigations it has turned out that there are not only ohmic shunts,but also diode-like ones,e.g.,caused by local recombination sites.So the question,what is a shunt and what belongs to the undisturbed cell,has a philosophical dimension:can,e.g.,a region of lower crystal quality be called a shunt?This question is still under discussion,but throughout this work we will use the term ‘shunt’for any position in a solar cell showing under forward or reverse-bias a dark-current contribution additional to the diffusion current.In this sense edge leakage currents are shunting currents,but a region of lower crystal quality,where only the saturation current density of the diffusion current is increased,is not.Future discussions will show whether this definition will survive or has to be replaced by a more precise one.Received 20August 2003Copyright #2004John Wiley &Sons,Ltd.Revised 3December 2003*Correspondence to:O.Breitenstein,Max Planck Institute of Microstructure Physics,Weinberg 2,D-06120Halle,Germany.y E-mail:breiten@mpi-halle.deContract/grant sponsor:BMWi;contract/grant number:0329846D (ASIS).Contract/grant sponsor:EU;contract/grant number:ENK6-CT-2001-00573.Research530O.BREITENSTEIN ET AL. The technique of infrared(IR)lock-in thermography,which has been commercially available for solar cell investigations since2000,1allows one to perform an efficient and systematic investigation of shunts in solar cells.2–5This technique detects the periodic local surface temperature modulation in the positions of local shunts with a sensitivity below100m K by applying a pulsed bias to the cell in the dark.Lock-in thermography may not only image the position of shunts up to an accuracy of5m m,but it also allows one to easily check whether shunts have a linear or a nonlinear I–V characteristic,as well as to measure local I–V characteristics quantitatively in a non-destructive way.3–6However,knowing the positions of shunts and estimating their influ-ence on the dark I–V characteristic of the cell is only thefirst step in understanding shunt phenomena.The next step is tofind out the physical nature of the shunts in order to avoid them in future.This can be done most successfully by using microscopic and microanalytic techniques such as EBIC(electron-beam-induced current) and EDX(energy-dispersive X-ray analysis)performed in the scanning electron microscope,TEM(transmis-sion electron microscopy),and light microscopy.This contribution summarizes our efforts from the last8years to identify the physical origin of different shunt types in monocrystalline and multicrystalline silicon solar cells made by different producers.7EXPERIMENTALThe lock-in thermography investigations have been carried out partly with a home-made IR lock-in thermogra-phy system based on a128Â128pixel InSb focal plane array thermocamera2,4Amber AE4128,and partly with the commercial TDL384M‘Lock-in’thermography system made by Thermosensorik GmbH Erlangen,1,4,5 having a resolution of384Â288pixel.For most IR investigations the sample was covered with a20-m m-thin black-painted plasticfilm,which is sucked on to the cell by a vacuum and acts as an efficient IR emitter.For identifying the shunts,EBIC and EDX investigations were made on JEOL6300/6400scanning electron micro-scopes at acceleration voltages between5and20kV,which are equipped with an EBIC amplifier based on a DLPCA-200variable gain current amplifier made by FEMTO and an EDX system IDFix made by SAMx.TEM investigations were made with a1MV acceleration voltage on a JEOL1000high-voltage transmission electron microscope.RESULTSBefore lock-in thermography allowed one to perform systematic shunt investigations,it was suspected that most shunts in multicrystalline silicon solar cells originated at crystal defects such as grain boundaries,precipitates, or dislocations.However,our investigations on hundreds of cells have revealed that by far most of the shunts are process-induced,whereas material-induced shunts are rather an exception than the rule.Moreover,in the past it was often assumed that shunts are generally characterized by a linear(ohmic)I–V characteristic.However,we have found that in state-of-the-art silicon solar cells most shunts show a nonlinear(diode-like)I–V character-istic.The linearity of the shunt characteristic can easily be checked by comparing lock-in thermograms taken at 0Á5V forward bias with thermograms taken atÀ0Á5V reverse bias.If a shunt shows the same thermal signal under both conditions,its I–V characteristic is linear.Otherwise,the characteristic is nonlinear.In silicon solar cells we have never found a case where the thermal signal was larger under low reverse bias than under the same forward bias.However,under large reverse bias ofÀ5toÀ20V new types offield-induced shunts may appear, especially in multicrystalline cells,even in positions,where no remarkable shunts have been detected under low-bias conditions.8Therefore,shunt investigations performed under large reverse bias may be misleading for the shunting behavior at the working point of the cell.Thesefield-induced shunts are beyond the scope of this contribution.Generally,it can be stated that linear shunts are more dangerous for degrading the perfor-mance of solar cells than nonlinear ones.In the following we will discuss the appearance of different process-induced and material-induced shunt types in lock-in thermography and present microscopic results supporting their physical interpretation.Copyright#2004John Wiley&Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:529–538Process-induced shuntsLinear edge shuntsThis was the dominant shunt type in earlier solar cell technologies,but with improving edge isolation technol-ogies it appears less frequently now.Figure 1shows a lock-in thermogram of a cell measured at 0Á5V forward bias compared with one measured at À0Á5V reverse bias,both scaled from 0mK T-modulation amplitude (black)to 1mK (white).The comparison of the brightness of the shunts measured under both conditions shows that only some of the edge shunts marked by arrows in Figure 1are ohmic.In order to investigate their nature,EBIC investigations have been performed in the edge region in shunt positions.Figure 2shows such an EBIC image,together with the corresponding secondary electron(SE)Figure 1.Lock-in thermogram of a cell containing edge shunts,measured under:(a)þ0Á5V;(b)À0Á5VbiasFigure 2.(a)SE image;(b)EBIC image at the position of a linear edge shunt.Image taken at an angle of 45 from therear sideSHUNT TYPES IN CRYSTALLINE SILICON SOLAR CELLS 531Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:529–538image.6We are looking at an angle of approximately45 from the rear to the edge of the cell.Here the pn junction was opened by grinding a45 bevel at the rear edge,which actually should show no EBIC signal. In this bevel we see a horizontal stripe where an EBIC signal linearly decreases from a maximum value at the emitter(left)to zero at the back contact.Such a behavior is expected for a pn junction,which is short-circuited at one side.The stripe is a remainder of the emitter,which was not‘opened’by the edge insulation procedure.So linear edge shunts are usually due to an incompletely opened emitter at the edge.Nonlinear edge shuntsThose edge shunts which appear in Figure1predominantly under forward bias(þ0Á5V),show a nonlinear (diode-like)I–V characteristic.These shunts can be interpreted to be recombination sites,which are acting at the edge where the pn junction crosses the surface.If the recombination activity of these surface states remains low,their recombination current has an exponential characteristic with an ideality factor of2,as expected from Shockley diode theory.9However,many of these shunts show an exponential characteristic with an ideality factor of3and above.3These large ideality factors seem to be a general property of nonlinear local shunts,since we have measured them very often.The physical mechanism leading to large ideality factors is not clear yet.Cracks and holesIt was shown that cracks in readily processed solar cells lead to a weak nonlinear edge recombination current, similar to nonlinear edge shunts.2However,if a crack is already present in the wafer before processing,or if it appears during processing beforefinally screen-printing the contact metallization,cracks may lead to severe ohmic shunts.If the crack is already present in the raw wafer,an emitter layer may be established across the crack.This layer shorts the emitter against the base contact,hence a linear(ohmic)shunt appears along the crack,acting like a linear edge shunt.Figure3shows an example of such a crack-induced shunt at the lower edge of a cell.The maximum T-modulation amplitude measured in Figure3,which is a measure of the current flowing in this individual shunt,was in the order of10mK.However,since this contribution deals rather with the qualitative description of different shunt types than with their quantitative description,5the T-modulation amplitudes are not given for all thermograms of this contribution.Note that the weak vertical bright stripe above the crack is the electrical connection from the major grid to the crack shunt,which becomes thermographicallyvisible by Joule heating.If during screen-printing some metal paste penetrates a crack,afterfiring thismayFigure3.Lock-in thermogram of a shunt caused by a crack at the lower edge of a cell532O.BREITENSTEIN ET AL. Copyright#2004John Wiley&Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:529–538produce especially strong linear shunts.The shunts described above may also emerge if there are any holes present in a cell,e.g.,coming from laser cutting.Schottky-type shuntsIn order to have a good blue response,the emitter of silicon solar cells has a thickness in the order of only 0Á3m m.If the emitter metallization is sintered,it consumes some silicon material.If the sintering parameters are not optimized to the emitter doping profile,the emitter metallization may punch through the emitter,finally leading to a Schottky-type direct contact between the metal and the p -type base material.As a rule,this contact has a more or less rectifying characteristic,but it is far away from an ideal Schottky diode.Just as for Schottky diodes containing some interface layer,its ideality factor is not unity,but may be even larger than two.Schottky-type shunts may also appear if the emitter metallization is printed at a position having no emitter layer at all.Such ‘holes’in the emitter may be due to mechanical violation of texturization pyramide tips after emitter doping or due to dust particles or insufficient contact of the phosphorus glass to the silicon in some positions.Figure 4shows two EBIC and one SEM image of a region below a grid finger (region between the two lines:Kontakt )in the position of a nonlinear shunt after dissolving the metal with HF.6The dark spot in EBIC is a mechanically violated tip of a large texturization pyramid,where the emitter is missing.In rare cases ohmic shunts were also found below grid lines,the nature of which is still unclear.ScratchesA scratch at the surface of a solar cell across the emitter layer brings the pn junction to a surface with a high density of recombination centers.Thus,scratches act like nonlinear edge shunts,leading typically to an expo-nential characteristic with a large ideality factor,like nonlinear edge shunts.Figure 5shows a lock-in thermo-gram of a cell containing two scratches,which were only visible under forward bias.If scratches are made before emitter diffusion,or if they do not penetrate the pn junction,they generate local recombination centers,also acting as nonlinear shunts,similar to strongly recombination-active grown-in crystal defects (see below).Aluminum particlesWhenever aluminum reaches the front surface of a cell before firing,which may happen,e.g.,by cross-contam-ination during stacking of the cells,it will create shunts.During firing Al will alloy in,leading to a p þ-doped Figure 4.EBIC and SE images of a shunt below a grid lineSHUNT TYPES IN CRYSTALLINE SILICON SOLAR CELLS 533Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:529–538region around the particle,which may compensate the emitter.This p þ-region may be in ohmic contact with the base,but it also makes a tunnel contact to the emitter,thus producing a shunt.Figure 6shows an EBIC image of the position of such a shunt,after the Al has been dissolved by HF (H.Gottschalk,Cologne,personal commu-nication of work from Project 0329536A-I,DIXSI).The 10m m rhombohedral Al particle (identified by EDX)was sitting on a twin grain boundary.Its former position appears dark in EBIC,hence there is no pn junction anymore,as expected.Interestingly,after applying a reverse bias of À10V a visible luminescence appeared at the edge of this region (see light microscope image,insert in Figure 6).This is obviously an avalanche break-down,which Gottschalk has also found occasionally in other shuntlocations.Figure 5.Lock-in thermogram of a cell with twoscratchesFigure 6.EBIC image of the position of an Al-induced shunt after etching away the Al particle.Insert:light emission atÀ10V reverse bias,light microscope image534O.BREITENSTEIN ET AL.Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:529–538Material-induced shuntsStrongly recombinative crystal defectsIt had been mentioned that ordinary grain boundaries,which are easily visible in LBIC or EBIC due to their recombination activity,do not usually lead to measurable shunts.However,if a crystal defect is strongly recom-binative,its recombination current may become strong enough for it to act as a shunt,similar to nonlinear edge shunts and scratches.Figure 7(a)shows a lock-in thermogram of one of these shunts,which are visible only under forward bias.10The EBIC image in this region (Figure 7b)showed a network of dark lines,which turned out in TEM (Figure 7c)to be small-angle grain boundaries.It should be mentioned that the TEM investigation did not reveal any precipitates at these dislocations.Nevertheless,they should be decorated by impurities,other-wise they would not be so recombinative.Similar shunts have also been found within regions of poor crystal quality (dislocation tangles).6Note,however,that the general increase of the dark forward current in regions of lower crystal quality,leading to a ‘cloudy’appearance of the thermograms showing a correlation to LBIC,cannot be interpreted as shunts.Instead,these are inhomogeneities of the diffusion current owing to the lower diffusion length in these regions,which can be proved by thermographic ideality factor mapping.3Macroscopic Si 3N 4inclusionsOccasionally,cast multicrystalline silicon material contains macroscopic inclusions,which can be identified by EDX as Si 3N 4.If a solar cell is processed from such a wafer,the inclusion is easily visible as a grey region,seemingly without ARC.In reality the Si 3N 4ARC is just invisible there,since it has the same optical properties as the inclusion.TEM investigations and EDX have revealed that the inclusion consists of amorphous Si 3N 4containing 100–200nm crystalline Si 3N 4particles.Figure 8shows a lock-in thermogram of a cell containing a Si 3N 4-induced shunt (arrow).Also this shunt was visible only under forward bias,hence it has a nonlinear I –V characteristic.We assume that the recombination activity of interface states between Si and this Si 3N 4material is responsible for these shunts.Most probably the Si 3N 4particles stem from the walls of the crucible used for crystallizing the Si material.Inversion layers at precipitatesA significant amount of multicrystalline silicon cells showing a very low parallel resistance leads to lock-in thermograms,showing a network of strong linear (ohmic)shunts like those shown in Figure 9.The positions of these shunts often correlate with certain large-angle grain boundaries in the material.These shunts are also visible in EBIC as dark clouds around the grain boundaries (Figure 10a).In order to investigate the nature of these shunts,the rear contact and the highly p -doped back-surface field (BSF)layer have been removed by sub-sequent etching with HCl and HF/HNO 3.Then EBIC investigations have been performed in the shunt regions,both at the front and at the rear side.In the front side EBIC image the dark clouds have now disappeared.Figure 10(b)shows an EBIC image taken from the rear side.It shows a number of bright lines with acollection Figure 7.(a)Lock-in thermogram;(b)EBIC image;(c)and TEM image of a shunt caused by strongly recombinative crystal defectsSHUNT TYPES IN CRYSTALLINE SILICON SOLAR CELLS 535Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:529–538efficiency close to 1in positions of large-angle grain boundaries.These lines can be explained only as carrier-collecting inversion channels crossing the wafer,which are connected to the emitter.Inversion means a local transformation of the silicon material from p -to n -type,caused by the presence of fixed positive charges in the corresponding grain boundaries.In the complete solar cell these channels are electrically connected with the emitter and may also be connected with the rear contact,thereby shorting the cell in this position.For this con-tact the BSF plays a major role,since the inversion channels become visible in rear-side EBIC only after dis-solving the BSF layer.After this investigation a plane view TEM specimen was prepared in the position of one channel (arrow in Figure 10).Figure 11shows a TEM overview image,composed from several single images,of this grain boundary.We see a number of large crystalline precipitates up to 5m m in size with a mean distance up to 15m m,embedded in this grain boundary.According to selected area diffraction and EDXinvestigations Figure 8.Lock-in thermogram of a cell containing a Si 3N 4inclusion(arrow)Figure 9.Lock-in thermogram of a strongly shunted cell at:(a)0Á5V forward;(b)À0Á5V reverse bias536O.BREITENSTEIN ET AL.Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:529–538these precipitates consist of cubic SiC.No such precipitates ever have been found in grain boundaries of solar cells not showing this type of shunts.So the precipitates should be physically connected with the formation of the inversion layers along these grain boundaries.However,since according to Figure 11these particles do not overlap,the physical origin of the vertical current flow across the cell is not clear yet.Similar precipitates have already been found in a similar shunt in a cell made by another producer,10hence this type of shunt is obviously not very rare.It can be classified as the most dangerous material-induced shunt type in multicrystalline silicon solar cells.CONCLUSIONSAfter lock-in thermography enabled the systematic investigation of shunts in silicon solar cells also under for-ward bias conditions,the physical understanding of shunts has greatly improved.Since the shape of the I –V characteristic is an important characteristic of the nature of a shunt,a key experiment for identifying shunts is the comparison of lock-in thermograms taken under the same forward and reverse bias.This information,together with that about the position of a shunt,usually allows one to classify most shunts into one of the cate-gories listed in this contribution.A linear shunt at the edge is usually an incompletely opened emitter,and a linear shunt within the area is a good candidate for an inversion channel,if it is not lying on a crack or a hole.Shunts with a nonlinear characteristic are usually recombination-induced shunts caused by surface or interface states or by strongly recombinating crystal defects.If nonlinear shunts are below grid lines,they may beof Figure 10.(a)EBIC image of a shunt region;(b)the same region after removing the rear contact and the BSF layer,imagedfrom therearFigure 11.TEM image of SiC precipitates at a large-angle grain boundary inducing an inversion layerSHUNT TYPES IN CRYSTALLINE SILICON SOLAR CELLS 537Copyright #2004John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:529–538538O.BREITENSTEIN ET AL.Schottky type.In both cases the ideality factor of their characteristic is often significantly larger than2,which is not completely understood yet.However,it seems to be clear that the often observed‘second diode’current with a large ideality factor is usually due to the existence of these nonlinear shunts.3,11AcknowledgementsThe authors are grateful to ngenkamp(Rendsburg),I.Konovalov(Leipzig),S.Neve(Hannover),and H.Gottschalk(Cologne)for experimental cooperation and to S.Lust(Q CELLS AG,Thalheim),Q.N.Leˆ(Photowatt SA,Bougoin-Jallieu),and T.Bruton(BP Solar Ltd,Sunbury)for delivering cells for these investi-gations.This work was supported by BMWi Project0329846D(ASIS)and by EU Project ENK6-CT-2001-00573(PORTRAIT).REFERENCES1.www.thermosensorik.de2.Breitenstein O,Langenkamp M,Lang O,Schirrmacher A.Shunts due to laser scribing of solar cells evaluated by highlysensitive lock-in thermography.Solar Energy Materials and Solar Cells2001;65:55–62.3.Breitenstein O,Langenkamp M,Rakotoniaina JP,Zettner J.The imaging of shunts in solar cells by infrared lock-inthermography.Proceedings of the17th European Photovoltaic Solar Energy Conference,Munich,2002;1499–1502.4.Breitenstein O,Langenkamp M.Lock-in Thermography—Basics and Application to Functional Diagnostics ofElectronic Components,Springer Series Advanced Microelectronics,V olume10.Springer:Heidelberg,Berlin, 2003,ISBN3-540-43439-9.5.Breitenstein O,Rakotoniaina JP,Al Rifai MH.Quantitative evaluation of shunts in solar cells by lock-in thermography.Progress in Photovoltaics:Research and Applications2003;11:512–526.6.Konovalov I.Zusammenhang zwischen elektrischen Verlustmechanismen und der Struktur von Solarzellen.PhD.Thesis,Martin Luther University,Halle,2000.7.Breitenstein O,Rakotoniaina JP,Neve S,Al Rifai MH,Werner M.Shunt types in multicrystalline solar cells.Proceedings of the3rd World Conference on Photovoltaic Energy Conversion,Osaka,2003;987–990.8.Breitenstein O,Rakotoniaina JP,Schmidt parison of shunt imaging by liquid crystal sheets and lock-inthermography.Proceedings of the12th Workshop on Crystalline Solar Cell Materials and Processes,Breckenridge, Colorado,2002;244–247.9.Ku¨hn R,Fath P,Bucher E.Effects of pn-junctions bordering on surfaces investigated by means of2D-modeling.Proceedings of the28th IEEE PVSC,Anchorage,2000;116–119.10.Rakotoniaina JP,Neve S,Werner M,Breitenstein O.Material-induced shunts in multicrystalline silicon solar cells.Proceedings of the Conference on PV in Europe,Rome,2002;24–27.11.Breitenstein O,Rakotoniaina JP,Neve S,Green MA,Zhao J,Wang A,Hahn G.Lock-in thermography investigation ofshunts in screen-printed and PERL solar cells.Proceedings of the29th IEEE PVSC,New Orleans,2002;430–433. Copyright#2004John Wiley&Sons,Ltd.Prog.Photovolt:Res.Appl.2004;12:529–538。