12.1全等三角形
12.1 全等三角形 解题技巧

12.1全等三角形技巧1全等三角形的性质运用1.利用全等三角形的性质求角度如图,△ABC≌△DEF,若AB=DE,∠B=50°,∠C=70°,∠E=50°,求∠D的度数.解析:由三角形的内角和定理易知∠A的度数,∠D与∠A是对应角.解:∵∠A+∠B+∠C=180°,∠B=50°,∠C=70°,∴∠A=180°-∠B-∠C=180°-50°-70°=60°.∵△ABC≌△DEF,∴∠D=∠A=60°.2.利用全等三角形的性质求线段如图已知CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,AB=10,AD=4,求线段CE的长.解析:由△ABE≌△ACD可求出AB,AD的对应边分别为AC,AE,然后由CE=AC-AE的关系求出CE.解:∵△ABE≌△ACD,AB=10,AD=4,∴AC=AB=10,AE=AD=4.∴CE=AC-AE=6.3.利用全等三角形的性质判断两线位置关系如图所示,△ADF≌CBE,且点E,B,D,F在同一条直线上.判断AD与BC的位置关系,并加以说明.解析:本题主要考查全等三角形的性质与平行线的综合应用.判断AD与BC的位置关系,可以初步判别AD和BC的位置关系是平行,欲说明AD//BC,需说明∠3=∠4,要说明∠3=∠4,可以利用三角形外角性质证明.解:AD与BC的位置关系是AD//BC.理由如下:∵△ADF≌△CBE,∴∠1=∠2,∠F=∠E.又∵点E,B,D,F在同一条直线上,∴∠3=∠1+∠F,∠4=∠2+∠E(三角形的外角的性质).∴∠3=∠4(等量代换).∴AD//BC(内错角相等,两直线平行).技巧2利用全等的基本图形解决几何问题1.利用基本图形求角度如图,△ABE和△ADC分别是△ABC沿着AB,AC边翻折形成的,若∠1:∠2:∠3=28:5:3,则∠α=.解析:翻折后,△ABE≌△ABC≌△ADC,由全等三角形的性质易得∠ABE=∠2,∠DCA=∠3.因为∠1:∠2:∠3=28:5:3,设∠1=28x,∠2=5x,∠3=3x,由三角形的内角和定理知:∠1+∠2+∠3=28x+5x+3x=36x=180°,解得x=5°,所以∠2=25°,∠3=15°,所以外角∠α=∠EBC+∠DCB=2(∠2+∠3)=80°.答案:80°.2.利用基本图形求面积如图所示,在Rt△ABC中,∠ACB=90°,且AC=BC=4 cm,已知△BCD≌△ACE,求四边形AECD的面积.解析:由于线段AC把四边形AECD分成两部分,通过观察我们可以把△ACE旋转到△BCD的位置,使之与△ACD恰好构成△ABC,从而可求面积.解:∵△BCD≌△ACE,∴S△BCD=S△ACE.又∵S四边形AECD=S△ACE+S△ACD,∴S四边形AECD=S△BCD+S△ACD=S△ABC=12×4×4=8(cm2).3.利用基本图形解决折叠问题如图所示,长方形ABCD沿AE折叠,使点D落在BC边上的点F处,若BC=8 cm,∠1=40°,求∠2的度数与AF的长度.解析:因为折叠后△AFE与△ADE完全重合,所以△AFE≌△ADE,可以得到AF=AD,∠F AE=∠DAE,又因为长方形的对边相等,每个角都是直角,所以可求出角度与线段长度.解:由题意可知:△AFE≌△ADE.∴AF=AD,∠3=∠2.在长方形ABCD中,AD=BC=8 cm,∠1+∠2+∠3=90°.∴AF=8 cm,∠2=12(90°-∠1)=25°.。
人教版八年级上册数学教学设计《12.1 全等三角形》

人教版八年级上册数学教学设计《12.1 全等三角形》一. 教材分析《12.1 全等三角形》是人教版八年级上册数学的一个重要章节,主要内容包括全等三角形的概念、全等三角形的性质、全等三角形的判定方法等。
本章通过全等三角形的学习,培养学生对几何图形的认识和理解,提高学生的空间想象力,为后续几何学习打下基础。
二. 学情分析八年级的学生已经掌握了三角形的基本知识,对三角形的性质和判定方法有一定的了解。
但全等三角形作为三角形的一个重要分支,其概念和性质较为抽象,学生理解和掌握全等三角形的难度较大。
因此,在教学过程中,要注重引导学生从实际问题中抽象出全等三角形的概念,并通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
三. 教学目标1.了解全等三角形的概念,掌握全等三角形的性质和判定方法。
2.培养学生对几何图形的认识和理解,提高学生的空间想象力。
3.培养学生运用全等三角形的知识解决实际问题的能力。
四. 教学重难点1.全等三角形的概念及其性质。
2.全等三角形的判定方法。
3.全等三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出全等三角形的概念。
2.通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
3.运用多媒体辅助教学,提高学生的空间想象力。
4.采用小组合作学习的方式,培养学生的团队合作精神。
六. 教学准备1.准备相关教学课件和教学素材。
2.设计具有代表性的例题和练习题。
3.准备全等三角形的模型或图片,用于直观展示。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如拼图、制作模型等,引导学生思考:如何判断两个三角形是否完全相同?从而引出全等三角形的概念。
2.呈现(10分钟)介绍全等三角形的定义、性质和判定方法。
通过PPT展示全等三角形的图形,让学生直观地感受全等三角形的特征。
同时,给出全等三角形的判定方法,如SSS、SAS、ASA、AAS等。
人教版八年级数学上册第12章《12.1 全等三角形》

边
AC=DE
边
BC=EF
角 ∠A=∠D
角 ∠B=∠F
角 ∠ACB=∠DEF
第十二章 全等三角形
1.如果∆ABC≌∆ADC,AB=AD,∠B=70°,BC=3cm,那么 ∠D=_7_0_°_,DC=__3__cm 2.如果 ∆ABC≌∆DEF,且∆ABC的周长为100cm,A、B分 别与D 、E对应, AB=30cm,DF=25cm,则BC的长为( A ) A.45cm B.55cm C.30cm D. 25cm
第十二章 全等三角形
3.如图,矩形ABCD沿AM折叠,使D点落在BC上的N点处,如
果AD=7cm,DM=5cm,∠DAM=39°,则AN=__7_cm,NM=__5_cm,
∠NAB=_1_2_°_.
A
7cm
D
B
N
5 cm M
C
第十二章 全等三角形
4.如图,已知△ AOC ≌ △BOD,求证:AC∥BD.
1、全等三角形对应角所对的边是对应边; 全等三角形对应边所对的角是对应角.
2、有公共边的,公共边是对应边; 有公共角的,公共角是对应角.
3、在全等三角形中相等的边是对应边; 相等的角是对应角.
你能否直接从记作∆ABC≌∆DEF中判断出所有的对应顶 点、对应边和对应角?
第十二章 全等三角形 ≌
边
AB=Байду номын сангаасF
【解析】∵ △AOC ≌△BOD, ∴∠A= ∠B.(全等三角形的对应角相等) ∴ AC∥BD.(内错角相等,两直线平行)
第十二章 全等三角形
5.仔细观察,图中的全等三角共有几对?各是哪些?
【解析】共有四对:分别是 △ACM ≌△BDM; △EDN ≌△FCN; △AEM ≌△BFM; △DFM ≌△CEM.
12.1全等三角形-规范版

B
2、把两个三角形重合到一起. 对应边是 AB 和∠ DE , 对应角是 ∠ A和 D ,
C
E
F
重合的顶点叫做对应顶点, AC , BC EF; ∠ B和DF ∠E, ∠ C 和∠ F 对应顶点是点 A和点D, 重合的边叫做对应边,
点 B和点E,点C和点F; 重合的角叫做对应角。
二、全等三角形的表示
12.1 全等三角形
本节必会知识:
• 理解全等三角形及有关概念, 找出全等三角形的对应顶点、 对应边和对应角 • 掌握全等三角形的性质
看一看 下列各组图形的形状与大小有
什么特点?
(1)
(2)
(3)
(4)
(5)
思考:他们能完全重合吗?
下列两三角形是怎样由一个三角 形得到另一个三角形?它们有什 么特点?
A
∵△ABC≌△ADE
∴AB=AD,AC=AE, BC=DE
B
E
C
D
∴∠A=∠A,∠B=∠D, ∠ACB= ∠AED. 规律三:有公共角的,公共角是对应角
先写出全等式,再指出它们的对应边和对应角
A
E
B
∵△ABC≌△FDE ∴AB=FD,AC=FE, BC=DE ∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
内 容 小 结
1. 能够完全重合的两个图形叫做 全等形 。 2.能够完全重合的两个三角形叫做全等三角形。 对应顶点 其中:互相重合的顶点叫做_________ 对应边 互相重合的边叫做____ 互相重合的角叫做___ 对应角 4.全等三角形的 对应边 和 对应角相等
3.“全等”用符号“ ”来表示,读作“ 全等于” ≌
D C
F
规律四:一对最长的边是对应边 一对最短的边是对应边 规律五:一对最大的角是对应角 一对最小的角是对应角
第十二章全等三角形12.1全等三角形教案

在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:
12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)

新课讲授
探究:请同学们把课前准备好的三角尺按在纸片上, 划下图形,照图形裁下来的纸片和三角尺的形状、 大小完全一样吗?把三角尺和裁得的纸片放在一起 能够完全重合吗?
归纳总结
全等形的定义: 能够完全重合的两个图形称为全等形. 全等形的性质: 形状相同,大小相等.
练一练 下面哪些图形是全等形?
看大小、形状 是否完全相同
课堂小结
定义
能够完全重合的两个三角形叫做全等三角形
全
对应边相等
等 三
基本性质
对应角相等
角
长对长,短对短,中对中
形
对应边 公共边一般是对应边
对应元素 确定方法
对应角
大角对大角,小角对小角 公共角一般是对应角 对顶角一般是对应角
作业布置
1.完成课本P33页1-4题; 2.复习整理本节课知识框架,预习全等三角 形的判定并尝试整理思维导图; 3.探究性作业:利用全等形设计美丽的图案, 比比看谁的设计最好。
“全等”用符号“≌”表示,读作“全等于”.
A
D
B
C
E
F
△ABC≌△DEF
注意:记两个三角形全等时,通常把表示对应顶点
的字母写在对应的位置上.
全等三角形的性质
A
D
B
C
E
F
∵△ABC≌△DEF,
∴ AB = DE,AC = DF,BC = EF (全等三角形的对应边 相等),
∠A =∠D,∠B =∠E,∠C =∠F(全等三角形对应角相等).
牛刀小试
如图,△ABC 与△ADC 全等,请用数学符号表示出
这两个三角形全等,并写出相等的边和角. D 解:△ABC≌△ADC.
A
2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案

第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。
12.1全等三角形

F
C B
G
D
能够完全重合的两个图
形叫做全等形
观察下面两组图形,它们是不是 全等图形?为什么?
如果两个图形全等,它们的形状和 大小一定都相等 !
(1)
(2)
你能举出生活中的全等图形的例子吗?
片出 同 。的 一 同张 规底 格片 照洗
两张纸重合后的剪纸;
A
D
F B C E
全 等 形: 能够完全重合的两个图形; 定义 全等三角形: 能够完全重合的两个三角形。
拓展与应用
A D
2、全等三角形性质的运用
(2)将△ ABC 沿直线BC平移, 得到△ DEF,说出图中线段、角的 B 关系并说明理由。
E A
C
F
(3)△ABD≌△ACE,若∠B =25°,BD=6㎝,AD=4㎝, 你能得出△ACE中哪些角的大小, 哪些边的长度吗?为什么 ? B
E O
D
C
小结
交流:学会了什么?
B'
A'
C'
拓展与应用
1、全等对应元素的找法 A
O C B B D
A
D C
A
A
D
D
B
C
B
E
C
寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角;
(3)有对顶角的,对顶角是对应角;
(4)两个全等三角形最大的边是对应边, 最小的边也是对应边; (5)两个全等三角形最大的角是对应角, 最小的角也是对应角;
能够完全重合的两个三角形,叫做____________. 全等三角形
A D
例 如
B
C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这些图形中有些是完全一样的,如果把它们叠在一起, 它们就能重合。你能分别从图中找出这样的图形吗?
全等图形的概念:
两个能够重合的图形称为全等图形。
议一议:
观察下面两组图形,它们是不是全等图形?为什么?
形状相同 大小不同
面积相 同,形 状不同
全等图形的形状和大小都相同
观察下列各组图形是不是全等图形?为什么
图1
_∠_D__O_A__和=__∠__C_O_B_
⑷.如果∠A=35°,∠D=75°,那么∠COB=____70° A
C
2、如图2,如果△ADE ≌ △CBF,那么AE∥CF吗?
_是__ (口答“是”或“不是”)
DB
EF
图2
• 作业: P33第3、4题
? 1.
不全等
2.
全等
3.
全等
4.
不全等
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(9) (8)
(10) (11) (12)
(13)
(15) (14)
答:(2) 和(4)、(3)和(12)、(5)和(14)
(6)和(15)、(8)和(11)
练一练:在这个平行四边形的四条边上找 两点(不能是各边的中点,也不能是顶点), 使得连结这两点的线段把这个平行四边形分成 两个全等的图形。
全等三角形的对应边相等,对应角相等。
A
A1
B
C
B1
C1
对应顶点:点A和点A1,点B和点B1,点C和点C1,
对应边:AB和= A1B1,AC和= A1C1,BC和= B1C1 对应角:∠A和=∠A1, ∠B和=∠B1, ∠C和= ∠C1
1、⑴. 已知:如图1,△OAD与△OBC全等,请用式子表 D
通过这节课的学习,你对 全等图形有哪些认识?
1 两个能够重合的图形称为全等图形。 2 全等图形的形状和大小都相同.
A1
A1
B1
C1
B1
C1
能够完全重合的两个三角形称为全等三角形。 记作:△ABC≌△A1B1C1
A
A1
B
C
B1
C1
对应顶点:点A和点A1,点B和点B1,点C和点C1, 对应边:AB和A1B1,AC和A1C1,BC和 B1C1 对应角:∠A和∠A1, ∠B和∠B1, ∠C和∠C1
C
示出这种关系:_△__O_A__D_≌__△__O_B_C___
O
⑵.找出对应边,它们有什么关系?(口答)
对应边:_O__A_和_=_O_B_ _O__D_和_=_O__C_ _A_D_和_=__B_C_
⑶.找出对应角,它们有什么关系? (口答)
A
B
对应角:∠__A__和=__∠__B ∠__D__和=__∠__C_