初三数学(第18讲)样本与总体汇总
中考数学专题复习课件(第18讲_线段、角、相交线与平行线)

举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
考点二 角 1.有公共端点的两条射线组成的图形叫做角;如果一个角的两边成一条直线,那么这个 角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角,大于 0° 小于直角的角叫 做锐角. 2.1 周角=360 度,1 平角=180 度,1 直角=90 度,1° =60 分,1 分=60 秒. 3.余角、补角及其性质 互为补角:如果两个角的和是一个平角,那么这两个角叫做互为补角. 互为余角:如果两个角的和是一个直角,那么这两个角叫做互为余角. 性质:同角(或等角)的余角相等;同角(或等角)的补角相等.
例 1(1)题
例 1(2)题
举 一 反 三
(2)(2010· 德州)如图,直线 AB∥CD,∠A=70° ,∠C=40° ,则∠E 等于( A.30° B.40° C.60° D.70°
)
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
(3)(2010· 宁波)如图, 直线 AB 与直线 CD 相交于点 O, E 是∠ AOD 内一点, 已知 OE⊥ AB, ∠BOD=45° ,则∠COE 的度数是( ) A.125° B.135° C.145° D.155°
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
(沪科版)中考数学总复习课件【第18讲】直角三角形

7.[ 2013·湘西州] 如图 18-6,在 Rt△ABC 中,∠C =90°, AD 平分∠CAB,DE⊥AB 于点 E ,若 AC=6, BC=8,CD =3. (1) 求 DE 的长; (2) 求△ADB 的面积.
图 18 -6
第18讲┃直角三角形
解: (1)∵AD 平分∠CAB,DE ⊥AB,∠C= 90°, ∴CD =DE. ∵CD =3,∴DE= 3. (2) 在 Rt△ABC 中, 由勾股定理得: AB= AC + BC = 6 +8 =10, 1 1 ∴△ADB 的面积为 S △ADB= AB·DE= ×10×3= 15. 2 2
A.4 ,5,6 B.1.5,2,2.5 C.2 ,3,4 D.1, 2,3
5 .若一直角三角形的两边长分别为 5 和 12 ,则第三边的长为 ( D )
A.13 B. 119 C. 13 D.13 或 119
第18讲┃直角三角形
[解析 ] 有两种情况: 当两已知边都为直角边时,则第三边长为 5 +12 =13; 当已知边为直角边和斜边时,则第三边长为 12 - 5 = 119. 故答案为 D.
第18讲┃直角三角形
[解析] 设BN=x,则DN=AN=9-x.
∵BC=6,D是BC的中点,∴BD=3.
∵∠B=90°,∴32+x2=(9-x)2, 解得x=4.
第5讲┃分式
【知识归纳】
运用勾股定理解决的问题主要有:(1)已知直角三角形的任意
两边长求第三边长; (2) 已知一边长及其他两边之间的关系 , 根据 勾股定理建立只含有一个未知数的方程求解; (3) 证明线段之间的
第18讲┃直角三角形
直角 的三角形是直角三角形. 1.有一个角是________
九年级样本与总体知识点

九年级样本与总体知识点作为九年级学生,我们已经度过了八年级的学习生涯,即将面临着中考的挑战。
而在备战中考的过程中,样本与总体知识点的掌握显得尤为重要。
那么,什么是样本与总体知识点呢?样本与总体知识点的概念样本是对总体的一个部分的观察或测量,是对总体的一种抽象和概括。
在学习中,我们常常需要通过样本来推测和研究总体的特征和规律。
而总体则指的是整个研究对象或调查的对象的集合,也是我们想要了解的所有数据的来源。
在学习中的应用样本与总体知识点在数学、语文、英语等学科中都有广泛的应用。
以数学为例,我们通过对一部分数的观察和测量,得到他们的特征,从而推测整个集合的特征。
在解决实际问题中,我们往往无法获得全部数据,因此通过样本来了解总体就显得尤为重要。
数学中的样本与总体知识点在数学中,样本与总体知识点的应用十分广泛。
比如,在统计学中,我们需要通过对一部分数据的观察和分析,来推测整个总体的性质和规律。
通过对样本进行抽样调查,我们可以得到总体的某种特征的估计值,从而对总体有一个初步的认识。
在几何学中,样本与总体知识点同样起着重要的作用。
我们通过观察和研究几何图形的一部分来推测整个几何图形的性质和规律。
例如,我们通过对一条直线上的几个点的观察,可以推测整条直线的性质,如斜率、截距等。
语文与英语中的样本与总体知识点在语文学科中,样本与总体知识点的应用体现在阅读理解中。
我们通过阅读一篇文章中的几段文字,就可以推测整篇文章的主题和观点。
通过精选样本的分析,我们能够抓住作者的意图和文章的核心。
而在英语学科中,样本与总体知识点同样是非常重要的。
在学习词汇和句型的过程中,我们需要通过对几个例句的研究,掌握总体的用法和规律。
通过样本的学习,我们可以深入理解英语的语法和表达方式。
结语样本与总体知识点是我们学习中必不可少的一部分,它们可以帮助我们更好地了解整体的情况和规律。
在备战中考的过程中,我们要注重样本的掌握,并通过样本来推断总体的特征和性质。
华东师大初中数学九年级下册样本与总体 知识讲解

样本与总体——知识讲解【学习目标】1.了解全面调查和抽样调查的优缺点,能选择合适的调查方式,解决有关问题;2.知道总体、样本、样本容量等相关概念,能够利用样本估计总体的某些特征;3.了解简单随机抽样的概念,会用简单随机抽样的方法抽取样本;4.了解频数分布表和频数分布直方图,能从频数分布直方图中获取有用的信息;5.会用扇形统计图、条形统计图和折线统计图表示数据,并对数据进行分析,以便做出决策.【要点梳理】要点一、普查和抽样调查1.普查和抽样调查(1)普查:为一特定目的而对所有考察对象作的全面调查叫做普查.要点诠释:①普查又叫“全面调查”,它是指在统计的过程中,为了某种特定的目的而对所有考察的对象一一作出的调查,在记录数据时,通常采用划记法.②一般来说,普查能够得到全体被调查对象的全面、准确的信息,但有时总体中的个体的数目非常大,普查的工作量太大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行普查.(2)抽样调查:为一特定目的而对部分考察对象作的调查叫做抽样调查.抽样调查是从总体中抽取部分个体进行调查,然后再根据调查的数据推断全体对象的情况.抽样调查的优点是调查范围小,节省时间、人力、物力和财力,它的缺点是调查的结果往往不如普查得到的结果精确,它得到的只是估计值,而且这个估计值是否接近实际情况还取决于样本的大小以及它的代表性.要点诠释:①在抽取的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方式是一种简单随机抽样.②样本的选择要具有代表性和广泛性.(3)调查方法的选择:①普查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.由于人力、物力、时间等因素的限制,我们常常无法调查总体的每一个对象,于是转而采取调查样本的方法来了解总体.2.调查的相关概念总体:调查时,所要考察对象的全体叫做总体.个体:组成总体的每一个考察对象叫做个体.样本:从总体中取出的一部分个体叫做总体的一个样本.样本容量:一个样本包含的个体的数量叫做这个样本的容量(不带单位).要点诠释:①“调查对象的全体”一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体.②样本是总体的一部分,一个总体中可以有许多样本,样本在一定程度上能够反映总体,为了使样本能较好地反映总体情况,在选取样本时要注意使其具有一定的代表性和广泛性.③样本容量是一个数字,没有单位.一般地,样本容量越大,通过样本对总体的估计越准确,在实际研究中,要根据具体情况确定样本容量的大小.例如:“从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析”,样本是“2000名考生的数学成绩”,而样本容量是“2000”,不能将其误解为“2000名考生”或“2000名”.要点二、简单随机抽样一般地,从个体总数为N的总体中抽取容量为n的样本(n<N),且每一次抽取样本时总体中的各个个体被抽到的可能性相同,这种抽样方法叫做简单随机抽样.抽签法简便易行,当总体的个数不多时,宜采用这种方法进行简单随机抽样.当总体容量很大时,我们可以采用科学计算器(或计算机)产生随机数的方法进行简单随机抽样.通常,科学计算器都有随机函数RAND功能,它可以产生0—1之间的随机数;有些科学计算器还提供了随机函数RANDI功能,它可以产生任意两个整数之间的随机整数. 要点诠释:简单随机抽样必须具备下列特点:①简单随机抽样要求被抽取的样本的总体个数N是有限的;②简单随机样本数n小于等于样本总体的个数N;③简单随机样本是从总体中逐个抽取的;④简单随机抽样是一种不放回的抽样;⑤简单随机抽样的每个个体被抽中的可能性均为nN.要点三、组距、频数与频数分布表的概念1.组距:每个小组的两个端点之间的距离(组内数据的取值范围).2.频数:落在各小组内数据的个数.3.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.要点诠释:①求频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表;②频数之和等于样本容量.③频数分布表能清楚、确切地反映一组数据的大小分布情况,将一批数据分组,一般数据越多,分的组也越多,当数据在100个以内时,按照数据的多少,常分成5~12组,在分组时,要灵活确定组距,使所分组数合适,一般组数为最大值-最小值组距的整数部分+1.要点四、频数分布直方图1.频数分布直方图:是以小长方形的面积来反映数据落在各个小组内的频数的大小,直方图由横轴、纵轴、条形图三部分组成.(1)横轴:直方图的横轴表示分组的情况(数据分组);(2)纵轴:直方图的纵轴表示频数;(3)条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形、底边长是这个组的组距,高为频数.2.作频数直方图的步骤:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.要点诠释:①频数分布直方图简称直方图,它是条形统计图的一种.②频数分布直方图用小长方形的面积来表示各组的频数分布,对于等距分组的数据,可以用小长方形的高直接表示频数的分布.要点五、数据的描述描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.要点诠释:①条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.②扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.③折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.【典型例题】类型一、普查和抽样调查1.某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述3种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有( ).A.0种 B.1种 C.2种 D.3种【思路点拨】总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【答案】C.【解析】解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.【总结升华】总体、样本的考察对象是相同的,所不同的是范围的大小,在本题中,总体、样本都是指考生的成绩,而不是考生.举一反三:【变式】为了了解某市2万名学生参加中考的情况,教育部门从中抽取了600名考生的成绩进行分析,这个问题中().A.2万考生是总体;B.每名考生是个体;C.个体是每名考生的成绩;D.600名考生是总体的一个样本.【答案】C.2.(2016•山西)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高【思路点拨】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【答案】C.【解析】解:调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查,故选:C.【总结升华】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列调查适合作抽样调查的是( ).A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查【思路点拨】抽样调查不可能进行全面调查的现象.【答案】A.【解析】解:要了解义乌电视台“同年哥讲新闻”栏目的收视率,显然应采用抽样调查的方式.而对于B、D选项,因为漏掉每一个个体携带H1N1病毒者或者“神七”载人飞船有一个小零件不合格,都会出现意想不到的后果,因此需要采用全面调查的方式.了解某班每个学生家庭电脑的数量,范围小,工作量小,一般也采用全面调查的方式.故选A. 【总结升华】①在具体的问题情境中,要根据需要选择用全面调查还是抽样调查的方式进行调查;抽样调查得到的信息的准确度受调查对象(即样本)的数量和特点影响,故抽样时必须注意调查对象是否具有代表性和广泛性.举一反三:【变式】下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.【答案】(1)采用的是全面调查方式收集数据的;(2)、(3)是采用抽样调查方式收集数据的.类型二、用样本估计总体4. 一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:现将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.55【答案】A;【解析】∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选:A.【总结升华】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.举一反三:【变式】为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50% B.55% C.60% D.65%【答案】C.5.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验【思路点拨】严格按照简单随机抽样的定义和特点去判断.【答案】D.【解析】解:A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;C不是简单随机抽样,因为总体的个体有明显的层次;D是简单随机抽样.故选D.【总结升华】本题考查简单随机抽样,注意简单随机抽样的特点.6. 2010年亚运会在广州举行,广元小学开展了“你最喜欢收看的五项亚运会球类比赛(只选一项)”抽样调查.根据调查数据,小红计算出喜欢收看排球比赛的人数占抽样人数的6%,小明则绘制成如下不完整的条形统计图(如图所示),请你根据这两位同学提供的信息,解答下面的问题:(1)将统计图补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数.【思路点拨】依据条形图反映出来的数量作答.【答案与解析】解:(1)因为喜欢排球的12人占抽样总人数的6%,故抽样人数为:122006%=(人),故喜欢乒乓球的人数为:200-12-38-80-20=50(人).(2)喜欢收看羽毛球人数为:201800180200⨯=(人).【总结升华】把小长方形对应的纵轴数相加即得到抽取的调查报告数,这也是样本数;每组所占样本的百分比乘总数即这组调查报告约有的份数.类型三、数据的描述7.让数据说话小米的母亲开了一家服装店,专门卖羽绒服,下面是去年一年各月销售情况表:月份 1 2 3 4 5 6 7 8 9 10 11 12销量(件)100 90 50 11 8 6 4 6 5 30 80 110根据表,回答下列问题:(1)计算去年各季度的销售情况,并用一个适当的统计图表示;(2)计算去年各季度销售量在全年销售总量中所占的百分比,并用适当统计图表示;(3)从这些统计图表中,你能得出什么结论为小米的母亲今后决策能提供什么有用帮助.【思路点拨】根据题意,结合统计图各自的特点,知(1)要求表示各季度的销售情况,应选用条形统计图;(2)要求表示每季度的销量在全年中所占的百分比,应选用扇形统计图;(3)从作出的统计表中,通过分析数据,可以作出结论,提出建议.【答案与解析】解:(1)一、二、三、四季度销售量分别为240件、25件、15件、220件.可用条形图表示:;(2)可求总销售量为:500件.一、二、三、四季度销售量占总销售量的百分比分别为48%、5%、3%、44%.可用扇形图表示:;(3)从图表中可以看到二、三季度的销售量小,一、四季度的销售量大.建议旺季时多进羽绒服,淡季时转进其它货物或租给别人使用.【总结升华】此题虽是一道小题,但把几种统计图各自的特点和补足都进行了考查,而且还考查了数据与图形的关系所造成的误导,把各个知识点都融合在一道题中,非常巧妙,又顺理成章,很有新意.举一反三:【变式】数学与我们生活美化都市,改善人们的居住条件已成为城市建设的一项重要内容北京上海南京广州深圳土地面积(平方公里)16807 5910 6597 7434 2020绿化面积(平方公里)5042 1478 1979 2974 909(1)这五个城市之间的土地面积之比大约是多少?(精确到0.1)(2)这五个城市的绿化率各是多少?(绿化率=绿化面积÷土地面积,保留两位有效数字)(3)请你制作一幅统计图来表示这五个城市的绿化率的情况.(尽可能形象生动)【答案】解:(1)16807:5910:6597:7434:2020≈8.3:2.9:3.3:3.7:1;(2)填表如下:北京上海南京广州深圳 0.30 0.25 0.30 1.40 0.45 (3)如图所示:.。
(中考数学复习)第18讲-二次函数综合应用-课件-解析

基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理 由; (3)若球一定能越过球网,又不出边界,求h的取值范围. 解:(1)把x=0,y=2,及h=2.6代入到y=a(x-6)2+h中,
B.4 s
C.3 s
D.2 s
B
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 B
图18-1
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
4.(2013·宁波)如图18-2所示,二次函数y=ax2+bx+c的图象
开口向上,对称轴为直线x=1,图象经过(3,0),下列结论
中,正确的一项是
( D )
图18-2 A.abc<0 B.2a+b<0 C.a-b-c<0 D.4ac-b2<0
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
5.某公园草坪的防护栏是由100段形状相同的抛物线组成 的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈 钢的支柱,防护栏的最高点距底部0.5 m(如图18-3所示), 则这条防护栏需要不锈钢支柱的总长度至少为 ( C )
函数图象得
∴函数关系式为y=-x+180.
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是 商场负责人,会将售价定为多少,来保证每天获得的利润最 大,最大利润是多少? 解: W=(x-100)y=(x-100)(-x+180) =-x2+280x-18 000 =-(x-140) 2+1 600, 当售价定为140元,W最大=1 600. ∴售价定为140元/件时,每天最大利润W=1 600元.
北师大版九年级下册数学第18讲《弧长和扇形面积》知识点梳理

北师大版九年级下册数学第 18 讲《弧长和扇形面积》知识点梳理【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180 都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.3 (3) 扇形面积公式 ,可根据题目条件灵活选择使用,它与三角形面积公式 有点类似,可类比记忆;(4) 扇形两个面积公式之间的联系: .【典型例题】类型一、弧长和扇形的有关计算1. 如图(1),AB 切⊙O 于点 B ,OA= 2,AB=3,弦 BC∥OA ,则劣弧 B»C 的弧长为( ). A . 3 π B . 3 π 3 2 C .π D . 3π 2A图(1)【答案】A.【解析】连结 OB 、OC ,如图(2)则∠OBA =90︒ ,OB= , ∠A =30︒ , ∠AOB =60︒ ,由弦 BC ∥OA 得∠OBC =∠AOB = 60︒ ,所以△OBC 为等边三角形, ∠BOC =60︒ .则劣弧 B»C 的弧长为 60π 3 = 3π ,故选 A. 图(2) 180 3【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料, 试计算如图所示的管道的展直长度,即的长(结果精确到 0.1mm)3 C B O【答案】R=40mm,n=110∴的长= = ≈76.8(mm)因此,管道的展直长度约为76.8mm.2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC⊥AB,OM=MC= OC= OA.∴∠B=∠A=30°,∴∠AOB=120°∴S 扇形= .【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2 为半径的⊙A 与BC 相切于点D,交AB 于E,交AC 于F,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是().A.4 -4πB.4 -8πC.8 -4πD.8 -8π 9 9 9 9A PE FB D C图(1)的面积是: 【答案】连结 AD ,则 AD ⊥BC ,△ABC 的面积是:BC•AD= ×4×2=4,∠A=2∠EPF=80°.则扇形 80π 22 EAF = 8π.360 9故阴影部分的面积=△ABC 的面积-扇形 EAF 的面积= 4- 8π. 图(2) 9故选 B .3.(2015•ft西模拟)如图,已知⊙O 是△ABC 的外接圆,AC 是直径,∠A=30°,BC=2,点 D 是 AB 的中点, 连接 DO 并延长交⊙O 于点 P ,过点 P 作 PF⊥AC 于点 F .(1) 求劣弧 PC 的长;(结果保留 π)(2) 求阴影部分的面积.(结果保留 π).【答案与解析】解:(1)∵点 D 是 AB 的中点,PD 经过圆心,∴PD⊥AB,∵∠A=30°,∴∠POC=∠AOD=60°,OA=2OD ,∵PF⊥AC,∴∠OPF=30°,∴OF=OP ,∵OA=OC,AD=BD ,∴BC=2OD,∴OA=BC=2,∴⊙O 的半径为 2,∴劣弧 PC 的长===π;(2)∵OF=OP ,∴OF=1,∴PF== ,∴S阴影=S 扇形﹣S△OPF=﹣×1×=π﹣.【总结升华】本题考查了垂径定理的应用,弧长公式以及扇形的面积公式等知识,求得圆的半径和扇形的圆心角的度数是解题的关键.类型二、组合图形面积的计算4.(2015•槐荫区三模)如图,AB 是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC= =2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S 扇形OBC=π×OC2= π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
中考数学一轮复习 第四单元 三角形 第18讲 等腰三角形课件

2021/12/9
第十九页,共二十三页。
变式 等腰三角形ABC中,∠A=80°,求∠B的度数. (1)请你解答(jiědá)以上的变式题; (2)解答(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如 果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的
2021/12/9
第十八页,共二十三页。
(2018·绍兴(shào xīnɡ))数学课上,张老师举了下面的例题:
例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°) 例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)
张老师启发同学们进行变式,小敏编了如下一题:
综上所述,当0<x<90且x≠60时,∠B有三个不同的度数.
2021/12/9
第二十二页,共二十三页。
内容 总结 (nèiróng)
第18讲 等腰三角形。以学生熟悉的一副三角板为背景结合中点和垂线求线段的长度,看似简单实 则不易(bù yì),是考查能力的一道好题.。①当点C在线段OB上时,如图1,。②当点C在线段OB的延长线上时,如图2,。错误鉴定
或5
25
2
或
试真题·练易
命题(mìng tí)点 等腰三角形的性质
1.(2016·山西,15,3分)如图,已知点C为线段(xiànduàn)AB的中点,CD⊥AB且CD=AB=4,连 接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD 于点H,则HG的长为3- .5
A.2 cm2 B.3 cm2 C.4 cm2 D.5 cm2
2021/12/9
第十一页,共二十三页。
华东师大九年级数学样本与总体

数据分析
对检测结果进行数据分 析,评估产品质量是否
符合标准。
改进措施
根据分析结果,采取相 应的改进措施,提高产
品质量。
医学研究
01
02
03
04
临床试验
在临床试验中,医生会选取一 定数量的患者作为样本,进行
治疗和观察。
流行病学研究
通过研究特定人群的样本,了 解疾病的分布和传播规律。
药物研发
在新药研发过程中,需要进行 药效学和安全性评价,选取样
本进行实验。
诊断技术评估
对新的诊断技术进行评估时, 需要选取代表性样本进行测试
。
社会研究
社会调查
通过抽样调查的方式了解社会 现象和趋势。
民意测验
通过问卷调查的方式了解公众 对某项政策或议题的看法。
文化研究
通过对特定人群的文化习惯和 价值观进行研究,了解文化差 异和演变。
经济发展评估
通过对地区或国家的经济数据 进行统计分析,评估经济发展
方差分析
定义
方差分析是一种统计方法,用于 比较不同组数据的均值是否存在
显著差异。
步骤
首先将数据分组,然后计算各组 的均值和方差,最后通过F检验 或t检验等方法判断各组均值是
否存在显著差异。
注意事项
方差分析要求各组数据具有相同 的方差和正态分布。
相关与回归分析
1 2
定义
相关分析用于研究两个变量之间的线性关系,回 归分析则用于预测一个因变量基于一个或多个自 变量的值。
步骤
首先计算相关系数(如Pearson相关系数),然 后建立回归模型,最后进行模型评估和预测。
3
注意事项
相关系数和回归模型都有一定的假设条件,如线 性关系、无多重共线性等,需要注意验证这些假 设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初 三 数 学(第18讲)主讲:倪红美(苏州立达中学)本讲内容:第25章 样本与总体§25.1 简单的随机抽样§25.2 用样本估计总体教学要求:1.体会随机抽样是了解总体特性的一种重要的数学方法,抽样是一个关键;2.体会简单的随机抽样的调查方法的科学性;3.学会用抽样调查的方法,选取合适的样本进行抽样调查。
4.进一步体会随机抽样是了解总体特性的一种重要的数学方法,抽样是一个关键;5.学会用科学的随机抽样的方法,选取合适的样本进行抽样调查,学会用样本特性去估计总体特性6.体会用样本估计总体的思想。
教学内容:1.简单随机抽样的定义:要使样本具有代表性,不偏向总体中的某些个体,有一个对每个个体都公平的方法,那就是用抽签的办法决定哪些个体进入样本。
统计学家们称这种理想的方法为简单的随机抽样。
2.简单的随机抽样的步骤:(1)将所有个体编号;(2)放在一个容器中搅匀;(3)抽签3.随机性:像(抽签等)这样不能事先预测结果的特性叫做随机性4.不宜普查的原因:(1)总体中个体数目太大,工作量太大;(2)调查具有破坏性5.简单随机抽样调查是否合适,主要看是否满足:(1)样本有代表性,(2)样本容量要足够大,(3)是否对每个个体都公平,每个个体是否都有可能成为调查对象。
6.基于不同的样本,可能会对总体作出不同的估计值,但随着样本容量的增加,有样本得出的特性会接近总体的特性。
7.数学家已经证明,随机抽样方法是科学而且可靠的。
8.样本容量:样本中个体的数目叫做样本容量。
9.在用样本特性估计总体特性时,要注意一是样本要有代表性,二是样本容量要足够大。
求平均数的公式:123n x x x x x n ++++=典型例题:例1.以下选取样本方法正确的是( B ).A.苏州市某调查公司为了解该市高中学生的视力情况,对苏州市的一所省重点中学的学生视力情况进行了调查B.为了保障人民群众的身体健康,在预防“非典”期间,有关部门加强了市场监管力度,为了解市场上出售的口罩质量情况,随机抽取了本市一些商店中的一定数量的口罩进行检查C.为调查一个省城镇居民的收入情况,调查了该省的省会城市居民的收入情况D.陕西省某鞋厂为了解初中生穿鞋的大小尺码,调查了该省某体校学生穿鞋尺码的情况分析:判断抽样调查选取样本的方法是否合适,主要看抽取的样本在总体中是否具有代表性,抽取样本的数量是否足够大.例2.下面的几个调查中,适合抽样调查的是( B ).A.在2003年的“非典”期间,卫生部公布的各省疫情的数据B.为了了解某品牌的中秋月饼的质量C.为了了解某校初三年级的学生每天收看焦点访谈节目的人数D.为了了解某高新技术产业开发区中台商的人数分析:我们平时接触到的这些数据主要来源于普查与抽样调查.要判斯对一个事件应进行普查还是抽样调查,关键是看对数据要求的精确程度与可行性.例3.老师布置给每个小组一个任务,用抽样调查的方法估计全班同学的平均身高.坐在教室最前面的小王为了抢速度,立即就近向他周围的三个同学作调查,加上他自己,计算出他们四个人的平均身高后就举手向老师示意已经完成任务了.小王这样的抽样调查合适吗?分析:因为小王他们四个人坐在教室最前面,所以他们身高的平均数就会小于整个班级的身高平均数,这样的样本就不具有代表性了.由于小王选取的样本不具有代表性,所以小王这样的抽样调查不合适.】例4.下列选取样本的方法是否具有代表性?为什么?(1)为了调查某城市的空气质量状况,每天早晨抽样.(2)为了调查某个地区的生活水平,了解部分农村家庭的衣食住行情况.分析:抽样调查要求所抽取的样本要具有真实的代表性,通常考虑的要素有时间、人员、地点及其他人为因素.解:(1) 每天早晨抽样所得的样本不能真正反映该城市的空气质量状况,因为一般来说,早晨的空气质量稍好些.(2) 部分农村家庭的衣食住行情况不能代表该地区的生活水平,因为农村家庭的衣食住行情况和城市家庭的衣食住行情况是有差别的评注:即使随机抽样,也要考虑抽取的样本是否具有真实的代表性,否则统计调查可能失真,本题(1)中,宜分时段抽取样本,本题(2)中,应调查各类家庭的衣食住行情况.例5.甲、乙两位同学在玩掷骰子的游戏时:甲同学说:“1,1,1,…啊!真的是l!你只要一直想某个数,就会掷出那个;乙同学说:“不对,我发现我越是想要某个数就越得不到这个数,倒是不想它反而会掷出那个数.”请你判断以上的说法是否正确,并说明理由.分析:这两位同学的说法都不正确,因为根据几次实验的经验说明不了什么问题.这两位同学的说法不正确,选取的样本太少.例6.小明的电动车失窃了,他想知道所在地区每个家庭平均发生过几次电动车夫窃事件.为此,他和同学们一起,调查了全校每个同学所在家庭发生过几次电动车失窃事件.这样的调查合适吗?分析:这样的调查是不合适的,虽然他们调查的人数很多,但是因为排除了所在地区那些没有中学生的家庭,所以他们的调查结果不能推广到所在地区的所有家庭.这样的调查不合适.例7.为了调查江苏省的环境污染情况,分别调查了南京、苏州的环境污染情况,请你根据所学的知识,判断这个抽样调查选取样本的方法是否合适,并说明理由.分析:要判断抽样调查选取样本的方法是否合适,主要看选取的样本是否具有代表性,并要求选取的样本不偏向总体中的某些个体,对每一个个体都有平等的机会.显然,南京、苏州在江苏省不具有代表性,且这两个城市的工业化程度比较高,故这样选取的样本不合适.评注:抽样的方法是否合适,关键要看你要调查的人或事在总体中是否具有代表性,样本的数量是否足够大.有时仅仅增加样本数量也不一定能够保证调查质量,还要看总体中的每个个体是否都有成为调查对象的可能性(即样本应是随机的).例8.某养鱼专业户为了估计湖里有多少条鱼,先捕上100条做上标记,然后放回到湖里,过一段时间待带标记的鱼完全混合于鱼群后,再捕上200条鱼,发现其中带标记的鱼有20条,湖里大约有多少条鱼?分析:本题一方面考查了学生由样本估计总体的思想方法和具体做法,另一方面考察了学生应用数学的能力,这也是中考命题的一个重要方向.设湖里大约有J条鱼,则100:x=20:200 ∴x=1000.答:湖里大约有1000条鱼.例9.某校生物兴趣小组11人到校外采集植物标本,其中采集到6件的有2人,采集到3件的有4人,采集到4件的有5人,则这个兴趣小组平均每人采集到的标本是( ).A.3件且4件C。
5件D.6件分析:在解这道题时,同学们最容易犯下面的错误:6341333++=(件).实质上是没有正确理解求哪一些数据的平均数.正确的解答:624354411⨯+⨯+⨯=(件)例10.有的同学认为,要了解我们学校500名学生中能够说出父母亲生日的人的比例,可以采取简单的随机抽样的方法进行调查,但是,调查250名学生反而不及调查100名学生好,因为人太多了以后,样本中知道父母亲生日的人的比例反而说不准,你同意吗?为什么?分析:若采取简单随机抽样的方法进行调查,因为由250名学生组成的样本比由100名学生组成的样本容量大,根据我们观察简单随机抽样过程获得的经验,用容量大的样本作估计一般更可靠些.如果还说服不了对方,可以假设我们学校500名学生中知道父母生日的比例为60%,然后用计算器产生随机数的方法模拟简单随机抽样过程.分别考察了若干个容量为100和250的样本,比较哪个规模的样本作出的估计更接近60%,相信通过实验获取的数据更有说服力.不同意上述说法.通常情况下,样本越大,样本的估计越接近总体的实际状况.例11. 最早参加新课程实验的学生2004年将要参加初中毕业会考和中考了,教育部想通过调查的方式了解他们对新课程的意见和建议,必须要向他们每个人做调查吗?分析:不必,由于这样做会牵涉到太多的学生,需要大量的时间、人力、财力、物力等.可以采取简单随机抽样的方法,先选取一些实验区,再在这些地区对不同类型的学校的学生做比较深入的调查.完全没有必要,用随机抽样的方法来估计.例12.某地区为筹备召开中学生运动会,指定要从某校初二年级9个班中抽取48名女生组成花束队,要求队员的身高一致,现随机抽取10名初二某班女生体检表(各班女生人数均超过20人),身高如下(单位:厘米):165 162 158 157 162 162 154 160 167 155(1) 求这10名学生的平均身高;(2) 问该校能否按要求组成花束队,试说明理由.分析:这是生活中经常遇到的一个应用问题.关键是平均数的计算方法,并用众数来估计全校女生的身高情况,从而使问题得到解决.解:(1) 这10名学生的平均身高:165162155160.210x+++==(2) 由于样本的众数为162厘米,从而可估计一个班级至少有6名女同学的身高为162厘米.从而可估计全校身高为162厘米的女生数为:6×9=54>48。
所以该校能按要求组成花束队。
例13.某饮食店认真统计了一周中各种点心的销售情况,统计结果如下表所示,你认为这样的统计结果对该店的管理人员有用吗?请说明你的理由.一周中各种点心销售情况统计表分析:虽然一周中售出多少碗面、多少个包子等有随机性,谁也无法准确预测.但是,这并不是说我们对随机现象就只能听天由命了.在游戏的时候,如果有人说掷出“1”“2”算你赢,掷出“3”“4”“5”“6”都算对方赢,你一定不会答应的.因为你知道虽然每一次掷出的结果有随机性,无法预测,但是,按此游戏规则,双方的机会大小不等.商店的销售情况也是如此,一般都要参考以往的销量来组织进货、安排加工数量,如卖得俏的商品下次多进一些货等等.解答:这些数据对该店管理人员是有用的,比如,可以大致算出每周需要买多少面粉、黄豆,油等,每天需要买多少肉、蔬菜等.这样一方面能有计划地使用资金,另一方面能使采购的量比较合适,减少浪费;可以了解,顾客最喜欢的是他们的煎包,所以应给做煎包的师傅们以额外的奖励,争取成为该店的特色点心;还可以大致了解每天加工各种花色品种分别需要按排多少人,以便合理地聘用各类工人。
本题的解答只提供了部分内容的分析.事实上,只要言之有理,都是可以接受的。
巩固练习11.下面几个调查符合抽样调查要求的是( ).A.某市教育局为考核某校的一个名教师,对他所带的班级中的学生进行调查B.某教师想了解班上的学生有多少能够说出父母亲的生日,对全班学生进行了调查C.春兰集团为了解其产品在消费者中的满意情况,随机抽取了某些消费者的使用情况调查表进行分析D.为了解某市重点中学在全国的数学竞赛中成绩达到100分的学生人数2.某饮料厂为了了解其饮料产品的质量,抽取部分饮料进行检查,以下说法中正确的是( ).A.总体是被抽取的饮料的质量B.样本是被抽取的饮料的质量C.以上的检查是普查D.以上的检查不是抽样调查3.国家环保局为了了解商店使用环保购物袋的情况,采取了以下几种调查方案,你认为最合适的是( ).A.在网上进行在线抽样调查B.随机选取一些商店进行抽样调查C.调查所有的商店使用购物袋的情况D.对商店的消费者进行调查4.在很多的娱乐节目中,经常开展根据手机号码抽取幸运观众的活动.你认为这种滚动号码的现场开奖方式对每个热心观众获奖的机会是均等的吗?为什么?5.某校有6个年级,每个年级有5个班,共有1228名学生,在下述情况中,如何使用简单的随机抽样方法选取样本?(1)在全校所有年级中随机抽一个班级;(2)在全校所有班级中抽取六个班级;(3)在全校1228名学生中,随机抽取81名学生.6.某班50名学生的数学期末考试成绩如下(单位:分):100 100 100 94 98 100 100 93 100 10096 100 99 100 100 98 92 93 98 9396 87 90 100 100 100 90 96 99 10093 87 99 95 96 96 98 91 90 8887 90 86 88 81 86 79 69 76 84(1)请用简单的随机抽样方法,分别选取含有5名学生数学成绩的两个样本和含有15名学生数学成绩的两个样本;(2)请你根据以上样本,分别求出各个样本的平均分、标准差.答案:1.C 2.B 3.B 4.不均等,因为开奖的时候,启动后要等一会儿才停下来,故最先几个观众是没有机会获奖的。