厦门市-学年高一上数学质检(含答案)

合集下载

2019-2020学年 福建省厦门市第六中学 高一上学期10月考数学试题(解析版)

2019-2020学年  福建省厦门市第六中学  高一上学期10月考数学试题(解析版)

2019-2020学年福建省厦门市第六中学高一上学期10月考数学试题一、单选题1.已知全集U={1,2,3,4,5},且A={2,3,4},B={4,5},则()U A C B ⋂等于( ) A .{4} B .{4,5} C .{1,2,3,4} D .{2,3}【答案】D【解析】【详解】试题分析:由题U C B ={1,2,3},所以()U A C B ⋂={2,3},故选D . 【考点】集合的运算2.下列四组中,()f x 与()g x 表示同一函数的是( )A .()f x x =,()g x =B .()f x x =,()2g x =C .()2f x x =,()3xg x x=D .()f x x =,()()(),0,0x x g x x x ⎧≥⎪=⎨-<⎪⎩ 【答案】D【解析】A 项对应关系不同;B 项定义域不同;C 项定义域不同,初步判定选D 【详解】对A ,()g x x =,与()f x x =对应关系不同,故A 错对B ,()2g x =中,定义域[)0,x ∈+∞,与()f x x =定义域不同,故B 错对C ,()3x g x x=中,定义域0x ≠,与()f x x =定义域不同,故C 错对D ,()f x x =,当0x ≥时,()f x x =,当0x <时,()f x x =-,故()()(),0,0x x f x x x ⎧≥⎪=⎨-<⎪⎩,D 正确 故选:D 【点睛】本题考查同一函数的判断,应把握两个基本原则:定义域相同;对应关系相同(化简后的函数表达式一样)3.设函数()221,12,1x x f x x x x ⎧-≤=⎨+->⎩,则()12f f ⎛⎫⎪ ⎪⎝⎭的值为( ) A .1516B .2716-C .89D .18【答案】A 【解析】【详解】因为1x >时,2()2,f x x x =+- 所以211(2)2224,(2)4f f =+-==; 又1x ≤时,2()1f x x =-, 所以211115(()1().(2)4416f f f ==-=故选A. 本题考查分段函数的意义,函数值的运算.4.函数1()2(01)x f x a a a +=->≠且的图象恒过定点( ) A .()0,2 B .()1,2 C .()1,1- D .()1,2-【答案】C【解析】由10x +=得1x =-代入解析式后,再利用01a =求出()1f -的值,即可求得答案。

2022-2023学年福建省厦门市高一年级下册学期期中考试数学试题【含答案】

2022-2023学年福建省厦门市高一年级下册学期期中考试数学试题【含答案】

福建省厦门市2022—2023学年度第二学期期中考试高一年数学试卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数22iz i +=-,则复数z 的模为().A.2B.5C.1D.2【答案】C 【解析】【分析】根据复数除法运算,先化简z ;再由复数模的计算公式,即可得出结果.【详解】因为复数()222342555i i z ii ++===+-,所以91612525z =+=.故选:C .2.已知平面向量()1,a m = ,(),2b n = ,()3,6c = ,若a c ∥ ,b c ⊥,则实数m 与n 的和为()A.6B.6- C.2D.2-【答案】D 【解析】【分析】根据a c ∥ 、b c ⊥分别求出m 和n 即可.【详解】a ∥c,1236mm ∴=⇒=;b c ⊥ ,0b c ∴⋅=,31204n n ∴+=⇒=-;242m n ∴+=-=-.故选:D .3.已知圆锥PO ,其轴截面(过圆锥旋转轴的截面)是底边长为6m ,顶角为2π3的等腰三角形,该圆锥的侧面积为()A.26πmB.263πm C.233πm D.2123πm 【答案】B 【解析】【分析】运用圆锥侧面积公式计算即可.【详解】如图所示,设圆锥的半径为r ,母线为l ,由题意知,132r OB AB ===,在Rt POB △中,112ππ2233BPO BPA ∠=∠=⨯=,所以323π3sin 32OB l BP ====,所以圆锥侧面积为2ππ32363πm rl =⨯⨯=.故选:B.4.中国古代数学专著《九章算术》的第一章“方田”中载有“半周半径相乘得积步”,其大意为:圆的半周长乘以其半径等于圆面积.南北朝时期杰出的数学家祖冲之曾用圆内接正多边形的面积“替代”圆的面积,并通过增加圆内接正多边形的边数n 使得正多边形的面积更接近圆的面积,从而更为“精确”地估计圆周率π.据此,当n 足够大时,可以得到π与n 的关系为()A.360πsin 2n n︒≈B.180πsinn n ︒≈ C.360π21cos n n ︒⎛⎫≈- ⎪⎝⎭ D.180π1cos 2n n︒≈-【答案】A 【解析】【分析】设圆的半径为r ,由题意可得221360πsin2r n r n ︒≈⋅⋅⋅,化简即可得出答案.【详解】设圆的半径为r ,将内接正n 边形分成n 个小三角形,由内接正n 边形的面积无限接近圆的面即可得:221360πsin2r n r n︒≈⋅⋅⋅,解得:360πsin 2n n ︒≈.故选:A .5.在ABC 中,60A ∠=︒,1b =,ABC 的面积为3,则sin aA为().A.8381B.2393C.2633D.27【答案】B 【解析】【分析】由已知条件,先根据三角形面积公式求出c 的值,然后利用余弦定理求出a 的值,即可得sin aA的值.【详解】解:在ABC 中,因为60A ∠=︒,1b =,ABC 的面积为3,所以113sin 12223ABC bc A S c ==⨯⨯⨯= ,所以4c =,因为2222212cos 14214132a b c bc A =+-=+-⨯⨯⨯=,所以13a =,所以13239sin 332a A ==.故选:B.6.已知m ,n 为两条不同的直线,,αβ为两个不同的平面,则下列命题正确的是()A.若//,//,//m n αβαβ,则//m nB.若//,//,m m n αβαβ⋂=,则//m nC.若//,//αβn n ,则//αβD.若//,m n n α⊂,则//m α【答案】B 【解析】【分析】A :结合两直线的位置关系可判断//m n 或,m n 异面;B :结合线面平行的性质可判断//m n ;C :结合线面的位置关系可判断//αβ或,αβ相交;D :结合线面的位置关系可判断//m α或m α⊂.【详解】A :若//,//,//m n αβαβ,则//m n 或,m n 异面,故A 错误;B :因为//m α,所以在平面α内存在不同于n 的直线l ,使得//l m ,则l //β,从而//l n ,故//m n ,故B 正确;C :若//,//αβn n ,则//αβ或,αβ相交,故C 错误;D :若//,m n n α⊂,则//m α或m α⊂,故D 错误.故选:B7.如图所示,在直三棱柱111ABC A B C -中,棱柱的侧面均为矩形,11AA =,3AB BC ==,1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为()A.3B.2C.5D.7【答案】D 【解析】【分析】连接1BC ,得11A BC V ,以1A B 所在直线为轴,将11A BC V 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',再根据两点之间线段最短,结合勾股定理余弦定理等求解AC '即可.【详解】连接1BC ,得11A BC V ,以1A B 所在直线为轴,将11A BC V 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则有1C AP PC AP PC A '++'=≥,如图,当,,A P C '三点共线时,则AC '即为1AP PC +的最小值.在三角形ABC 中,3AB BC ==,1cos 3ABC ∠=,由余弦定理得:2212cos 332323AC AB BC AB BC B =+-⋅=+-⨯⨯=,所以112A C =,即12A C '=,在三角形1A AB 中,11AA =,3AB =,由勾股定理可得:2211132A B AA AB =+=+=,且160AA B ∠=︒.同理可求:12C B =,因为11112A B BC A C ===,所以11A BC V 为等边三角形,所以1160BA C ∠=︒,所以在三角形1AAC '中,111120AA C AA B BA C ''∠=∠+∠=︒,111,2AA A C '==,由余弦定理得:11421272AC ⎛⎫'=+-⨯⨯⨯-= ⎪⎝⎭.故选:D.8.已知ABC 中,π3A ∠=,D ,E 是线段BC 上的两点,满足BD DC =,BAE CAE ∠=∠,192AD =,635AE =,则BC 长度为()A.19 B.23 C.7 D.6319-【答案】C 【解析】【分析】由BAE CAE ABCS S S +=△△△可得出56b c bc +=,由1()2AD AB AC =+ 两边平方可求得,,bc b c +然后在ABC 中利用余弦定理可求得答案.【详解】如图,记,,BC a AC b AB c ===,BAE CAE ABC S S S += △△△,π6BAE CAE ∠=∠=,635AE =,1631631sin sin sin 25625623πππc b bc ∴⨯⨯+⨯⨯=,333()104b c bc ∴+=,即56b c bc +=,1()2AD AB AC =+ ,192AD =,()()2222211244AD AB AB AC AC b c bc ∴=+⋅+=++ 2211125119()()4443644b c bc bc bc =+-=⨯-=,即225()366840bc bc --=,(6)(25114)0bc bc -+=,6,5,bc b c ∴=∴+=在ABC 中,2222222cos()32513π87a b c bc b c bc b c bc =+-=+-=+-=-=,7BC a ∴==.故选:C.二、选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.已知圆台的上底半径为1,下底半径为3,球O 与圆台的两个底面和侧面都相切,则()A.圆台的母线长为4B.圆台的高为4C.圆台的表面积为26πD.球O 的表面积为12π【答案】ACD 【解析】【分析】作出圆台的轴截面,设圆台上、下底面圆心分别为12,O O ,半径分别为12,r r ,连接,,OD OE OA ,利用平面几何知识得到2123R r r ==,即可逐项计算求解.【详解】设梯形ABCD 为圆台的轴截面,则内切圆O 为圆台内切球的大圆,如图,设圆台上、下底面圆心分别为12,O O ,半径分别为12,r r ,则12,,O O O 共线,且1212,O O AB O O CD ⊥⊥,连接,,OD OE OA ,则,OD OA 分别平分,DAB ADC ∠∠,故12,r r E AE D ==,,,22ππODA DOA OE D OA A D +∠=∠=⊥∠,故2E O A E DE =⋅,即2123R r r ==,解得3R =,母线长为124r r +=,故A 正确;圆台的高为223R =,故B 错误;圆台的表面积为22π1π3π(13)426π⨯+⨯+⨯+⨯=,故C 正确;球O 的表面积为24π12πS R ==,故D 正确.故选:ACD.10.已知1z 与2z 是共轭虚数,则()A.2212z z < B.2122z z z =C.12R z z +∈ D.12R z z ∈【答案】BC 【解析】【分析】设出复数12,z z ,根据复数的运算,对每个选项进行逐一分析,即可判断.【详解】由题意,复数1z 与2z 是共轭虚数,设1i z a b =+、2i z a b =-,R a b ∈、且0b ≠,对于A 项,22212i z a b ab =-+,22222i z a b ab =--,当0a ≠时,由于复数不能比较大小,故A 项不成立;对于B 项,因为2212z z a b ⋅=+,2222||z a b =+,所以2122||z z z ⋅=,故B 项正确;对于C 项,因为122R z z a +=∈,所以C 选项正确;对于D 项,由222122222()2()(i i i i)i i z a b a b a b abz a b a b a b a b a b ++-===+--+++不一定是实数,故D 项不成立.故选:BC.11.对于ABC ,有如下命题,其中正确的有()A.若22sin sin A B =,则ABC 为等腰三角形B.若sin cos A B =,则ABC 为直角三角形C.若222sin sin cos 1A B C ++<,则ABC 为钝角三角形D.若3,1,30AB AC B === ,则ABC 的面积为34或32【答案】ACD 【解析】【分析】A.根据条件得到,A B 的关系,由此进行判断;B.利用诱导公式直接分析得到,A B 的关系并判断;C.利用正弦定理得到222,,a b c 的关系,结合余弦定理进行判断;D.先利用正弦定理计算出sin C 的值,由此可求,C A 的值,结合三角形面积公式进行计算并判断.【详解】对于A :22sin sin ,A B A B ABC =∴=⇒ 是等腰三角形,A 正确;对于B :sin cos ,2A B A B π=∴-=或,2A B ABC π+=∴ 不一定是直角三角形,B 错误;对于C :2222222222sin sin 1cos ,sin ,cos 02A B C C a a abb bc C c ++<--==∴+∴<< ,ABC ∴ 为钝角三角形,C 正确;对于D :由正弦定理,得sin 3sin .2AB B C AC ⋅==而,60AB AC C >∴= 或120,C = 90A ∴= 或30,A =当90,60A C =︒=︒时,131322ABCS =⨯⨯=,当30,120A C =︒=︒时,1311sin12024ABC S =⨯⨯⨯︒=,32ABC S ∴=或3,4D 正确.故选:ACD.12.“阿基米德多面体”也称为半正多面体(semi -regularsolid ),是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种半正多面体.已知2AB =,则关于如图半正多面体的下列说法中,正确的有()A.该半正多面体的体积为203B.该半正多面体过,,A B C 三点的截面面积为332C.该半正多面体外接球的表面积为8πD.该半正多面体的顶点数V 、面数F 、棱数E 满足关系式2V F E +-=【答案】ACD 【解析】【分析】根据几何体的构成可判断A ,由截面为正六边形可求面积判断B ,根据外接球为正四棱柱可判断C ,根据顶点,面数,棱数判断D.【详解】如图,该半正多面体,是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的.对于A ,因为由正方体沿各棱中点截去8个三棱锥所得到的,所以该几何体的体积为:11202228111323V =⨯⨯-⨯⨯⨯⨯⨯=,故正确;对于B ,过,,A B C 三点的截面为正六边形ABCFED ,所以()2362334S =⨯⨯=,故错误;对于C ,根据该几何体的对称性可知,该几何体的外接球即为底面棱长为2,侧棱长为2的正四棱柱的外接球,所以该半正多面体外接球的表面积2244(2)8S R πππ==⨯=,故正确;对于D ,几何体顶点数为12,有14个面,24条棱,满足1214242+-=,故正确.故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13.i 是虚数单位,已知22i ωω-=-,写出一个满足条件的复数ω.______.【答案】1i ω=+(答案不唯一,满足i a a ω=+(R a ∈)均可)【解析】【分析】运用复数的模的运算公式计算即可.【详解】设i a b ω=+,(,R a b ∈),则22|2||(2)i |(2)a b a b ω-=-+=-+,22|2i ||(2)i |(2)a b a b ω-=+-=+-,因为|2||2i |ωω-=-,所以2222(2)(2)a b a b -+=+-,解得:a b =,所以i a a ω=+,(R a ∈)所以可以取1i ω=+.故答案为:1i ω=+(答案不唯一,满足i a a ω=+(R a ∈)均可).14.在矩形ABCD 中,已知2AB =,1BC =,点P 是对角线AC 上一动点,则AP BP ⋅的最小值为___________.【答案】45-##0.8-.【解析】【分析】以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立直角坐标系,利用平面向量的坐标运算求出AP BP ⋅,进而结合二次函数的性质即可求出结果.【详解】以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立直角坐标系,又因为2AB =,1BC =,所以()()()()0,0,2,0,2,1,0,1,A B C D 则直线AC 的方程为12y x =,所以设()2,P m m ,且01m ≤≤,而()()2,,22,AP m m BP m m ==-,所以()2222AP BP m m m ⋅=-+ 254m m=-结合二次函数的性质可知,当25m =时,AP BP ⋅ 有最小值,且最小值为222454555⎛⎫⨯-⨯=- ⎪⎝⎭,故答案为:45-.15.太湖中有一小岛C ,沿太湖有一条正南方向的公路,一辆汽车在公路A 处测得小岛在公路的南偏西15°的方向上,汽车行驶1km 到达B 处后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________km.【答案】36【解析】【详解】如图所示,过C 作CD ⊥AB ,垂足为D ,∠A=15°,∠CBD=75°,AB=1km ,△ABC 中,BC=00sin15sin 60,△CBD 中,CD=BCcos15°=001sin 302sin 60=36km .故填36.16.如图,平面四边形ABCD 中,其中3os 4c DAB ∠=,BAC DAC ∠=∠,AD AB <,且5AB =,14AC BD ==,若(),R AC AB AD λμλμ=+∈,则λμ+=______.【答案】75##1.4【解析】【分析】运用余弦定理求得AD 的值,在AB 上取点E ,使得2AE AD ==,结合角平分线性质可得AF D E ⊥,再运用向量加法可求得结果.【详解】在ABD △中,由余弦定理得:2222cos BD AB AD AB AD BAD =+-⋅⋅∠,即:231425254AD AD =+-⨯⨯,解得:2AD =或112AD =,又因为5AD AB <=,所以2AD =.在AB 上取点E ,使得2AE =,连接DE ,交AC 于点F ,如图所示,又因为AC 为DAB ∠的角平分线,所以AF D E ⊥,F 为DE 的中点,在ADE V 中,由余弦定理得:22232222224DE =+-⨯⨯⨯=,所以2211141()42222AF AE DE AC =-=-==,所以225AC AF AE AD AB AD ==+=+,所以2=5λ,1μ=,所以75λμ+=.故答案为:75.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知复数z 满足2z z ⋅=,且z 的虚部为-1,z 在复平面内所对应的点在第四象限.(1)求z ;(2)若z ,2z 在复平面上对应的点分别为A ,B ,O 为坐标原点,求∠OAB .【答案】(1)1i z =-(2)π2OAB ∠=【解析】【分析】(1)运用复数几何意义设出z ,再结合共轭复数定义写出z ,再运用复数乘法运算求得结果.(2)运用复数几何意义、两点间距离公式及勾股定理可求得结果.【小问1详解】由题意知,设i z a =-(0a >),则i z a =+,所以222i 12z z a a ⋅=-=+=,解得:1a =,所以1i z =-.【小问2详解】由(1)知,1i z =-,所以22(1i)2i z =-=-,所以(1,1)A -,(0,2)B -,如图所示,所以(1,1)AO =- ,(1,1)AB =--,22||(1)12AO =-+= ,22||(1)(1)2AB =-+-= ,所以11cos 02||||AO AB OAB AO AB ⋅-∠===.所以π2OAB ∠=.18.如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB PC 、的三等分点(M 靠近B ,N 靠近C );(1)求证://MN 平面PAD .(2)在PB 上确定一点Q ,使平面//MNQ 平面PAD .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)过点N 作//NE CD ,交PD 于点E ,连接AE ,证得证得四边形AMNE 为平行四边形,得到//MN AE ,结合线面平行的判定定理,即可求解;(2)取PB 取一点Q ,使得13BQ BP =,证得//MQ PA ,得到//MQ 平面PAD ,结合(1)中//MN 平面PAD ,利用面面平行的判定定理,证得平面//MNQ 平面PAD .【小问1详解】证明:过点N 作//NE CD ,交PD 于点E ,连接AE ,因为N 为PC 的三等分点,可得23NE CD =,又因为M 为AB 的三等分点,可得23AM AB =,因为//AB CD 且AB CD =,所以//AM NE 且AM NE =,所以四边形AMNE 为平行四边形,所以//MN AE ,又由MN ⊄平面PAD ,AE ⊂平面PAD ,所以//MN 平面PAD .【小问2详解】证明:取PB 取一点Q ,使得13BQ BP =,即点Q 为PB 上靠近点B 的三等点,在PAB 中,因为,M Q 分别为,AB PB 的三等分点,可得MB BQAB BP=,所以//MQ PA ,因为MQ ⊄平面PAD ,PA ⊂平面PAD ,所以//MQ 平面PAD ;又由(1)知//MN 平面PAD ,且MN MQ M ⋂=,,MN MQ ⊂平面MNQ ,所以平面//MNQ 平面PAD ,即当点Q 为PB 上靠近点B 的三等点时,能使得平面//MNQ 平面PAD .19.如图,在ABC 中,π3BAC ∠=,D 为AB 中点,P 为CD 上一点,且满足13AP t AC AB =+ ,ABC 的面积为332,(1)求t 的值;(2)求AP的最小值.【答案】(1)13t =(2)2【解析】【分析】(1)利用,,C P D 三点共线,可设DP mDC =,推出1(1)2AP mAC m AB =+- ,结合13AP t AC AB =+ ,即可求得t 的值;(2)利用(1)的结论可得2221(2)9A AC AB A PC AB ++=⋅ ,利用三角形面积得出||||6AC AB ⋅=,结合基本不等式即可求得答案.【小问1详解】在ABC 中,D 为AB 中点,则,,C P D 三点共线,设,()DP mDC AP AD m AC AD =∴-=- ,故1(1)(1)2AP mAC m AD mAC m AB =+-=+- ,又13AP t AC AB =+ ,故11(1)23m t m =⎧⎪⎨-=⎪⎩,解得13m t ==,即13t =.【小问2详解】由(1)知1133AP AC AB =+,所以2222211()(2)1339AC AB AC AP AP AB AC AB +=+=+⋅=221(||||2||||cos )9AC AB AC AB BAC =++⋅∠1(2||||2||||cos )9AC AB AC AB BAC ≥⋅+⋅∠ ,当且仅当||||AC AB = 时取等号,又332ABC S =△,则133||||sin 22AC AB BAC ⋅∠= ,即1π33||||sin ,||||6232AC AB AC AB ⋅=∴⋅= ,故21π(2626c 2os )2,93AP AP ≥⨯+⨯=≥∴ ,即AP 的最小值为2,当且仅当||||6AC AB ==时取等号.20.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且π2sin 6b c A ⎛⎫=+ ⎪⎝⎭.(1)求C ;(2)若1c =,D 为ABC 的外接圆上的点,2BA BD BA ⋅= ,求四边形ABCD 面积的最大值.【答案】(1)π6;(2)312+.【解析】【分析】(1)根据正弦定理以及两角和的正弦公式化简,即可得出3tan 3C =,进而根据角的范围得出答案;(2)解法一:由已知可推出BC CD ⊥,然后根据正弦定理可求出22R =,进而求出2BD =,3AD =.设BC x =,CD y =,表示出四边形的面积,根据基本不等式即可得出答案;解法二:根据投影向量,推出BC CD ⊥,然后同解法一求得3AD =.设CBD θ∠=,表示出四边形的面积,根据θ的范围,即可得出答案;解法三:同解法一求得3AD =,设点C 到BD 的距离为h ,表示出四边形的面积,即可推出答案;解法四:建系,由已知写出点的坐标,结合已知推得BD 是O 的直径,然后表示出四边形的面积,即可推出答案.【小问1详解】因为π2sin 6b c A ⎛⎫=+⎪⎝⎭,在ABC 中,由正弦定理得,i s n in 2sin πs 6B A C ⎛⎫=+ ⎪⎝⎭.又因为()()sin sin πsin B A C A C =--=+,所以()πsin 2s n sin i 6A C A C ⎛⎫+=+⎪⎝⎭,展开得sin cos cos sin sin sin cos 31222A C A C C A A ⎛⎫+=+ ⎪ ⎪⎝⎭,即sin cos si 30n sin A C C A -=,因为sin 0A ≠,故cos 3sin C C =,即3tan 3C =.又因为()0,πC ∈,所以π6C =.【小问2详解】解法一:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅=,所以DA BA ⊥,故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,223AD BD AB =-=.设四边形ABCD 的面积为S ,BC x =,CD y =,则224x y +=,ABD CBD S S S =+△△11312222AB BC xyAD CD =+⋅=⋅+2231312222x y +≤+⋅=+,当且仅当2x y ==时,等号成立.所以四边形ABCD 面积最大值为31 2+.解法二:如图1设ABC的外接圆的圆心为O,半径为R,BD在BA上的投影向量为BAλ,所以()2BA BD BA BA BAλλ⋅=⋅=.又22BA BD BA BA⋅==,所以1λ=,所以BD在BA上的投影向量为BA,所以DA BA⊥.故BD是O的直径,所以BC CD⊥.在ABC中,1c=,122πsin sin6cARBC=∠==,所以2BD=,在ABD△中,223AD BD AB=-=.设四边形ABCD的面积为S,CBDθ∠=,π0,2θ⎛⎫∈ ⎪⎝⎭,则2cosCBθ=,2sinCDθ=,所以ABD CBDS S S=+△△1122BAD CDAB C=⋅⋅+3sin22θ=+,当π22θ=时,S最大,所以四边形ABCD 面积最大值为312+.解法三:如图1设ABC的外接圆的圆心为O,半径为R,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅= ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,223AD BD AB =-=.设四边形ABCD 的面积为S ,点C 到BD 的距离为h ,则ABD CBD S S S =+△△1122AD h AB BD ⋅+⋅=32h =+,当1h R ==时,S 最大,所以四边形ABCD 面积最大值为312+.解法四:设ABC 的外接圆的圆心为O ,半径为R ,在ABC 中,1c =,122πsin sin 6c A R BC =∠==,故ABC 外接圆O 的半径1R =.即1OA OB AB ===,所以π3AOB ∠=.如图2,以ABC 外接圆的圆心为原点,OB 所在直线为x 轴,建立平面直角坐标系xOy ,则13,22A ⎛⎫⎪⎪⎝⎭,()10B ,.因为C ,D 为单位圆上的点,设()cos ,sin C αα,()cos ,sin D ββ,其中()0,2πα∈,()0,2πβ∈.所以13,22BA ⎛⎫=- ⎪ ⎪⎝⎭,()cos 1,sin BD ββ=- ,代入2BA BD BA ⋅= ,即1BA BD ⋅=,可得113cos sin 1222ββ-++=,即π1sin 62β⎛⎫-= ⎪⎝⎭.由()0,2πβ∈可知ππ11π,666β⎛⎫-∈- ⎪⎝⎭,所以解得ππ66β-=或π5π66β-=,即π3β=或πβ=.当π3β=时,A ,D 重合,舍去;当πβ=时,BD 是O 的直径.设四边形ABCD 的面积为S ,则1313sin sin 2222ABD CBD S S S BD BD αα=+=⋅+⋅=+△△,由()0,2πα∈知sin 1α≤,所以当3π2α=时,即C 的坐标为()0,1-时,S 最大,所以四边形ABCD 面积最大值为312+.21.如图,已知四棱锥P ABCD -的底面为菱形,且60ABC ∠=︒,2AB =,2PA PB ==.M 是棱PD 上的点,O 是棱AB 的中点,PO 为四棱锥P ABCD -的高,且四面体MPBC 的体积为36.(1)证明:PM MD =;(2)若过点C ,M 的平面α与BD 平行,且交PA 于点Q ,求多面体DMC AQB -体积.【答案】(1)证明见解析(2)32【解析】【分析】(1)由题意AD 平面PBC ,求得体积关系:12M PBC D PBC V V --=,即可得出答案;(2)建立空间直角坐标系,写出点的坐标,求出平面α的法向量为n,设()0,,AQ AP λλλ== ,由0n CQ ⋅= 得23λ=,求出ACQ 面积,平面ACQ 的法向量1n ,利用向量法求出M 到平面ACQ 的距离d ,进而求得M ACQ V -,Q ABC V -,M ADC V -,相加即可得出答案.【小问1详解】因为2PA PB ==,2AB =,AB 中点O ,所以PO AB ⊥,1PO =,1BO =.又因为ABCD 是菱形,60ABC ∠=︒,所以CO AB ⊥,3CO =.因为AD BC ∥,BC ⊂平面PBC ,AD ⊄平面PBC ,所以AD 平面PBC ,所以11131233323A D PBC A PBC P ABC BC V V V P S O ---====⨯⨯⨯⨯=⋅△.因为3162M PBC D PBC V V --==,所以点M 到平面PBC 的距离是点D 到平面PBC 的距离的12,所以PM MD =.【小问2详解】因为PO ⊥平面ABCD ,,BO CO ⊂平面ABCD ,所以PO BO ⊥,PO CO ⊥,又BO CO ⊥,如图,以O 为坐标原点,OC ,OB ,OP的方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则()0,1,0A -,()0,1,0B ,()3,0,0C,()3,2,0D-,()0,0,1P ,所以31,1,22M ⎛⎫- ⎪ ⎪⎝⎭,()3,1,0AC =,()3,1,0BC =-,()3,3,0BD =-,()0,1,1AP = ,31,1,22CM ⎛⎫=-- ⎪ ⎪⎝⎭.设平面α的法向量为(),,n x y z = ,则00n BD n CM ⎧⋅=⎪⎨⋅=⎪⎩ ,即33031022x y x y z ⎧-=⎪⎨--+=⎪⎩,取1y =,得()3,1,5=n .因为Q AP ∈,设()0,,AQ AP λλλ==,则()3,1,CQ AQ AC λλ=-=-- ,因为3150n CQ λλ⋅=-+-+= ,所以23λ=,23AQ AP =,所以123,,33CQ ⎛⎫=-- ⎪⎝⎭ ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,()22212423333CQ ⎛⎫⎛⎫=-+-+= ⎪ ⎪⎝⎭⎝⎭,222223332AQ ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,ACQ 中,2221cos 822422332242233AQC ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭⨯⨯∠==,0πAQC <∠<,2137sin 188AQC ⎛⎫∠=-= ⎪⎝⎭,1224237733831sin 22ACQ S AQ CQ AQC =⨯⨯⨯⨯⨯∠⨯==△,设平面ACQ 的法向量为()1111,,n x y z = ,则1100n AQ n CQ ⎧⋅=⎪⎨⋅=⎪⎩,即111112203323033y z y z x ⎧+=⎪⎪⎨⎪--+=⎪⎩.取11x =,得()11,3,3n =-.设M 到平面ACQ 的距离为d ,又31,1,22CM ⎛⎫=-- ⎪ ⎪⎝⎭ ,则()()()()1222131113322133217d CM n n ⎛⎫-⨯+-⨯-+⨯ ⎪===+⋅⎝⎭-+,11219733337M ACQ ACQ V S d -=⨯⨯⨯=⨯=△,∵23AQ AP = ,∴Q 到平面ABC 的距离为2233PO =,又12332ABC S =⨯⨯= ,∴1223339Q ABC ABC V S -=⨯⨯=△,∵PM MD =,∴M 到平面ADC 的距离为1122PO =,又3ADC ABC S S ==△△,∴113326M ADC ADC V S -=⨯⨯=△,多面体DMC AQB -体积为323339962M ACQ Q ABC M ADC V V V V ---=++=++=.22.如图1,某景区是一个以C为圆心,半径为3km 的圆形区域,道路1l ,2l 成60°角,且均和景区边界相切,现要修一条与景区相切的观光木栈道AB ,点A ,B 分别在1l 和2l 上,修建的木栈道AB 与道路1l ,2l 围成三角地块OAB .(注:圆的切线长性质:圆外一点引圆的两条切线长相等).(1)当OAB 为正三角形时求修建的木栈道AB 与道路1l ,2l 围成的三角地块OAB 面积;(2)若OAB 的面积103S =,求木栈道AB 长;(3)如图2,设CAB α∠=,①将木栈道AB 的长度表示为α的函数,并指定定义域;②求木栈道AB 的最小值.【答案】(1)2273km(2)3km 3(3)①33π0πtan 3tan 3AB ααα⎛⎫=+<< ⎪⎛⎫⎝⎭- ⎪⎝⎭,②63km 【解析】【分析】(1)运用等面积法可求得等边三角形的边长,进而求得等边三角形的面积.(2)方法1:运用内切圆性质及三角形面积公式可求得结果.方法2:运用两个三角形面积公式可得a b c ++,ab 的值,再结合余弦定理可得22()3c a b ab =+-,联立可求得AB 的长.(3)①运用内切圆性质可得π3CBM α∠=-,进而运用直角三角形中的正切公式可表示出AB .②方法1:运用分离常数法、“1”的代换及基本不等式可求得结果.方法2:运用切化弦、和角公式、积化和差公式化简AB 表达式,再结合三角函数在区间上求最值即可.方法3:运用切化弦、和差角公式、二倍角公式、辅助角公式化简,再结合三角函数在区间上求最值即可.【小问1详解】如图所示,设三角地块OAB 面积为S ,等边△OAB 边长为a ,所以由等面积法得:211π33sin 223S a a =⨯⨯=,解得63a =,所以221π3sin (63)273234OAB S a ==⨯=△.故修建的木栈道AB 与道路1l ,2l 围成的三角地块OAB 面积为273平方千米.【小问2详解】方法1:设圆C 分别与OB 、OA 、AB 相切于点N 、E 、M ,如图所示,则3NC =,NC OB ⊥,1π26NOC BOA ∠=∠=,所以在Rt ONC △中,33πtan6NCON ==,所以33OE ON ==,设BM BN m ==,AE AM n ==,所以12(33)31032AOB S m n =⨯⨯++⨯=△,解得:33m n +=,即:33AB =.故木栈道AB 长为3km 3.方法2:设三角地块OAB 面积为S ,OB a =,OA b =,AB c =,3r =,由等面积法可得:()11sin 22S ab BOA r a b c =∠=++,即:()()13103103242433r a b c ab a b c ab =++=⇒=++=,所以3203a b c ++=①,40ab =②,在△OAB 中,由余弦定理得2222222cos 2cos60c a b ab BOA c a b ab ︒=+-∠⇒=+-222()3a b ab a b ab =+-=+-,即:22()3c a b ab =+-③,由①②③解得:33c =.故木栈道AB 长为3km 3.【小问3详解】如图所示,①由题意知,2π3OBA OAB ∠+∠=,由内切圆的性质可知,π3CBA CAB ∠+∠=,设直线AB 和圆C 相切点M ,CAB α∠=,则π3CBM α∠=-,因为00π003CAB CBA αα>⎧∠>⎧⎪⇒⎨⎨∠>->⎩⎪⎩,解得:π03α<<,又因为tan CM AM α=,πtan 3CMBM α⎛⎫-= ⎪⎝⎭,所以tan 3AM α=,πn 33ta BM α=⎛⎫- ⎪⎝⎭,所以33π0πtan 3tan 3AB AM BM ααα⎛⎫=+=+<< ⎪⎛⎫⎝⎭- ⎪⎝⎭.即:33π0πtan 3tan 3AB ααα⎛⎫=+<< ⎪⎛⎫⎝⎭- ⎪⎝⎭.②方法1:3tan 1312333πtan tan tan 3tan 3tan ta 3331n AB ααααααα⎛⎫+=+=+=+- ⎪ ⎪⎛⎫--⎝⎭- ⎪⎝⎭()143tan 4tan 3tan 3tan 333533tan tan 3tan 3tan αααααααα⎛⎫-⎛⎫⎡⎤=++--=++- ⎪ ⎪ ⎪⎣⎦--⎝⎭⎝⎭3(54)3363≥⨯+-=,当且仅当π6α=时等号成立,故木栈道AB 的长度最小值为63km .方法2:πππcos()cos sin()sin cos()33333πππtan sin sin()sin sin()33cos tan 333AB αααααααααααα⎛⎫--+- ⎪=+=+=⨯ ⎪⎛⎫ ⎪--- ⎪⎝⎭⎝⎭ππsin[()]sin333333π11ππ1ππcos(2)cos[()]cos[()]cos(2)cos 32233233αααααααα-+=⨯=⨯=⎡⎤⎡⎤-----+---⎢⎥⎢⎥⎣⎦⎣⎦因为π03α<<,所以πππ2333α-<-<,所以1πcos(2)123α<-≤,所以3363π1cos(2)32AB α=≥--,故木栈道AB 的长度最小值为63km .方法3:πππcos()cos sin()sin cos()33333πππtan sin sin()sin sin()33cos tan 333AB αααααααααααα⎛⎫--+- ⎪=+=+=⨯ ⎪⎛⎫ ⎪--- ⎪⎝⎭⎝⎭ππsin[()]sin333333π13131sin(2)sin (cos sin )sin 2(1cos 2)622244αααααααα-+=⨯=⨯=+----,因为π03α<<,所以ππ5π2666α<+<,所以1πsin(2)126α<+≤,所以3363π1sin(2)62AB α=≥+-,故木栈道AB 的长度最小值为63km .【点睛】方法点睛:解三角形的应用问题的要点(1)从实际问题抽象出已知的角度、距离、高度等条件,作为某个三角形的元素;(2)利用正弦、余弦定理解三角形,得实际问题的解.解三角形中最值(范围)问题的解题策略利用正弦、余弦定理以及面积公式化简整理,构造关于某一个角或某一边的函数或不等式,利用函数的单调性或基本不等式等求最值(范围).。

福建省厦门市2010-2011学年高一上学期期末考试(数学)扫描版

福建省厦门市2010-2011学年高一上学期期末考试(数学)扫描版

参考答案一、选择题:本大题共10小题,每小题5分,共50分.1.A 【解析】通过数轴易得答案.2.C 【解析】A+B 表示“朝上一面的数有2,4,5,6”,所以选择C .3.C 【解析】样本数据落在区间(10,40]的频数有52,所以选择C .4.C 【解析】运行7次即得答案.5.D 【解析】分类求零点,累加即得零点个数3.6.A 【解析】去掉一个最高分,一个最低分,从小到到大排序,容易得选项A .7.D 【解析】几何概型8.D 【解析】画散点图,或逆推验证选择D .9.C 【解析】循环运算3次,输出4n =.10.B 【解析】122011()8f x x x = ,即122011log ()8a x x x = ,∴222122011()()()f x f x f x +++ =222122011log ()a x x x =1220112log ()16a x x x = .二、填空题:本大题共4小题,每小题4分,共16分.11.52 【解析】由214m -=,得52m =. 12.785 667 199 507 175 【解析】第8行第7列的数是7,第一个三位数是78513.2 【解析】由图(3)1,(1)2f f ==,所以[(3)]2f f =.14.5 【解析】画出函数()f x 的图象,可求得函数的最大值是2,最小值是3-.三、解答题:本大题共3小题,共34分.15.(本题满分10分)解:(Ⅰ)依题意,得101110x x x +>⎧⇔-<<⎨->⎩, ┈┈┈┈┈┈┈┈┈┈┈4分 所以,函数()f x 的定义域为{}11x x -<<.┈┈┈┈┈┈┈┈┈┈┈6分(Ⅱ)∵函数()f x 的定义域为{}11x x -<<, ┈┈┈┈┈┈┈┈┈┈┈7分又∵()log (1)log (1)()a a f x x x f x -=-++=,┈┈┈┈┈┈┈┈┈┈11分∴函数()f x 为偶函数. ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈12分16.(本题满分12分)解:(I )一共有8种不同的结果,列举如下:(红、红、红、)、(红、红、黑)、(红、黑、红)、(红、黑、黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、黑、黑).┈┈┈┈┈┈┈┈┈6分(Ⅱ)记“3次摸球所得总分为5”为事件A ,事件A 包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红),事件A 包含的基本事件数为3, ┈┈┈┈┈┈┈┈┈┈┈┈9分由(I )可知,基本事件总数为8,所以事件A 的概率为3()8P A =.┈12分 17.(本题满分12分)解:(I )∵xx f 11)(-= , 其定义域为}{0≠x x , ∴)(x f 的增区间为)0,(-∞和),0(+∞. ┈┈┈┈┈┈┈┈┈┈┈┈4分(Ⅱ)2)1()(--=x x g .(不唯一) ┈┈┈┈┈┈┈┈┈┈┈┈┈8分(Ⅲ)1211122)12(+-=+=+x x x xf , ┈┈┈┈┈┈┈┈┈┈┈┈┈9分 ∵11121x -<+, ┈┈┈┈┈┈┈┈┈┈┈┈┈┈10分 ∴ (21)1x f +< , ∵)12(+x f 31m <-对任意x R ∈恒成立,∴ 311m -≥,┈┈┈┈11分 解得23m ≥, ∴实数m 的取值集合是23m m ⎧⎫≥⎨⎬⎩⎭.┈┈┈┈┈┈┈┈┈┈┈┈┈12分B 卷(共50分)甲 卷四、填空题:本大题共4小题,每小题4分,共16分.18.12【解析】分别求平均数3,5x y ==,代入回归方程即得. 19.14π-【解析】用几何概型公式易求得答案. 20.12 【解析】由偶函数条件得0b =,由112a a a -=-⇒=. 21.908a <<【解析】由99808a a ∆=->⇒<,又0a >,所以908a <<. 五、解答题:本大题共3小题,共34分.22.(本题满分10分)解:(Ⅰ)当00.1t ≤≤时, y kt =,图像过点(0.1,1),┈┈┈┈┈┈┈1分∴10.110k k =⇒=, ∴10y t =; ┈┈┈┈┈┈┈2分当0.1t ≥时,1()16t a y -=,图像过点(0.1,1),∴0.111()0.116a a -=⇒=, ∴0.11()16t y -=; ┈┈┈┈┈┈┈┈┈┈┈4分 综上,从药物投放开始,每立方米空气中含药量y (毫克)与时间t (小时)之间的函数关系式为0.110,00.11(),0.116t t t y t -≤≤⎧⎪=⎨>⎪⎩. ┈┈┈┈┈┈┈┈┈┈┈5分 (Ⅱ)药物释放完毕后,且达到一定标准,学生才能回到教室.当0.1t >,有0.11()16t y -=,由0.25y <得0.111()0.6164t t -<⇔>,┈┈9分 答:从药物投放开始,至少需要经过0.6小时,学生才能回到教室. ┈10分23.(本题满分12分)解:(Ⅰ)茎叶图如图:┈┈┈┈┈┈┈┈┈1分甲种树苗高度的中位数为2529272+=, ┈┈┈┈┈┈┈┈┈┈┈2分 平均数为40101001202710+++=; ┈┈┈┈┈┈┈┈┈┈┈3分 乙种树苗高度的中位数为273028.52+=, ┈┈┈┈┈┈┈┈┈┈┈4分 平均数为403040301603010++++=. ┈┈┈┈┈┈┈┈┈┈┈5分 (Ⅱ)由(Ⅰ)知27x =,记事件A 为“从10株乙种树苗中抽取1株,抽到的树苗高度超过x ”,则事件A的结果有30,44,46,46,47共5种,┈┈┈┈┈┈6分 ∴51()102P A ==, ┈┈┈┈┈┈┈┈┈┈┈┈┈7分 答:从10株乙种树苗中抽取1株,抽到的树苗高度超过x 的概率为12.┈┈8分 (Ⅲ)由框图可知:222221[(3727)(2127)(3127)(2027)(2927)10S =-+-+-+-+- 22222(1927)(3227)(2327)(2527)(3327)]+-+-+-+-+-1(1003616494642516436)10=+++++++++35=,┈┈┈┈┈10分 输出的S 大小为35, ┈┈┈┈┈┈┈┈┈┈┈┈11分S 表示10株甲种树苗高度的方差,是描述树苗高度离散程度的量,S 值越小,表示长得越整齐;S 值越大,表示长得越参差不齐. ┈┈┈┈┈┈┈┈┈┈┈┈12分24.(本小题满分12分)解:(Ⅰ)因为1x =时,()f x 有最大值,所以12b a-=,即2b a =-, ┈1分 因为函数()()g x f x x =-只有一个零点,所以2(21)0ax a x -+=有等根. 所以2(21)0a ∆=+=, ┈┈┈┈┈┈┈┈┈┈┈3分 即1,12a b =-=.所以21()2f x x x =-+. ┈┈┈┈┈┈┈┈┈┈┈4分 (Ⅱ)①当1m n <<时,)(x f 在[, ]m n 上单调递增,所以()3,()3,f m m f n n ==所以,m n 是方程2132x x x -+=的两根. 解得4,0m n =-= ; ┈┈┈┈┈┈┈┈┈┈┈7分②当1m n ≤≤时,132n =,解得16n =, 不符合题意;┈┈┈┈┈9分 ③当1m n <<时,)(x f 在[, ]m n 上单调递减,所以()3,()3,f m n f n m == 即22113,322m m n n n m -+=-+=, 相减得221()()3()2m n m n n m --+-=-, 因为m n ≠,所以1()132m n -++=-,即8m n +=, ┈┈┈┈┈┈11分 将8n m =-代入213,2m m n -+= 得213(8),2m m m -+=- 但此方程无解, 所以4,0m n =-=时,)(x f 的定义域为[, ]m n ,值域是[3, 3]m n .┈┈12分乙 卷四、填空题:本大题共4小题,每小题4分,共16分.18.7 【解析】分别求平均数3,5x y ==,代入回归方程即得.19.1【解析】用几何概型公式易求得答案. 20.2010 【解析】取1,1a b ==,代入条件得(2)4f =,以此类推分别求(3),(4),f f ,发现规律,也可以构造函数()2x f x =.21.210<<a 【解析】由条件知,对任意的实数b ,方程()0212=--+b x b ax 总有两个相异的实数根.∴()0812>+-=∆ab b 恒成立 ,即对任意实数b , ()01282>+-+b a b 恒成立.从而()04282<--=∆'a , 解得210<<a .五、解答题:本大题共3小题,共34分.22.(本题满分10分)解:(Ⅰ)当00.1t ≤≤时,y 与t 成正比,可设y kt =, ┈┈┈┈┈┈┈1分由图可知,当0.1x =时,1y =,∴10.110k k =⇒=,∴10y t =;┈2分当0.1t ≥时,1()16t a y -=,图像过点(0.1,1),∴0.111()0.116a a -=⇒=, ∴0.11()16t y -=; ┈┈┈┈┈┈┈┈┈┈┈4分 综上,从药物投放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为0.110,00.11(),0.116t t t y t -≤≤⎧⎪=⎨>⎪⎩. ┈┈┈┈┈┈┈┈┈┈┈5分 (Ⅱ)药物投放后,当00.1t ≤≤时,10y t =,由0.25y ≥得100.25t ≥,∴0.025t ≥; ┈┈┈┈┈┈┈┈┈┈┈7分当0.1t >,有0.11()16t y -=, 由0.25y ≥得0.111()0.6164t t -≥⇔≤, ┈┈┈┈┈┈┈┈┈┈┈9分 答:从药物投放开始,0.025小时至0.6小时这段时间,学生必须离开教室.┈10分23.(本题满分12分)解:(Ⅰ)茎叶图如图;┈┈┈┈┈2分统计结论: ┈┈┈┈┈┈┈┈┈┈┈5分(1)甲种树苗的平均高度小于乙种树苗的平均高度;(2)甲种树苗比乙种树苗长得更整齐;(3)甲种树苗高度的中位数为27,乙种树苗高度的中位数为28.5;(4)甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散.(Ⅱ)40101001202710x +++==,由框图可知: 222221[(3727)(2127)(3127)(2027)(2927)10S =-+-+-+-+- 22222(1927)(3227)(2327)(2527)(3327)]+-+-+-+-+-1(1003616494642516436)10=+++++++++35=, ┈┈┈┈┈7分 输出的S 大小为35,S 表示10株甲种树苗高度的方差,是描述树苗高度离散程度的量,S 值越小,表示长得越整齐;S 值越大,表示长得越参差不齐. ┈┈┈┈┈┈┈┈┈┈┈8分(Ⅲ)从甲、乙两种树苗高度在30厘米以上(含30厘米)中各抽取1株的所有可能结果为:(37,30),(37,47),(37,46),(37,44),(37,46),(31,30),(31,47),(31,46),(31,44),(31,46),(32,30),(32,47),(32,46),(32,44),(32,46),(33,30),(33,47),(33,46),(33,44),(33,46),可能结果数为20种, ┈┈┈┈┈┈┈┈┈┈┈9分记事件A 为“样本平均数不小于40”,事件A 包含的结果有:(37,47),(37,46),(37,44),(37,46),(33,47)共5种结果,┈┈10分 ∴51()204P A ==; 答:各样本平均数不小于40的概率为14. ┈┈┈┈┈┈┈┈┈┈┈12分24.(本题满分12分)解:(Ⅰ)当0=a 时,44)(2+=x x x f , 对任意),(+∞-∞∈x ,)(444)()(4)(22x f x x x x x f -=+-=+--=-, )(x f ∴为奇函数. ┈┈┈┈┈┈┈┈┈┈┈2分当0≠a 时,4)(4)(2+-=x a x x f , 取1±=x ,得058)1()1(≠-=+-a f f ,058)1()1(≠-=--f f , (1)(1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数. ┈┈┈┈┈┈┈┈┈┈┈5分(Ⅱ)证明:4)(4)(2+-=x a x x f ,任取],[,21n m x x ∈且21x x <,┈┈┈┈┈6分 则1212121212222212124()4()4()[()4]()()44(4)(4)x a x a x x a x x x x f x f x x x x x ---+-+-=-=++++ ┈┈┈┈┈7分设12)(2--=ax x x g ,则,0)(,0)(21≤≤x g x g即221122210,210x ax x ax --≤--≤, ┈┈┈┈┈┈┈┈┈┈┈8分02)(2212221≤-+-+∴x x a x x , ┈┈┈┈┈┈┈┈┈┈┈9分 又∵12x x ≠∴212()0x x -> 2212122x x x x ∴+> 02)(222121<-+-∴x x a x x ,即01)(2121<-+-x x a x x ┈┈┈┈┈┈10分 又0,01)(4)(2121212121<->+-+>+-+x x x x x x a x x x x a , 0)()(21<-∴x f x f ┈┈┈┈┈┈┈┈┈┈┈11分 即12()()f x f x <,故)(x f 在区间],[n m 上是增函数. ┈┈┈┈┈┈┈┈12分。

福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)

福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)

厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。

厦门市2020—2021学年度第一学期高一年级质量检测数学试卷(答案)定稿

厦门市2020—2021学年度第一学期高一年级质量检测数学试卷(答案)定稿

厦门市2020-2021学年度第一学期高一年级质量检测数学参考答案一、单选题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.C 2.D 3.A 4.B 5.C (教材P140.3) 6.B 7.A (教材P222.例6) 8.B (教材P58.10)二、多选题:本题共4小题,每小题5分,共20分. 在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分. 9.ABD 10.CD 11.BC 12.BC三、填空题:本题共4小题,每小题5分,共20分. 13.2 14.π 15.32;22(教师用书P52.12) 16.1316. (教材P231问题、教材P245例2) 解析:以枢轮中心为原点建立坐标系,则P 点纵坐标:1πππ1.7sin 1.7cos 21515y x x ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭;水面纵坐标:2 1.190.017y x =−−, P 点进入水中,则1.7cos 1.190.01715x x π⎛⎫<−− ⎪⎝⎭,即cos 0.70.0115x x π⎛⎫<−− ⎪⎝⎭,作出cos 15y x π⎛⎫= ⎪⎝⎭和0.70.01y x =−−的图象,在[]10,15存在一个交点,令()cos 0.70.0115h x x x π⎛⎫=++⎪⎝⎭, 因为()120h >,()130h <,所以点P 至少经过13分钟进入水中.四、解答题:本题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.17.本题考查函数的基本性质、二次不等式、韦达定理等基础知识;考查推理论证、运算求解等能力;考查函数与方程、化归与转化、数形结合等思想.满分10分.解:由()()2+2(2)g x f x x x b x c ==+++···················································· 1分 因为()g x 为偶函数,所以()g x 对称轴202b x +=−=,得2b =−. 所以2()2f x x x c =−+ ··············································································· 4分 方案一:选条件①.因为()f x 的对称轴为1x =,且开口向上 ························································ 5分 所以当2x =−时,()f x 取得最大值5····························································· 7分 所以()2445f c −=++=,解得3c =− ························································ 9分所以2()23f x x x =−− ··············································································· 10分 方案二:选条件②.因为()0f x ≤的解集为{}1,且函数()f x 图象开口向上,所以()f x 有且仅有一个零点为1 ··································································· 7分 所以(1)120f c =−+= ·············································································· 8分 所以1c = ································································································· 9分 所以2()2+1f x x x =−················································································· 10分 方案三:选条件③.因为12,x x 为方程220x x c −+=的两根. 所以440c ∆=−,即1c .且12+2x x =,12x x c = ··············································································· 7分 所以222121212()24210x x x x x x c +=+−=−= ················································ 8分 解得3c =− ······························································································· 9分 所以2()23f x x x =−− ··············································································· 10分 18.本题考查三角函数的图象和性质等知识;考查推理论证能力和运算求解能力;考查数形结合,化归与转化等数学思想. 本题满分12分. 解:(1)由图可知,πππ4362T ⎛⎫=−−= ⎪⎝⎭ ····························································· 1分 解得2πT = ······························································································ 2分 因为2πT ω=,所以1ω=············································································· 3分 所以()()sin f x x ϕ=+.因为()f x 的图象过点π,06⎛⎫− ⎪⎝⎭,所以πsin =06ϕ⎛⎫−+ ⎪⎝⎭···································· 4分 所以ππ6k ϕ−+=,Z k ∈得ππ6k ϕ=+, 因为π2ϕ<,所以π=6ϕ ············································································· 5分所以()πsin 6f x x ⎛⎫=+⎪⎝⎭·············································································· 6分 (2)解法一:由题意,()πsin 26g x x ⎛⎫=+⎪⎝⎭·················································· 8分 令π26t x =+,因为0πx ≤≤,所以π13π66t ≤≤············································· 9分 由()12g x =,得1sin 2t =,得π6t =,5π6,13π6. 即ππ266x +=或5π6或13π6,解得0x =,π3,π. 所以方程()12g x =在[]0,π的解为0,π3,π ················································· 12分 解法二:令()12g x =,得1ππ22π66x k +=+,1Z k ∈或2π5π22π66x k +=+,2Z k ∈ ··············································································································· 8分 解得1πx k =,1Z k ∈或2ππ3x k =+,2Z k ∈ ·················································· 10分 因为[]0,πx ∈,所以0x =,π3,π 所以方程()12g x =在[]0,π的解为0,π3,π ················································· 12分 19. (教材P161.12)本题考查函数单调性的证明及其应用,对数函数的图象与性质,对数不等式的求解等知识,考查分类讨论、化归与转化等思想.解:(1)()f x 是减函数 ··············································································· 1分 证明如下:12,R x x ∀∈,且12x x < 则121211()()1+21+2x x f x f x −=− ·································································· 2分 211222(1+2)(1+2)x x x x −=································································· 4分 因为12x x <,所以21220x x −>,又因为11+20x >,21+20x > ··························· 5分所以12()()0f x f x −>,即12()()f x f x >.所以()f x 是减函数 ····················································································· 6分 (2)由题意得()1log 2(1)3a f f >=,由(1)知()f x 是减函数 ························· 7分 所以log 21a < ··························································································· 8分 当1a >时,由log 21log a a a <=,得2a >,所以2a > ··································· 10分 当01a <<时,由log 21log a a a <=,得2a <,所以01a <<. 综上所述:a 的取值范围为()()0,12,+∞ ······················································ 12分 20. (教材P255.22)本题考查三角函数图象与性质,诱导公式. 考查运算求解,推理论证能力. 考查化归与转化,数形结合等数学思想. 本题满分12分.解:(1)()112cos 2222f x x x m =+++ ················································ 2分 1sin 262x m π⎛⎫=+++ ⎪⎝⎭·························································· 3分当ππ22π62x k +=−+,Z k ∈,即ππ3x k =−+,Z k ∈时,()f x 的最小值为132m −=−,得52m =− ······················································ 4分 因为()sin 226f x x π⎛⎫=+− ⎪⎝⎭,令26z x π=+,函数sin 2y z =−的单调递减区间是π3π2π,2π22k k ⎡⎤++⎢⎥⎣⎦,Z k ∈ ······················· 5分 且由ππ3π2π22π262k x k +++,得π2ππ+π63k x k + 所以函数()f x 的单调递减区间是π2ππ+,π63k k ⎡⎤+⎢⎥⎣⎦,Z k ∈ ······························· 6分 (2)由题意得:πsin sin 2202a x x ⎛⎫++−< ⎪⎝⎭在()0,π上恒成立 所以sin cos 220a x x +−<在()0,π上恒成立 ·················································· 7分所以2sin 12sin 0a x x −−<在()0,π上恒成立 ················································· 8分 因为()0,πx ∈,所以(]sin 0,1x ∈ ································································· 9分 所以22sin 112sin sin sin x a x x x+<=+在()0,π上恒成立 又因为12sin 22sin x x +,当且仅当12sin sin x x =,即π4x =或3π4时,等号成立.所以a 的取值范围为(−∞ ···································································· 12分 21.(教材P156.11)本题考查指数函数模型应用,对数运算等知识;考查运算求解和推理论证等能力、应用意识与创新意识;考查化归与转化、函数与方程等数学思想.本题满分12分. 解:(1)记20172019−年全球年产生数据量的年增长率分别为1p ,2p ,3p 依题意得12610.4418p =−≈,23310.2726p =−≈,34110.2433p =−≈ ················ 3分 所以()10.440.270.240.323p =++≈ ··························································· 4分 又因为18a = ···························································································· 5分 所以()()18(10.32)18 1.32N ttf t t =⨯+=⨯∈ ················································ 6分 (2)设从2020年起,经过n 年我国的数据量将达到全球数据总量的30%,由(1)知2020年全球年产生数据量为418 1.32⨯ ············································· 7分 依题意得()440.218 1.32(10.5)18 1.320.3nn +⨯⨯⨯+⨯⨯ ···································· 9分所以 1.53 1.322n⎛⎫ ⎪⎝⎭即 1.51.323lg3lg 3lg 20.4770.3010.1762log3.21.52lg 3lg 2lg1.320.4770.3010.1210.055lg 1.32n −−==≈==−−−−··············································································································· 11分答:估计到2024年,我国的数据量将达到全球数据总量的30%. ······················· 12分 22.本题考查函数单调性与最值、零点与基本不等式等基本知识;考查推理论证能力、运算求解能力;考查化归与转化、函数与方程、分类讨论等数学思想方法. 解:(1) 因为(1)xy a a =>,1y x=−在(0,)+∞上单调递增.............................................. 1分所以1()(1)xf x a a x=−>在(0,)+∞上单调递增 ................................................................. 2分 所以()f x 在[1,2]的最大值为()2122f a =− ....................................................................... 3分所以21722a −=,所以2a = ................................................................................................... 4分(2)证明:因为(,0)x ∈−∞,所以1()0xf x a x=−>所以1()xf x a x =−在(,0)−∞不存在零点 ............................................................................. 5分由(1)得1()xf x a x=−在(0,)+∞上单调递增,又因为11()0a f a a a=−<,(1)10f a =−>,所以()f x 在(0,)+∞上有唯一零点0x ,且01(,1)x a∈ ......................................................... 7分方法一:因为010xa x −=,所以001x x a =,00log 0a x x += .......................................... 8分 因为01(,1)x a ∈,所以012x x +>, 所以0012x x −<,00001log (2)log log a a a x x x x −<=−= .............................................. 10分 由001x x a=,00log (2)a x x −<所以02200000log (2)22x a x x x ax x −+−<+− ................................................................... 11分因为001x <<,所以2002x x +<,得证. ........................................................................ 12分方法二:因为010x a x −=,有001x x a = 所以02200000log (2)2log (2)2x a a x x x ax x −+−=−+− ..................................................... 8分因为()log (2)a g x x =−在1(,1)a 单调递减, 所以01log (2)log (2)a a x a−<−, 当1a >时,12a a +>,所以12a a−< 有1log (2)log 1a a a a−<=,即0log (2)1a x −< ................................................................ 10分因为2()2h x x =−在1(,1)a单调递增,所以2021x −<− .................................................. 11分所以200log (2)20a x x −+−<,得证 .................................................................................. 12分。

厦门市2022-2023高一上学期期末数学试卷+答案

厦门市2022-2023高一上学期期末数学试卷+答案

厦门市2022—2023学年度第一学期高一年级质量检测数学试题(考试时间:120分钟满分:150分)考生事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

答在试卷上无效。

3.考试结束后,将答题卡交回。

一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合}32|{++∈∈=N n n n x N x A ,的公倍数与是,}6|{+∈==N n n x x B 且,,则下列选项正确的是A.BA ⊇B.BA ⊆C.B A =D.∅2.设实数x 满足0<x ,则函数1132-++=x x y 的最大值是A.221-B.225+C.221+D.225-3.下列选项正确的是A. 2.11.2 2.15<B.-1.120.81.1<-C.2)3(3243<D.-25.1 1.77.1<-4.若角α的终边过点()0)5,(≠-a a B ,则下列选项正确的是A.0sin >αB.0cos >αC.0tan >αD.0cos <α5.函数[]ππ,-cos sin )(2在x x xx x f ++=的图象大致是A BCD6.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒。

该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上中下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B 表示A 马与B 马比赛,A 马获胜)。

一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利。

福建省厦门市湖滨中学2018-2019学年高一上学期期中考试数学试题(精品Word版,含答案解析)

福建省厦门市湖滨中学2018-2019学年高一上学期期中考试数学试题(精品Word版,含答案解析)

福建省厦门市湖滨中学2018-2019学年高一上学期期中考试数学试题A卷一、选择题(每题5分共60分每小题只有一个正确选项)1.设集合,则()A. B. C. D.【答案】C【解析】【分析】根据全集和补集的概念得到,再由交集的概念得到结果.【详解】集合,,,根据集合的交集的概念得到.故答案为:C【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.2.若集合M={x|x≤6},,则下面结论中正确的是()A. a MB. a MC. a∈MD. a∉M【答案】C【解析】【分析】根据集合与元素的关系得到结果即可.【详解】集合M={x|x≤6},,a满足集合M的不等式,故得到a∈M.故答案为:C.【点睛】这个题目考查的是集合与元素的关系,是属于的关系,集合间的关系是包含关系.较为基础.3.定义在上的函数满足,则的值为()A. -1B. -2C. 1D. 2【答案】B【解析】试题分析:由题,得:,考点:分段函数及函数符号的准确理解.4.下面的函数中是幂函数的是( )①;②;③;④;⑤.A. ①⑤B. ①②③C. ②④D. ②③⑤【答案】C【解析】这三个函数不是幂函数;是幂函数.故选C5.若a>0,a≠1,则函数y=a x﹣1+1的图象一定过点()A. (0,1)B. (1,1)C. (1,2)D. (0,2)【答案】C【解析】【分析】根据题意得到只需要a x﹣1为定值即可,因此次数为0即可.【详解】当指数函数的次数为0时,这个指数的值一定为1,故函数y=a x﹣1+1的图象一定过点(1,2)故答案为:C.【点睛】这个题目考查的是指数函数的性质,指数函数过定点的性质,只需要使得指数函数的次数等于0即可.6.已知在上单调递减,则的取值范围是()A. B. C. D. 以上答案都不对【答案】A【解析】试题分析:因为二次函数开口向上,对称轴为,要使得在上单调递减,满足解得,故选择A考点:二次函数的单调性7.已知,则的大小关系为()A. B. C. D.【答案】B【解析】由题意结合指数函数的对数函数的性质可知:,据此可得:.本题选择B选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.8.函数f(x)=2|x|﹣x2的图象为()A. B.C. D.【答案】A【解析】【分析】根据函数的奇偶性得到AC其中一个是正确的,再代入特殊点x=0得到答案.【详解】函数f(x)=2|x|﹣x2,故函数为偶函数,排除选项B,D,再代入特殊点x=0得到函数值为1,故排除C选项,得到A正确.故答案为:A.【点睛】这个题目考查了已知函数解析式选择函数图像的问题,一般先由函数解析式得到函数的定义域,进行选项的排除,之后可以考虑函数的对称性,值域等进行排除,也可以代入函数的特殊点,考虑函数的极限进行排除,进而得到函数的解析式.9.函数的零点所在的一个区间是()A. B. C. D.【答案】C【解析】试题分析:,,又因为是一个连续的递增函数,故零点在区间内,选C.考点:函数零点的概念及判定定理.10.f(x)是定义域在R上的奇函数,若时,则等于()A. 8B. 4C. 0D. -8【答案】D【解析】【分析】根据函数是奇函数得到,再将2代入函数解析式得到函数值.【详解】根据函数是奇函数得到,由时可得到故答案为:D.【点睛】这个题目考查的是函数奇偶性的应用,函数奇偶性的判断,先要看定义域是否关于原点对称,接着再按照定义域验证和的关系.11.已知定义在R上的奇函数,且为减函数,又知,则的取值范围为( )A. B. C. D.【答案】A【解析】【分析】根据条件得到不等式化为=,由函数的单调性得到变形为:,解出不等式即可.【详解】根据题意得到函数是定义在R上的奇函数,且为减函数,故原不等式化为=,由函数的单调性得到变形为:解得a的范围是:.故答案为:A.【点睛】本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集。

福建省厦门市厦门第一中学2023届数学高一上期末综合测试试题含解析

福建省厦门市厦门第一中学2023届数学高一上期末综合测试试题含解析

解,得到答案
【详解】由题意,函数 f x ln 1 x2 x 1,
f
lg2
f
lg
1 2
ln
1 (lg2)2 lg2
ln
1
(lg
1)2 2
lg
1 2
2
ln 1 (lg2)2 lg2 ln 1 (lg2)2 lg2 2 ln1 2 2
故选 C 【点睛】本题主要考查了函数值的求法,函数性质等基础知识的应用,其中熟记对数的运算性质是解答的关键,着重
A.1
B. 1
C. 3 2
D.
1 2
8.已知命题 p:x 为自然数,命题 q:x 为整数,则 p 是 q 的()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
9.已知函数 f x ln
1 x2 x
1,则1 2
A.1
B. lg2
C.2 10.已知函数
D.0
,则
()
A.5
B.2
C.0
D.1
11.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是
A. y x 1
B. y tan x
C. y x3
D. y 2 x
12.已知向量 a (1, 2) , b (x,3y 5) ,且 a / /b ,若 x , y 均为正数,则 xy 的最大值是
故 D 正确. 故选:D. 2、C 【解析】由已知求得球的半径,再由空间中两点间的距离公式求得|AB|,则答案可求 【详解】∵由已知可得 r 12 22 22 3 ,
而|AB| (1 2)2 (2 2)2 (2 1)2 3 2 ,
∴|AB| 2 r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厦门市2012~2013学年(上)高一质量检测一、选择题:本大题共10小题,每小题5分,共50分,1.已知全集{1,2,3,4,5}U =,集合{1,3}A =,{3,5}B =,则集合()U C AB =( )A .{3}B .{2,4}ﻩﻩC .{1,3,5}ﻩﻩD .{1,2,3,4,5}2.赋值语句3M M =+表示的意义是( )A 、将3M +的值赋给M ﻩB .将M 的值赋给3M +C.M和3M +值相等 ﻩD .以上说法都不对3.袋中装有黑、白两种颜色的球各三个,现从中取出两个球,设事件P :取出的都是黑球;事件Q :取出的都是白球;事件R :取出的球中至少有一个黑球.则下列结论正确的是( )A .P 与R 互斥ﻩ B.任何两个均互斥ﻩ C .Q 和R 互斥 D .任何两个均不互斥 4.函数lg y x = )A.{|2}x x ≤B.{|0}x x >ﻩ C.{|02}x x x <≥或ﻩ D .{|02}x x <≤5.已知有图是某NBA球员连续10场常规赛得分的茎叶图,则该球员这10场比赛的场均得分为( )A.17.3ﻩB.17.5ﻩ C .18.2D.18.46.样本数据4,2,1,0,-2,标准差是( )A .1ﻩ B.2ﻩ C .3ﻩﻩ D.7.一个算法的程序框图如右图所示,则运行该程序输出的结果为( )A .12B.23ﻩﻩC .34D .458.函数31()f x x x=-的图像关于( ) A.x 轴对称 B.y 轴对称 C.直线y x =对称ﻩD .坐标原点对称9.某校采用系统抽样方法,从高一800多名学生中抽50名调查牙齿健康状况.现将800名学生从1到800进行编号,在1~16中随机抽取一个数,如果抽到的是7,则从33~48这一组中应取的数是( ) A.37ﻩﻩ B.38ﻩﻩ C.39 ﻩ D.40INPUT xIF x<=0 THEN y=4*xELSE y=4^x END IF PRINT y END 10.已知函数()f x 式定义在R 上的奇函数,且 (3)()f x f x +=,当(0,1]x ∈时,()2xf x =, 则(8)f =( )A .-2B.2ﻩ C.-4D.4二、填空题:本大题共4小题,每小题4分,共16分11.某单位为了解用电量y 度与x C ︒之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据求得线性回归方程ˆybx a =+中2b =-,并据此预测当气温为4C -︒时,用电量的度数约为12.运行右边程序,可求得(3)(2)f f -+的值为13.已知23,38a b ==,则ab =14.已知函数()33x xf x -=-,则不等式(21)(4)0f x f x -++>的解集为三、解答题:15.(本小题满分10分)已知偶函数2()2(0)f x ax bx a =-+≠的一个零点为1. (1)求,a b 的值;(2)求函数(1)y f x =-在[0,3]上的值域.16.(本小题满分12分)同时抛掷两粒骰子,记事件A :向上的点数是相邻的两个整数. (1)列出试验的所有基本事件,并求事件A 发生的概率()P A ;(2)某人用计算机做随机模拟实验,用Ex cel 软件的随机函数randbe twe en(1,6)得到36组随机数如下:试求事件A 的频率()n f A ,比较()n f A 与()P A ,并用统计的观点解释这一现象.17.(本小题满分12分)已知函数()log (1)a f x x =+的图像过点8(,2)9--.(1)若函数()f x 的定义域为]26,1(-,求函数)(x f 的值域; (2)设函数|)2(|)(-=x f x g ,且有)310()2(b g b g -=+,求实数b 的值.B 卷(共50分)18.已知集合}20|{<<=x x A ,集合}|{a x x B <=,若B A ⊆,则实数a 的取值范围是 19.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的阴影部分都是以正方形的顶点为圆心,半径为2a的圆弧.某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都相等,此人投镖4000此,镖击中空白部分的次数是854此.据此估算:圆周率π约为21.已知**:N N f →是从*N 到*N 的增函数,且2)1(=f ,k k f f 3)]([=,则=)5(f五、解答题:22.(本小题满分10分)已知函数),,1,0()(R c b a a c bx a x f x∈≠>++=(1)若0=b ,且满足1)2(=f ,73)4(=f ,求函数)(x f 的解析式;(2)当2=a 时,若对任意]1,1[,21-∈x x ,恒有4|)()(|21≤-x f x f ,求非负实数b 的取值范围.23.(本小题满分12分)统计某校1000名学生数学某单元水平测试成绩,得到频率分布直方图如图所示.已知频率分布直方图估计的平均分为71分,及格率是%80(满分100分,规定不低于60分为及格). (1)分别求第三、第四组的频率;(2)若从优秀(]100,80[分)、合格()80,60[分)、不合格()60,40[分)钟分层抽取20名学生参加座谈会,问合格学生应抽取多少名?(3)在(2)的条件下,这20名参加座谈会的学生对本单元知识个人掌握程度作出估计(评价区间0分~100分,满分100分),得到下列一组数据:请选择适当的一个数字特征来描述这组数据,并据此评价学生该单元知识掌握情况.24.(本小题满分12分)已知函数⎪⎩⎪⎨⎧-=3)1()(x x ax f 22≤>x x ,R a ∈.(1)当2=a 时,求方程1)(-=x x f 的实数解;(2)若方程13)(-=x x f 有且只有两个实数解,求实数a 的取值范围; (3)已知函数12)()(-+=ax x f x g ,其定义域为]4,2[,求函数的最大值.厦门市2012-2013学年(上)高一质量检测数学试题参考答案 A卷(共100分)一、选择题:本大题共10小题,每小题5分,共50分. 1-5:BACDA 6-10:BCDCA二、填空题:本大题共4小题,每小题4分,共16分.11. 68 12. 4 13. 3 14. {}1x x >- 三、解答题:本大题共3小题,共34分. 15.(本小题满分10分)解:(Ⅰ)依题意得:对于任意x R ∈,均有()()f x f x =-, -------------------------1分2222ax bx ax bx ∴-+=++,20bx ∴=恒成立,0b ∴= ---------------------2分由()10f =得20a b -+=,2a ∴=- ---------------------------4分2a ∴=-,0b = ---------------------------5分(若是由()()11f f =-求得0b =,则需说明经检验满足偶函数,否则扣1分) (Ⅱ)由(Ⅰ)得()2(1)212y f x x =-=--+,抛物线开口向下,对称轴1x =,---7分则函数(1)y f x =-在[]0,1上单调递增,在[]1,3上单调递减,---------------------8分()()()00,12,36f f f ===-, --------------------------∴函数(1)y f x =-在[]0,3上的值域为[]6,2-. --------------------------10分16.(本小题满分12分)解:(Ⅰ)用(m,n )表示同时抛掷两粒骰子的点数,试验所有的结果为:(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) ……………………………..(6,1) (2,2) (3,3) (6,4) (6,5) (6,6) 共有36种, ---------------------------2分其中满足事件A的结果为:(1,2),(2,1),(2,3),(3,2)(3,4),(4,3),(4,5),(5,4),(5,6),(6,5)共10种。

---------------------------4分105()3618P A ∴== ---------------------------6分(Ⅱ)由表可得36,11A n n == ---------------------------8分11()36n f A =---------------------------9分比较()n f A 与P (A ),相差136,相差不大, ---------------------------10分差异的原因:随机事件A的频率()n f A 会随随机实验的变化而变化,随实验的次数的增加,()n f A 越来越趋近稳定值P(A). ---------------------------12分17.(本小题满分12分) 解:(Ⅰ)由已知可得,8log 129a ⎛⎫-+=- ⎪⎝⎭,3a ∴=, ---------------------------2分 则函数()()3log 1f x x =+在区间(]1,26-上单调递增,-------------------------3分 因为()263f =, ---------------------------4分所以函数()f x 的值域为(],3-∞. ---------------------------(Ⅱ)由已知()()2g x f x =-得: ()()3log 1g x x =-,化简即()()()33log 12log 112x x g x x x ⎧-≥⎪=⎨--<<⎪⎩ , ---------------------------6分则函数()g x 在区间()1,2上单调递减;在区间[)2,+∞上单调递增,------------7分(g b 则2b +--9分()7log 1log 333b b ⎛⎫∴+=- ⎪⎝⎭()10log 21log 1333b b ⎛⎫∴+-=--- ⎪⎝⎭, -------------------------------10分()7log 1log 333b +b =0⎛⎫∴+- ⎪⎝⎭,()7113b b ⎛⎫∴-+= ⎪⎝⎭,解得2b =或23b =- ---------------------------11分经检验23b =,2b =与23b =-均合题意,即为所求. --------------------------12分B 卷(共50分)四、填空题:本大题共4小题,每小题4分,共16分. (18)2a ≥ (19)3.146 (20)2 (21)8 五、解答题:本大题共3小题,共34分, 22.(本小题满分10分)22. 解:(Ⅰ)依题意得:24173a c a c ⎧+=⎪⎨+=⎪⎩, ----------------------------1分42720a a ∴--=, ----------------------------2分()()22980a a ∴-+=, ----------------------------3分293a a ∴=⇒=, ---------------------------4分 8c ∴=-,()38x f x =-. ----------------------------5分(Ⅱ)任取1211x x -≤<≤,()()()12121222x x f x f x bx c bx c -=++-++()()121222x x b x x =-+- ----------------------------6分又121222,0,0x x b x x <≥-< ----------------------------7分()()1212220x x b x x ∴-+-<,即()()120f x f x -<()()12f x f x ∴<,函数()f x 在[]1,1-上单调递增, -------------------8分则函数的最大值()12f b c =++,最小值()112f b c -=-+,---------------9分若对任意12,x x [1,1]∈-,恒有()()124f x f x -≤,则需满足()()114f f --≤------------------------10分∴3242b +≤,34242b ⇒-≤+≤,11544b ⇒-≤≤,-----------------------11分 又0b ≥,则504b ≤≤. ----------------------------12分 23.(本小题满分12分)解:(1)用,x y 分别表示第三、第四组的频率,则110(0.0050.0150.012)450.05550.156575850.1950.171x y x y +=-++⨯⎧⎨⨯+⨯+++⨯+⨯=⎩--------------------2分 解得0.25,0.35x y == ---------------------------4分答:第三、第四组的频率分别为0.25,0.35; ----------------------------5分(2)20(0.250.35)12⨯+=(名) ----------------------------7分 答:合格(60分~80分)学生应抽取12名; ----------------------------8分 (3)(下面两种表述都可以,只需一种表述即可)A:根据数据计算得平均数80.6,高出实测数据的频率分布直方图估计的平均分71分。

相关文档
最新文档