农田水分状况.
农田水力学1 灌溉用水量

,有利于根系发育
7
吸着水
Pore Space
Water on soil particle surface
8
毛管水与重力水
毛管水
重力水
9
土壤水
2 土壤水分的有效性
无效水:低于土壤吸着水(最大分子持水率)的 水分。作物不能吸收利用。 过剩水:重力水,在重力作用下向下流失。 有效水:重力水和无效水之间的毛管水。
21
一、农田水分消耗的途径
植株蒸腾( transpiration)
作物根系从土壤中吸入体内的水分,通过叶面的气孔 扩散到大气中去的现象。占根系吸入水分的99%以上。
株间蒸发(棵间蒸发)(evaporation)
植株间土壤或田面的水分蒸发。
☆蒸腾与蒸发合称腾发(evapotranspiration),通常 也称为作物需水量(Water requirement of crops )
—— 需水系数或称蒸发系数。
a,b——经验常数。
•特点
–仅需水面蒸发量,易于获得
–常用于水稻地区
31
三、作物需水量的计算
“K ”值法(以产量为基础,也称产量法) 基本公式:ET=KY 或 ET=KYn+c 式中:ET——作物全生育期内的总需水量,m3/亩
Y——作物单位面积产量,kg/亩; K——以产量为指标的需水系数,m3/kg;
水稻地区 适宜的淹没水层;适宜的渗漏强度;地下水位维
持适宜的深度。
17
三、不良农田水分状况
1.不良土壤水分状况及其原因 (1)土壤水分过多
原因:降雨、洪涝灾害、渍害、不合理灌溉 (2)农田水分不足
原因: 降雨不足(主要原因); 降雨径流损失(水土保持较差); 土壤保水性能差(有机质少) 过度蒸发(气象、地下水、土壤结构等
农田水利知识点

农田水利知识点农田水分状况:指农田土壤水、地面水和地下水的状况及其相关的养分、通气、热状况土壤水:通常将存在于非饱和带的水分称为土壤水,(土壤水是联系农田地表水和地下水的纽带,农田土壤水直接影响作物生长的水,气,热,养分等状况,与作物生长关系密切,是作物生长环境的核心要素之一。
)地下水:储存于饱和带的水分称为地下水。
土壤含水率:(习惯上称为含水量)是指一定量的土壤中所含有水分数量的多少,又称土壤湿度。
毛管水:是受土壤毛管力作用保持在土壤中的水分,(毛管水依其在土壤中的分布又可分为毛管悬着水和毛管上升水)。
毛管悬着水:在地下水埋深较大时,降水或灌溉水等地面水进入土壤,借助毛管力保持在上层土壤毛管孔隙中的水分毛管上升水:借助毛管力的作用,由地下水上升进入上层土体的水。
凋萎系数:出现永久凋萎时的土壤含水量称为凋萎点含水量,也称凋萎系数。
田间持水量:在地下水埋藏较深和排水良好的土地上,当充分降水或灌溉后,地表水完全入渗,并防止蒸发,经过几天时间,土壤剖面所保持的含水量,即为田间持水量。
(田间持水量包括吸湿水,薄膜水和毛管悬着水,其数量是三者数量的和)田间持水率:在生产实践中常将灌水两天后土壤所能保持的含水率叫做田间持水率。
SPAC系统的主要内容:水分经由土壤到达植物根系,进入根系,通过细胞传输进入木质部,由植物的木质部到达叶片,再由气孔扩散到大气中去,最后参与大气的湍流交换,形成一个统一、动态的互反馈连续系统,即土壤-植物-大气连续体(SPAC)系统。
在这一连续体中存在物质、能量和信息的传递和交换土壤、植物和大气是SPAC系统的研究对象。
SPAC系统研究的核心内容:水分在土壤、植物和大气中的传输。
水分总是从水势高的地方向水势低的地方运动作物需水量:指生长在大面积上的无病虫害,土壤水分和肥力适宜,能取得高产潜力条件下的作物植株蒸腾和棵间蒸发量,包括组成植株体所需的水量。
参照作物需水量(潜在腾发量):指土壤水分充足、地面完全覆盖、生长正常、高矮整齐的开阔(地块的长度和宽度都大于200m)矮草地(草高8~15cm)上的蒸发量。
农田水分状况

农田水分状况系指农田地面水、土壤水和地下水的多少及其在时间上的变化。
一切农田水利措施,归根结底都是为了调节和控制农田水分状况,以改善土壤中的气、热和养分状况,并给农田小气候以有利的影响,达到促进农业增产的目的。
因此,研究农田水分状况对于农田水利的规划、设计及管理工作都有十分重要的意义。
第一节农田水分状况一、农田水分存在的形式农田水分存在三种基本形式,即地面水、土壤水和地下水,而土壤水是与作物生长关系最密切的水分存在形式。
土壤水按其形态不同可分为汽态水、吸着水、毛管水和重力水等。
(1)汽态水系存在于土壤空隙中的水汽,有利于微生物的活动,故对植物根系有利。
由于数量很少,在计算时常略而不计。
(2)吸着水包括吸湿水和薄膜水两种形式:吸湿水被紧束于土粒表面,不能在重力和毛管力的作用下自由移动;吸湿水达到最大时的土壤含水率称为吸湿系数。
薄膜水吸附于吸湿水外部,只能沿土粒表面进行速度极小的移动;薄膜水达到最大时的土壤含水率,称为土壤的最大分子持水率。
(3)毛管水毛管水是在毛管作用下土壤中所能保持的那部分水分,亦即在重力作用下不易排除的水分中超出吸着水的部分。
分为上升毛管水及悬着毛管水,上升毛管水系指地下水沿土壤毛细管上升的水分。
悬着毛管水系指不受地下水补给时,上层土壤由于毛细管作用所能保持的地面渗入的水分(来自降雨或灌水)。
(4)重力水土壤中超出毛管含水率的水分在重力作用下很容易排出,这种水称为重力水。
在这几种土壤水分形式之间并无严格的分界线,其所占比重视土壤质地、结构、有机质含量和温度等而异。
可以假想在地下水面以上有一个很高(无限长)的土柱,如果地下水位长期保持稳定,地表也不发生蒸发入渗,则经过很长的时间以后,地下水面以上将会形成一个稳定的土壤水分分布曲线。
这个曲线反映了土壤负压和土壤含水率的关系,亦即是土壤水分特征曲线(见图1-1),这一曲线可通过一定试验设备确定。
在土壤吸水和脱水过程中取得的水分特征曲线是不同的,这种现象常称为滞后现象。
农田积水排查情况汇报

农田积水排查情况汇报
尊敬的领导:
根据上级要求,我对所辖农田积水情况进行了排查,并就此进行了汇报。
经过
实地勘察和调查,我得出以下结论:
首先,经过排查,我发现我所辖农田中存在较为严重的积水情况。
主要集中在
田地低洼处以及排水系统不畅的地方,导致了大面积的积水现象。
这不仅影响了农作物的生长,还可能会导致土壤肥力的流失,对农田生态环境造成一定的影响。
其次,积水情况主要是由于排水系统不畅导致的。
在排查中,我发现农田排水
系统存在一定的疏漏和损坏,导致了排水不畅的情况。
另外,部分农田地势较低,雨水难以迅速排除,也是导致积水的重要原因之一。
针对上述问题,我提出了以下改进建议:
首先,应当加强对农田排水系统的维护和修缮工作,及时清理排水沟渠,修复
破损部分,确保排水系统的畅通。
同时,可以考虑在地势较低的地方增设排水设施,加快雨水的排除速度。
其次,可以通过合理的土地整治和改造,提高农田的排水能力。
通过调整田地
的坡度和排水沟渠的布置,有效减少积水的发生。
最后,加强对农田积水情况的监测和预警工作,及时发现问题并采取措施加以
解决,避免积水对农田造成更大的损失。
综上所述,农田积水情况的排查工作对于保障农田生产和生态环境的稳定具有
重要意义。
我将会按照上述建议,积极组织相关部门进行改进工作,努力减少农田积水对农业生产的不利影响。
谨此汇报。
此致。
敬礼。
农田水分状况

农田水分状况农田水分对于农作物的生长和发展至关重要。
适当的水分状况能够保证农作物的正常生长,高产和优质,而不恰当的水分管理则会导致产量下降和作物质量下降。
本文将介绍农田水分状况的重要性,农田水分的评估方法以及如何进行水分管理。
一、农田水分状况的重要性农田水分是农作物生长中最基本的条件之一。
水分对于作物的光合作用、营养吸收、植物体温调节等生理活动都具有重要影响。
适量的水分可保持农田土壤湿润,为植物提供所需的水分供应。
而不足的水分将导致植物缺水,限制其生长和发育。
二、农田水分的评估方法1.土壤含水量测定法土壤含水量是评价农田水分状况的重要指标之一。
常用的测定方法包括重量法、容积法和电阻法。
重量法是通过称量土壤样品的干重和湿重来计算土壤含水量。
容积法是测量土壤样品的容积以及样品在饱和状态和干燥状态下的容积来计算含水量。
电阻法主要是利用土壤导电率的变化来测定土壤含水量。
2.土壤水势测定法土壤水势是表示土壤水分状况的另一种指标。
常见的测定方法包括压力室法和湿度计法。
压力室法是通过测定土壤样品在不同压力下的含水率来评估土壤水势。
湿度计法则是利用湿度计测定土壤和空气之间的水势差异,进而推算土壤水势。
三、水分管理方法1.合理灌溉合理灌溉是保证农田水分状况的基本手段。
根据不同农作物的需水量、生育期等不同因素,采取适当的灌溉量和灌溉方式,保证水分能够充分满足农作物的需求。
2.土壤覆盖措施土壤覆盖是一种有效的保持土壤湿润的措施。
通过保持农田土壤表面的覆盖物,如秸秆、草坪等,可以减少土壤水分的蒸散和蒸发损失,提高土壤水分利用效率。
3.积极排水排水是调节农田水分状况的重要手段之一。
在高湿度地区或土壤排水不良的地方,采取排水措施能够有效减少土壤含水量过高对作物生长的影响,提高土壤透气性。
四、总结农田水分状况对于农作物生长和发展至关重要。
通过合理评估土壤水分状况,采取适当的水分管理措施,能够保证农田水分的恰当供应,提高农作物的产量和质量。
灌溉排水工程

一.名词解释1.灌溉排水工程学:灌溉排水工程学是研究农田水分状况和有关地区水情的变化规律及其调节措施,消除水旱灾害,并利用水利资源为开展农业生产而效劳的科学。
2.农田水分状况:农田水分状况一般是指农田土壤水、地面水和地下水的状况及其相应的养分、通气、热状况3.凋萎系数:作物产生永久凋萎时的土壤含水率,4.田间持水率:悬着毛管水到达最大时的土壤含水率,5.干旱:是指因天气、土壤、生理等原因导致作物体内水分亏缺的现象,或指作物由根吸水缺乏而导致其体内水分失去平衡和协调的现象。
6.大气干旱:指农田水分尚不阻碍植物根系的吸收,但由于大气温度过高〔T=30°C〕和相对湿度过低〔W30%〕,阳光过强或遇旱风〔$3m/s〕,造成植物蒸腾耗水过大,使根系吸水速度不能满足蒸发的需要。
7.土壤干旱:土壤含水率过低,作物根系从土壤中所能吸收的水量很少,无法补偿叶面蒸发的消耗。
8.渍害:因降雨、灌溉水量太多,或因地下水补给水量太多,使土壤长期过湿危害作物生长的灾害。
9.土壤盐害:盐害:指土壤含盐过多,土壤溶液渗透压过高影响植物生长发育的现象。
10.SPAC系统:田间水分运动是在水势梯度的作用下产生的,各环节之间是相互影响和相互制约的,为了完整地解决农田水分运动问题,必须将土壤-植物-大气看作一个连续体统一考虑。
这一连续体即为SPAC系统11.作物需水量:植株蒸腾和株间蒸发两者的腾发量〔蒸发蒸腾量〕。
12.作物耗水量:土壤在任何水分条件下实际消耗的植株蒸腾、土壤蒸发和植物体含水量之和。
13.需水量模比系数:作物某一生育阶段的需水量占全生育期的百分比。
14.需水临界期或关键期:水分亏缺对作物产量影响最敏感最严重的生育时期。
15.灌溉制度:是指特定作物在一定的气候、土壤、供水等自然条件和一定的农业技术措施下,为了获得高产或高效,实现节约用水,所指定的适时适量的农田灌水方案。
16.灌水定额:一次灌水单位面积上的灌水量。
农田水分知识

农田水分状况:一般指农田中上午土壤水地面水地下水的状况及其相关的土壤养分通气热状况等。
2,吸湿系数:当空气相对湿度接近饱和时,吸湿水达到最大,此时的土壤含水率为吸湿系数。
3,最大分子持水率:膜状水达到最大时的土壤含水率。
4,田间持水率:悬着毛管达到最大时的土壤含水率。
5,作物需水量:植物蒸腾和棵间蒸发合称腾发,两者消耗的水量合称为腾发量,又把腾发量称为作物需水量。
6,需水临界期:日需水量最多,水缺水最敏感,影响产量最大的时期。
7,灌溉制度:根据作物需水特性和当地气候、土壤农业技术及灌水技术等条件,为作物高产及节约用水而制定的适时适量的灌水方案。
8,灌水定额:指一定灌水单位灌溉面积上的灌水量。
9,灌溉定额:指播种前和全生育期内单位面积上的总灌水量,即名灌水额之和。
10,综合灌水定额:全灌区综合定额是同一时段内各种作物灌溉水定额的面积加权值, 11,灌溉率:值灌溉渠单位灌溉面积上所需要的净灌溉用水量,又称灌水模数。
12,灌溉水质:指灌溉水的化学、物理性状,水中含有的成分和数量。
13,灌溉设计保证率:指灌区用水量在多年期间能够得到充分满足的几率,一般以正常供水的年数或供水不破坏的年数占总年数的百分数表示。
14,抗旱天数:作物生长期间遇到连续干旱时,灌溉设施的供水能保证灌区作物用水要求的天数。
15,田间水利系数:田间水利系数是实际灌田间的有效水量(对旱作农田指蓄存在计划湿润层中的灌溉用水量;对水稻田,指蓄存在格田内的灌溉水量)和未级固定渠道放出水量的比值。
16,渠道水利用系数:某渠道的净流量与毛流量的比值。
17,渠系水利用系数:灌溉渠系的净流量与毛流量的比值。
18,灌溉水利用系数:是实际灌入农田的有效水量和渠道引入水量的比值。
19,渠道不冲流速:在稳定渠道中,允许的最大平均流速称为临界不冲流速。
20,渠道不淤流速:在稳定渠道中,允许的最小平均流速称为临界不淤流速。
21,喷灌强度:指单位时间内喷洒在单位面积上的水量,以水深表示单位mm/h或mm/min。
农田水分状况和土壤水分运动 PPT课件

一、农田水分存在形式
农田水分状况:指农田地表水、土壤水 和地下水的多少及其在时间上的变化。
•地表水:地表积水。
•土壤水:存在于包气带中的水分。 •地下水:饱水带中的重力水。
汽态水、吸着水 汽态水、吸着水、薄膜水 毛细带表面 毛细水为主 地下水面(潜水面) 潜水土壤水分形态
质地 名称
重 吸湿 系数 — 1~2 1~2 2~3 2~3 — — — 凋萎 系数 — 4~6 4~9 6~10 6~13 15.0 12~17 —
量(%) 田间持 水量 16~22 22~30 22~28 22~28 22~28 28~32 25~35 30~35
紧沙土 沙壤土 轻壤土 中壤土 重壤土 轻粘土 中粘土 重粘土
0.1-0.3个大 气压
吸湿系数(Ws):干土壤在水汽
相对饱和的环境中(相对湿度 100%)吸持水分子可达到最大量 ,此时土壤的含水量称为最大吸湿量 或吸湿系数(大概有15—20层水分 子)。
31个大气压
不同土壤吸湿系数不一样: 一般,粘土 >壤土>砂土, 另外吸湿系数大小还 与测定时温度有关,温度高,吸湿系 数小。
土壤三相体示意图
2、土壤水分常数
(2)土壤水分常数
土壤饱和含水率(θs) :当土体孔隙完全被 水充满时的土壤含水 率叫饱和含水率(也 称全持水量)。
VW s V
土壤三相体示意图
2、土壤水分常数
田间持水率(θfc):悬着毛管水
达到最大时的土壤含水率叫田间持水 率。生产实践中,常将灌水两天后土 壤所能保持的含水率叫田间持水率。 一般为饱和含水率的50%左右。
土粒
2、土壤水分常数
凋萎系数(wp):当作物产生 永久凋萎时的土壤含水率叫 凋萎系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水分
量(%)
田间持水 全持
量
水量
常数
体 积(%) 吸湿 凋萎 田间 系数 系数 持水量
16~22
—
—
— 26~32
22~30 30~40 2~3 5~9 32~42
22~28 28~40 2~3 6~12 30~36
22~28 30~38 3~5 8~15 30~35
22~28 28~38 3~4 9~18 32~42
土壤水存在的形态、性质和数量 土水之间的吸力 作物根系吸水力与土粒吸水力之差
土壤水分特征曲线:反映土壤基质势和土壤含 水率关系的曲线
土壤含水率的测定及表示方法
测定方法:
✓ 烘干法 ✓ 负压计法 ✓ TDR法 ✓ 中子法 ✓ 射线法
表示方法:
质量含水率θm 体积含水率θv 水层厚度h
g/g cm3/cm3 mm 1.0m3/亩=1.5mm水层厚度
土壤含水量对作物各种生理活动的影响是 不一致的: 最适含水量 生长>蒸腾>同化 影响作物的品质
土壤最大有效水量(%)=田间持水量 (%)-凋萎系数(%)。
表 2. 不同质地土壤的有效水范围(重量%)
细沙土 面沙土 沙粉土 粉土 粉壤土 粘壤土 粘壤土 粉粘土
地区和 0.01m 田间持 土壤 m(%) 水量
辽西 风砂土
2.8
4.5
辽西 风砂土
2.7
11.7
嫩江 黑 土 12.8
12.0
晋西 黄绵土 25.0
17.4
蒲城 垆嵝土
—
20.7
武功 油 土 50.8
19.4
武功 油 土 57.2
20.0
嫩江 黑 土 67.8
23.8
凋萎 系数
1.8 4.2 6.6 6.4 7.8 9.2 12.6 17.4
有效 水范围
2.7 7.5 5.4 11.0 12.9 10.2 7.4 6.4
土壤有效水的影响因素有哪些?
毛管悬着水达到最大量时土壤的含水量称为
田间持水量。 (Field Capacity)
毛管上升水达到最大量时的土壤的含水量,
称为毛管持水量。
当土壤中所有孔隙充满水时的土壤的含水量
叫饱和含水量或(全持水量)
悬着毛管水
上升毛管水
田间持水率 是确定灌水定额时,计划湿润土
层允许含水率的上限,从薄膜水到田间持水 率的土壤含水率的土壤含水量是作物容易利 用的有效水。灌水前土壤允许含水率下限, 一般取田间持水率的50%~70%。
在干旱、半干旱地区,浅层地下水消耗于地 面蒸发的比重很大,当地下水矿化度高时, 地下水通过地表蒸发后造成表土盐分的累积, 形成盐渍害。
因此必需通过排水措施,降低地下水位,避 免渍害和盐渍害。
土壤水
土壤水是与作物生长关系最密切的水分存在
形式。按其形态不同可分为汽态水、吸着水、 毛管水和重力水 。
固态水 冬季土壤结冰时存在
当土壤含水量减少到土粒对水分子的引力等 于或大于1.5×106Pa时,植物会因无力吸水 而发生永久性凋萎,土壤对水分子引力等于 1.5×106Pa(15巴)时的土壤含水量称为永 久萎焉点或凋萎系数。
凋萎系数 = 吸湿系数×1.5(经验公式) 当膜状水达到最大量时土壤的含水量叫土 壤最大分子持水量。
在生产实践中,常将灌水2天后土壤所能保持 的含水率叫做田间持水率。
不同质地土壤的几种水分常数
土壤类型
紧沙土 沙壤土 轻壤土 中壤土 重壤土 轻粘土 中粘土 重粘土
吸湿 系数
— 1~2 1~2 2~3 2~3 — — —
重 凋萎 系数
— 4~6 4~9 6~10 6~13 15.0 12~17 —
农业水资源利用与管理
第1章 农田水分状况
主讲教师:谭军利 博士 宁夏大学土木与水利工程学院 2012年8月
内容提要
农田水分存在形式及其对作物的影响 作物生长对农田水分状况的要求 土壤水分运动 土壤—植物—大气连续体的水分传输
第一节 农田水分状况 农田水分状况系指农田地面水、土壤水和地下 水的多少及其在时间上的变化。
28~32 32~40 — 20.0 40~45
25~35 35~40 — 17~24 35~45
30~35 38~42 —
— 40~50
全持 水量
— 45~52 40~52 44~54 40~50 45~54 48~53 48~55
土壤水分有效性是指土壤水分是否能被作 物利用及其被利用的难易程度。
土壤水
气态水 存在于土壤空气中
吸湿水
受土粒分子引力
Hale Waihona Puke 液态水膜状水受毛管力作用 毛管悬着水
毛管上升水
受重力作用 重力水
地下水
土壤水分常数 (1)吸湿系数; (2)凋萎系数; (3)田间持水量; (4)毛管持水量;
吸湿系数
土壤在水汽相对饱和的环境中(相对湿度 100%)吸持水分子可达到最大量,此时土壤 的含水量称为最大吸湿量或吸湿系数(大概 有15-20层水分子,厚度4-8nm),不同土壤 吸湿系数不一样。
一切农田水利措施,归根结底都是为了调节 和控制农田水分状况,以改善土壤中的气、 热和养分状况,并给农田小气候以有利的影 响,达到促进农业增产的目的。
农田水分存在的四种基本形式
✓ 空气中的水气 ✓ 地面水 ✓ 土壤水 ✓ 地下水
空气中的水气 (主要反映在空气湿度上)
在一定程度上,空气湿度低对作物生长有利。 空气湿度太低,蒸腾强度大,会造成太多的水 分损失,同时,作物根系从土壤中吸取的水量 不能满足蒸腾耗水的要求,作物就会枯萎(大 气干旱)。
θv (%)= θm (%)×ρb
水层厚度h(mm)= 土层厚度(mm)× 土壤含水量(体积)
=土层厚度(mm) × 土壤含水量(质量) ×土壤干容重
第二节 作物生长对农田水分状况的要求 一、水对作物的生态作用 根系的发育;
作物茎叶的生长;
作物生长有一个最高、最适宜和最低的水 分含量;
产生大气干旱的原因是干热风所致。干热风 的指标是:日最高气温≧30℃、日最小相对 湿度≦30%、风速≧3m/s。
防止大气干旱的措施: ➢ 设置防风护田林 ➢ 进行喷灌、雾灌
地面水
水稻采用淹灌时,不同生育阶段要求 田面有一定的水层。同时稻田为了控制田 面水层和排干晒田,也必须有排水措施。
地下水
地下水靠毛细管作用上升到作物根系活 动层中的水量可以为作物所利用。但地下水 位太高,距离地面小于1m时,则会造成根系 活动层内土壤含水量过高,通气不畅,造成 减产,称之为渍害。