新人教版八年级上数学知识点教学内容
新人教版八年级上册数学第十一章知识点

第十一章 三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4。
中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8。
多边形的内角:多边形相邻两边组成的角叫做它的内角.9。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12。
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n 边形的内角和等于(2)n -·180°⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线.知识点1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么这两个图形关于这条直线对称45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48 定理四边形的内角和等于360049 定理四边形的外角和等于360050 多边形内角和定理n边形的内角和等于(n—2)*180051 推论任意多边的外角和等于360052 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 平行四边形性质定理3 平行四边形的对角线互相平分55平行四边形判定定理1 两组对角分别相等的四边形是平行四边形56 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形57 平行四边形判定定理3 对角线互相平分的四边形是平行四边形58 平行四边形判定定理4 一组对边平行且相等的四边形是平行四边形59 矩形性质定理1 矩形的四个角都是直角。
八年级数学上册12.2三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版

八年级数学上册 12.2 三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版一. 教材分析《新人教版八年级数学上册》第12.2节讲述了三角形全等的判定,这是初中的一个重要知识点。
在这一节中,学生将学习到用“SSS”(Side-Side-Side,即边-边-边)方法判定三角形全等。
通过这一节的学习,学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。
二. 学情分析在进入这一节的学习之前,学生已经学习了三角形的基本概念,如三角形的边、角等,并掌握了用“ASA”(Angle-Side-Angle,即角-边-角)和“AAS”(Angle-Angle-Side,即角-角-边)方法判定三角形全等。
因此,学生在理解和掌握用“SSS”方法判定三角形全等时,已经有了相关的基础知识。
三. 说教学目标1.知识与技能:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。
2.过程与方法:通过观察、操作、思考、交流等活动,学生能够自主探索用“SSS”方法判定三角形全等的过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够积极参与课堂活动,培养合作意识和团队精神,增强对数学学科的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。
2.教学难点:学生能够灵活运用“SSS”方法判定三角形全等,解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂活动,培养学生的自主学习能力。
2.教学手段:利用多媒体课件、学具、黑板等,辅助学生直观地理解三角形全等的概念和“SSS”方法。
六. 说教学过程1.导入:通过复习三角形的基本概念和已学的判定方法(ASA和AAS),引导学生进入新的学习内容。
2.自主探究:学生分组合作,利用学具和多媒体课件,观察和操作三角形,自主探索用“SSS”方法判定三角形全等的过程。
最新人教版初中数学八年级上册《13.1.2 线段的垂直平分线的性质(第2课时)》精品教学课件

D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
①
②
③
④
课堂检测
2.如图,已知线段AB的垂直平分线CP交AB于点P,且AP=2PC,现欲在
线段AB上求作两点D,E,使其满足AD=DC=CE=EB,对于以下甲、乙
两种作法:
甲:分别作∠ACP、∠BCP的平分线,分别
C
交AB于D、E,则D、E即为所求;
乙:分别作AC、BC的垂直平分线,分别交AB A
(保留作图痕迹,不要求写出作法);
(2)在(1)所作的图中,若AM=PN,BN=PM,求证:∠MAP
=∠NPB.
A
B
M
Nl
探究新知
解:(1)如图所示:
A
B
M PN l
(2)在△AMP和△BNP中,∵AM=PN,AP=PB,PM=BN, ∴△AMP≌△PNB(SSS),∴∠MAP=∠NPB.
巩固练习
分析:增设的公共汽车站要满足到两个小 区的路程一样长,应在线段AB的垂直平分 线上,又要在公路边上,所以找到AB垂直 A 平分线与公路的交点即可.
B 公共汽车站
探究新知
素养考点 1 利用线段的垂直平分线的性质作图
例1 如图,已知点A、点B以及直线l.
(1)用尺规作图的方法在直线l上求作一点P,使PA=PB.
课堂检测
能力提升题
如图,有A,B,C三个村庄,现准备要建一所希望小学, 要求学校到三个村庄的距离相等,请你确定学校的位置.
B
学校在连接任意两点的两
C
条线段的垂直平分线的交点处. A
课堂检测
拓广探索题
如图,在4×3的正方形网格中,阴影部分是由4个正方形组成 的一个图形,请你用两种方法分别在如图方格内填涂2个小正 方形,使这6个小正方形组成的图形是轴对称图形,并画出其 对称轴.
(完整版)新人教版八年级上册数学各章节知识点总结

第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.n-·180°⑶多边形内角和公式:n边形的内角和等于(2)⑷多边形的外角和:多边形的外角和为360°.n-条对角线,⑸多边形对角线的条数:从n边形的一个顶点出发可以引(3)第十二章全等三角形第一节:全等三角形形状大小放在一起完全重合的图形,叫做全等形。
换句话说,全等形就是能够完全重合的图形。
能够完全重合的两个三角形叫做全等三角形。
两个全等的三角形重合放在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
两个三角形全等用符号“≌”表示。
人教版八年级上册数学教案(通用10篇)

人教版八年级上册数学教案(通用10篇)八年级上册数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力。
2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。
3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。
重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用。
2.难点:灵活地应用公式法进行因式分解。
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的`。
教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容。
教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2。
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。
3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2。
【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2。
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2。
二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4。
【例2】如果x2+axy+16y2是完全平方,求a的值。
【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题。
最新新人教版八年级数学上册全册名师教案大全5篇

最新新人教版八年级数学上册全册名师教案大全5篇新人教版八年级数学上册全册名师教案篇1一学习目标:1会推导两数差的平方公式,会用式子表示及用文字语言叙述;2会运用两数差的平方公式进行计算。
二学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探索1计算: (a - b) =方法一:方法二:方法三:2两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。
3两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1(3 - a) 2 (2a -1) 3(3y-x)4(2x – 4y) 5( 3a - )(三)合作攻关灵活运用两数差的平方公式计算:1(999) 2( a – b – c )3(a + 1) -(a-1)(四)达标训练1选择:下列各式中,与(a - 2b)一定相等的是()Aa -2ab + 4b Ba -4bCa +4b D a - 4ab +4b2填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162计算:( a - b) ( x -2y )3有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1本节课你学到了什么?2已知a – b = 1,a + b = 25,求ab 的值新人教版八年级数学上册全册名师教案篇2《正弦和余弦(二)》一素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。
(二)能力训练点逐步培养学生观察比较分析综合抽象概括的逻辑思维能力。
(三)德育渗透点培养学生独立思考勇于创新的精神。
二教学重点难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。
人教版八年级上册数学知识点归纳

新人教版八年级数学上册知识点总结(上)(含思维导图)因式分解:1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;'(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;…(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;!(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.|16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方2.平方根的性质:(2)0的平方根还是0;(3)负数没有平方根.&8.立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)》几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:"1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.@12.符合“AAA”“SSA”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.※18.几何重要图形和辅助线:(1)选取和作辅助线的原则:①构造特殊图形,使可用的定理增加;—②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.附思维导图:.。
人教版八年级上册数学教案5篇

人教版八年级上册数学教案5篇人教版八班级上册数学教案1一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要同学动手的频率也较高,要把握任意三角形的高、中线、角平分线的画法,培育同学动手操作及解决问题的力量;鼓舞同学主动参加,体验几何学问在现实生活中的真实性,激发同学喜爱生活、勇于探究的思想感情。
理解三角形高、角平分线及中线概念到用几何语言精确表述,这是同学在几何学习上的一个深化.学习了这一课,对于同学增长几何学问,运用几何学问解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的连续以及三角形全等、相像等后继学问一个预备.本节的重点是了解三角形的高、中线及角平分线概念的同时还要把握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目标和目标解析1.教学目标(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目标解析(1)经受画图实践过程,理解三角形的高、中线与角平分线等概念.(2)能够娴熟用几何语言表达三角形的高、中线与角平分线的性质.(3)把握三角形的高、中线与角平分线的画法.(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有肯定的联系又有本质的区分.人教版八班级上册数学教案2教学目标1.学问与技能领悟运用完全平方公式进行因式分解的方法,进展推理力量.2.过程与方法经受探究利用完全平方公式进行因式分解的过程,感受逆向思维的意义,把握因式分解的基本步骤.3.情感、看法与价值观培育良好的推理力量,体会“化归”与“换元”的思想方法,形成敏捷的应用力量.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:敏捷地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•到达能应用公式法分解因式的目的教学方法采纳“自主探究”教学方法,在老师适当指导下完本钱节课内容.教学过程一、回顾沟通,导入新知【问题牵引】1.分解因式:(1)9x2+4y2;(2)(x+3y)2(x3y)2;(3)x20.01y2.【学问迁移】2.计算以下各式:(1)(m4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(ab)2.【老师活动】引导同学完成下面两道题,并运用数学“互逆”的思想,查找因式分解的规律.3.分解因式:(1)m28mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a22ab+b2.【同学活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m28mn+16n2=(m4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a22ab+b2=(ab)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学【例1】把以下各式分解因式:(1)4a2b+12ab29b3;(2)8a4a24;(3)(x+y)214(x+y)+49;(4)+n4.【例2】假如x2+axy+16y2是完全平方,求a的值.【思路点拨】依据完全平方式的定义,解此题时应分两种状况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,稳固深化课本P170练习第1、2题.【探研时空】1.已知x+y=7,xy=10,求以下各式的值.(1)x2+y2;(2)(xy)22.已知x+=3,求x4+的值.四、课堂总结,进展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个: a2b2=(a+b)(ab);a2±ab+b2=(a±b)2.在运用公式因式分解时,要留意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些状况下,多项式不肯定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应当首先考虑提公因式,•然后再运用公式分解.五、布置作业,专题突破人教版八班级上册数学教案3一、教学目标1、熟悉中位数和众数,并会求出一组数据中的众数和中位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级上数学知识点人教版八年级上数学知识点第十一章:三角形1、三角形由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形有3条边、3个顶点、3个角顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”。
线段AB,BC,CA是三角形的边,点A,B,C是三角形的顶点。
∠A,∠B,∠C是相邻两边组成的角,叫做三角形的内角,简称三角形的角。
△ABC的三边,有时也用a,b,c来表示,顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用c表示。
3、三角形的分类:锐角三角形:三个内角都是锐角的三角形按照三个内角的大小分直角三角形:有一个内角是直角的三角形钝角三角形:有一个内角是钝角的三角形注:由三角形内角和为180°可知,三角形的三个内角中至少有两个锐角,所以判断一个三角形的种类,只需要判断最大的内角是什么角即可。
三边都不相等的三角形按边的相等关系分底边和腰不相等的等腰三角形等腰三角形等边三角形4、三角形三边之间的大小关系由“两点之间,线段最短”可得:三角形两边的和大于第三边。
由不等式的性质易得推论:三角形两边的差小于第三边。
三边关系的应用:(1)判断三条已知线段能否组成三角形(技巧:只需验证两小边是否大于最大边即可)。
(2)当已知两边时,可确定第三边的大小范围(两边之差<第三边<两边之和)。
(3)证明线段不等关系。
(4)求三角形的边长或周长时注意验证三条边能否组成三角形。
5、三角形的高:从三角形的一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形该边上的高。
三角形有三条高,三条高相交于一点。
三角形三条高的交点叫做三角形的垂心。
锐角三角形的垂心在三角形内部,直角三角形的垂心即直角顶点,钝角三角形的垂心在三角形的外部。
6、三角形的中线:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
三角形的三条中线相交于一点。
三角形三条中线的交点叫做三角形的重心。
7、三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
三角形的三条角平分线相交于一点。
三角形三条角平分线的交点叫做三角形的内心。
8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
9、三角形内角和定理三角形三个内角的和等于180°。
(证明方法通常有两种:一是过三角形的一个顶点作对边的平行线,二是过三角形的一个外角作对边的平行线。
)由三角形内角和定理易得:(1)直角三角形(符号表示为“Rt△”)的两个锐角互余。
(2)有两个角互余的三角形是直角三角形。
10、三角形的外角三角形的一边与邻边的延长线组成的角,叫做三角形的外角。
由三角形内角和定理易得:(3)三角形的外角等于与它不相邻的两个内角的和。
(4)三角形的外角大于任何一个和它不相邻的内角。
11、多边形在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
三角形是最简单的多边形。
如果一个多边形由n条线段组成,那么这个多边形就叫做n边形。
n边形有n个顶点,n条边,n个内角,n个外角。
多边形相邻两边组成的角叫做它的内角。
多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形。
各个角都相等,各条边都相等的多边形叫做正多边形。
12、多边形的内角和由n边形的一个顶点出发,可以作(n-3)条对角线,它们将n边形分为(n-2)个三角形,所以:n边形的内角和=(n-2)×180°推论:多边形的外角和等于360°。
(每个外角与它相邻的内角都是邻补角,所以n边形的内角和与外角和的和为n×180°,再减去内角和易得结论。
)多边形的外角和与边数n无关。
技巧:正n边形的一个内角的度数=180°-360°÷n。
13、镶嵌用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。
这里的多边形可以形状相同,也可以形状不同。
实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°。
只用一种正多边形镶嵌地面:只有正三角形、正方形和正六边形可实现。
用两种或者三种正多边形也可进行镶嵌。
不能用3种以上的正多边形镶嵌(因为60°+90°+108°+120°=378°>360°)第十二章:全等三角形1、全等形:能够完全重合的两个图形叫做全等形。
全等形的形状、大小完全相同。
2、全等三角形:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
记两个三角形全等时,通常把对应顶点的字母写在对应的位置上。
全等用符号“≌”表示,读作“全等于”。
3、全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等。
注:全等三角形的周长相等、面积相等。
全等三角形的对应边上的中线、高线、角平分线分别相等。
4、三角形全等的判定1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)。
2)两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)。
3)两角和它们的夹边分别相等的两个三角形全等(可以简写与“角边角”或“ASA”)。
4)两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS”)。
5)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。
注:1)由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角分别相等,或两直角边分别相等,这两个直角三角形就全等。
2)有两边和其中一边的对角分别相等的两个三角形不一定全等。
3)三角形全等判定中至少需要三个条件(在HL中还有一个隐含条件:相等的直角),三个条件中至少有一条边(即:三个角相等的两个三角形不一定全等)。
4)以上各结论均可通过画图进行验证。
5)因为全等三角形的对应边相等,对应角相等,所以证明线段相等或角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决。
6)证明两个三角形全等的基本思路:找两边一边相等找两角两三角形全等找一边及夹角如果两个三角形为直角三角形,考虑HL。
4、角的平分线的性质角的平分线上的点到角的两边的距离相等。
角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。
注:三角形的内心到三角形三边的距离相等。
5、证明一个几何命题的步骤1)明确命题中的已知和求证;2)根据题意,画出图形,并用数学符号表示已知和求证;3)经过分析,找出由已知推出要证的结论的途径,写出证明的过程。
第十三章:轴对称1、轴对称图形如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
这时,我们也说这个图形关于这条直线(成轴)对称。
2、轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3、轴对称图形和轴对称的区别与联系区别:1)轴对称图形是指一个具有特殊形状的图形,只对一个图形而言;轴对称是指两个图形的位置关系,必须涉及两个图形。
2)轴对称图形的对称轴可能有多条或无数条(如圆);轴对称只有一条对称轴。
联系:1)把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
2)把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
4、垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(又叫中垂线)。
5、轴对称的性质1)成轴对称的两个图形全等,对应边相等,对应角相等,对应点的连结垂直于对称轴且被对称轴平分。
2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
3)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
6、线段的垂直平分线的性质线段垂直平分线上的点与这条线段两个端点的距离相等。
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
7、准确作出轴对称或轴对称图形的对称轴的方法只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到对称轴。
8、画轴对称图形的方法只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
9、在直角坐标系中,分别以x轴和y轴为对称轴时,一对对称点的坐标之间的关系在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数。
即:点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x, y);10、等腰三角形的性质等腰三角形的两个底角相等(简写成“等边对等角”)。
等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。
等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴。
11、等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。
12、等边三角形的性质等边三角形的三个内角都相等,并且每一个角都等于60°。
13、等边三角形的判定方法三个角都相等的三角形是等边三角形。
有一个角是60°的等腰三角形是等边三角形。
14、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
15、大边对大角,大角对大边在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。
在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大。
16、最短路径问题类似于“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,称为最短路径问题。
1)饮马问题作出两点中任一点关于直线的对称点,连接该点与另一点的线段与直线的交点即为所求。
2)造桥选址问题如图,将AM沿与河岸垂直的方向平移,点M移动到点N时,点A移动到点A,连接AB与直线b相交于点N,交点N的位置即为所求。
即在点N处造桥MN,所得路径AMNB是最短的。
第十四章:整式的乘法与因式分解1、幂的运算1)同底数幂的乘法同底数幂相乘,底数不变,指数相加。
m n m n a a a +•=(,m n 都是正整数)。
推导过程:()()m n a a a a a a a a •=•••••••m n a a a a +=•••=m 个a n 个a (m n +)个a2)幂的乘方幂的乘方,底数不变,指数相乘。