化工原理
化工原理公式总结

化工原理公式总结
化工原理公式总结如下:
1. 质量平衡公式:
输入质量 = 输出质量 + 累积质量
2. 物质平衡公式:
输入组分质量流率 = 输出组分质量流率 + 生成/消耗组分质量流率 + 储存组分质量流率
3. 能量平衡公式:
输入能量 = 输出能量 + 生成/消耗能量 + 储存能量
4. 平均温度计算公式:
平均温度= ∫(T*dA) / ∫dA,其中 T 为温度,dA 为面积微元
5. 理想气体状态方程:
PV = nRT,其中 P 为压力,V 为容积,n 为物质的摩尔数,R 为气体常数,T 为温度
6. 液体体积膨胀公式:
V2 = V1 * (1 + β * ΔT),其中 V1 为初始体积,V2 为最终体积,β 为膨胀系数,ΔT 为温度变化
7. 理想混合气体摩尔分数公式:
Xi = ni / n,其中 Xi 表示组分 i 的摩尔分数,ni 表示组分 i 的摩尔数,n 表示总摩尔数
8. 溶液浓度计算公式:
质量分数 = 溶质质量 / 总溶液质量
摩尔分数 = 溶质摩尔数 / 总溶液摩尔数
体积分数 = 溶质体积 / 总溶液体积
9. 反应速率公式:
反应速率 = k * [A]^m * [B]^n,其中 k 为速率常数,[A] 和[B] 表示反应物 A 和 B 的浓度,m 和 n 为反应级数
10. 溶解度公式(亨利定律):
P = K * C,其中 P 为气体的分压,K 为溶解度常数,C 为溶质的浓度。
化工原理(第一章第三节)

• 三、流动类型
• 1.层流 层流 • 流体质点作直线运动,即流体分层运动, 流体质点作直线运动,即流体分层运动,层 次分明,彼此互不混杂。 次分明,彼此互不混杂。 在总体上沿管道向前运动, 在总体上沿管道向前运动,同时还在各个方 向作随机的脉动。 向作随机的脉动。
• 2.湍流 湍流 •
• 四、影响流型的因素
• 二、粘度 • 衡量流体粘性大小的物理量叫粘度。 衡量流体粘性大小的物理量叫粘度。 • 粘度的物理意义是促使流体流动产生单位速 度梯度时剪应力的大小。 度梯度时剪应力的大小 。 粘度总是与速度梯度相 联系,只有在运动时才显现出来。 联系,只有在运动时才显现出来。 • 粘度是流体物理性质之一, 粘度是流体物理性质之一 , 其值一般由实验 测定。液体的粘度随温度升高而减小, 测定 。 液体的粘度随温度升高而减小 , 气体的粘 度则随温度升高而增大。 度则随温度升高而增大 。 压力对液体粘度的影响 很小,可忽略不计,气体的粘度, 很小 , 可忽略不计 , 气体的粘度 , 除非在极高或 极低的压力下,可以认为与压力无关。 极低的压力下,可以认为与压力无关。 • 粘度的单位, SI制中为 制中为: .s, 粘度的单位,在SI制中为:Pa .s,常用单位 还有: (P)、厘泊(cP) 它们之间的换算是: (cP), 还有:泊(P)、厘泊(cP),它们之间的换算是: • 1 Pa .s = 10 P = 1000 cP
1. 连续性方程
u1 d2 2 u2 =( d1 )
2. 柏努利方程
p2 1 2 p1 1 2 u2 +Wf u1 +We = gZ2 + ρ + gZ1 + ρ + 2 2 当能量用液柱高度表示时,上式可改写成 当能量用液柱高度表示时, p2 1 2 p1 1 2 u2 +hf u1 +he = Z2 + Z1 + + + ρg ρg 2g 2g 当能量用压力表示时, 当能量用压力表示时,柏氏方程可改写成
(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
化工原理总结

(5)流体在非圆形直管内的流动阻力 当流体在非圆型管内湍流流动时,计算阻力时d用当 量直径de代替。
当量直径:4倍的流通截面积除以流体润湿周边长度
de——当量直径,m; rH——水力半径,m。
de
4A
4rH
对于矩形管长为a,宽为b
(4)轴功率 离心泵的轴功率是指泵轴所需的功率。当泵直接由电 动机带动时,它即是电机传给泵轴的功率,以N表 示,其单位为W或KW。泵的有效功率可写成
Ne QHg
由于有容积损失、水力损失与机 械损失,所以泵的轴功率N要大 于液体实际得到的有效功率,即
N Ne
泵在运转时可能发生超负荷,所配电动机的功率应比 泵的轴功率大。在机电产品样本中所列出的泵的轴功 率,除非特殊说明以外,均系指输送清水时的数值。
0
T0 p Tp 0
上式中的ρ0为标准状态下气体的密度,T0、p0分别为标准 状态下气体的绝对温度和绝对压强。
混合气体的密度:
m
pM m RT
M m M A yA M B yB M n yn
(2)流体的粘度
液体的粘度随温度升高而减小,气体的粘度则随温度升 高而增大。
压强变化时,液体的粘度基本不变;气体的粘度随压强 增加而增加的很少,在一般工程计算中可忽略不计。
Re≤2000时,流动类型为层流; Re≥4000时,流动类型为湍流; 2000<Re<4000,过渡区,流动类型不稳定。
层流特点:质点始终沿着与管轴平行的方向作直线运 动,质点之间互不混合。圆管中的流体就如一层一层 的同心圆筒在平行地流动。(滞流) 湍流特点:流体质点除了沿着管道向前流动外,各质 点还作剧烈的径向脉动。(紊流)
化工原理

一概念类1.流体的密度:单位体积流体具有的质量。
p=△m/△V2.静压强:单位面积上所受的压力。
3.绝对压强:以绝对零压作起点计算的压强。
4.相对压强:表示被测流体的绝对压强比大气压强高出的数值。
5.真空度:表示被测流体的绝对压强低于大气压强的数值。
6.等压面:在流场中,压力相等的各点所组成的面。
7.粘性:在流体运动状态下,抗拒内在向前运动趋势的特性。
8.黏度:单位速度梯度的剪切应力。
U=t/(du/dy)9.稳态流动:在流体各截面的流速、压强、密度等有关物理量仅随位置而变化,不随时间变化的流动。
10.非稳态流动:在流体各截面的流速、压强、密度等有关物理量既随位置而变化,又随时间变化的流动。
11.质量流量:单位时间内流过管道任一截面的流体质量。
12.体积流量:单位时间内流过管道任一截面的流体体积。
13.平均流速:单位时间内流体在流动方向流过管道单位截面积的流量。
U=V/t14.质量流速:单位时间内流体在流动方向流过管道单位截面积的质量。
G=ws /A15.理想流体:无摩擦、无粘性、不可压缩的在流动时不产生流动阻力的流体16流动边界层:在壁面附近的存在的具有较大速度梯度的流动层。
17.沿程阻力:流体流经具有一定管径的直管时,由于流体内摩擦而产生的阻力。
18.局部阻力:由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力。
19.形体阻力:由于固体表面形状而造成边界层分离所引起的能量消耗。
20.扬程(压头):离心泵对单位重量的液体所能提供的有效能量。
21.轴功率:泵轴所需的功率。
N=QHp/(102n)22.有效功率:液体从叶轮中获得功率。
有效功率必小于轴功率。
23.容积损失:泵内液体泄露所造成的损失。
24.机械损失:泵轴与轴承之间、泵轴与填料函之间产生摩擦而引起的能量损失。
25.水力损失:粘性液体流经叶轮和蜗壳时产生的摩擦阻力以及在泵局部处产生的局部阻力。
26.总效率:容积效率、机械效率、水力效率三种效率的乘积。
化工原理

dp gdz 0
dp
g dz 0
设流体不可压缩,即密度ρ 与压力无关,可将上式积 分得:
p
gz 常数
对于静止流体中任意两点1和2,如图1-7所示:
p1
或
gz1
p2
gz2
p2 p1 g ( z1 z2 ) p1 gh
(1)位能
在重力场中,液体高于某基准面所具有的能量称为 液体的位能。液体在距离基准面高度为z时的位能相
当于流体从基准面提升高度为z时重力对液体所作的 功。
单位质量流体所具有的位能gz
[ gz ] m m m Nm m=Kg 2 = =J/Kg 2 s s Kg Kg
(2)动能
避免混淆,p=0.5atm(表压
或真空度)。
PB,绝
1.2.4压强的测量
两类: 利用机械原理制成的;应用流体静力学原理
设计的。 (1)简单测压管
pa R A 1• ..
p1=pa+ρ gR
1点表压:p1-pa=ρ gR
装置简单,只适用于测高于大气压的液体,不 适合测气体,且p1很大,R很高,不方便。
欧拉平衡方程 左边表示单位质量流体所受的力
若将该微元流体移动dl距离,此距离对x,y,z轴的分量 为dx、dy、dz,将上列方程组分别乘以dx、dy、dz并
相加得:
1 p p p ( dx dy dz ) ( Xdx Ydy 2=(ρ 0-ρ )gR
(4)倒U形管压差计 A—空气 B—被测液 pa=p1-ρ Bg(R+m) pa, =p2-ρ Bgm-ρ 空gR 因 pa= pa, 故 p1-ρ Bg(R+m)=p2-ρ Bgm-ρ p1-p2=(ρ B-ρ 空)gR =ρ BgR
化工原理-所有章节

一、 化工生产过程
绪 论
1. 化工生产过程:对原料进行化学加工获得有用产 品的过程称为化工生产过程。
聚氯 乙烯 生产
CH2=CH2+Cl2 CH2Cl—CH2Cl CH2Cl—CH2Cl CHCl=CH2+HCl
2CH2=CH2+2HCl+O2
乙烯 氯 提纯 提纯 单体 合成 反应热 分 离
2CHCl-CH2+2H2O
1. 黏性
① 含义:当流体流动时,流体内部存在着内摩擦力, 这种内摩擦力会阻碍流体的流动,流体的这种特性称为 黏性。 ② 实验 (两平行平板间距很小)
面积A u F
y方向的速度 分布为线性
x 固定板
内摩擦力:运动着的流体内部相邻两流体层间的相 互作用力。
产生内摩擦力的根本原因:流体具有黏性。
2. 牛顿黏性定律
对分子运动作统计平均,以得到表征宏观现象的物理量
宏观上充分小 分子团的尺度<<所研究问题的特征尺寸
物理量都可看成是均匀分布的常量
V=10-5cm3 分子数目N=2.7×1014个
3. 连续性假定 ① 内容 流体由无数的彼此相连的流体质点组成,是一种连 续性介质,其物理性质和运动参数也相应连续分布。 ② 适用范围 绝大多数情况适用,但高真空下的气体不适用。
1.1.2 流体流动中的作用力
一、质量力 作用于所考察对象的每一个质点上的力,并与流 体的质量成正比
二、表面力 1. 表面力:作用于所考察对象表面上的力,与表面积 成正比。 2. 应力:单位面积上所受到的表面力。
3. 表面力的分解
切向力(剪力) 表面力 法向力
剪应力
拉力
压力
拉应力
化工原理 第一章 管内流体流动的基本方程式

二、稳定流动与不稳定流动
1、稳定流动 流体流动系统中,若各截面上的温度、压力、流
速等物理量仅随位置变化,而不随时间变化,这种 流动称之为稳定流动;
2019/11/12
2019/11/12
定常态流动.swf
2、不稳定流动 若流体在各截面上的有关物理量既随位置变化,也 随时间变化,则称为非稳定流动。 在化工厂中,连续生产的开、停车阶段,属于非稳 定流动,而正常连续生产时,均属于稳定流动。 本章重点讨论定态流动问题。 注意:定态与稳定态的区别
u qV A
单位为m/ s 。习惯上,平均流速简称为流速。
2019/11/12
(2)质量流速
单位时间内流经管道单位截面积的流体质量,称为质量流 速,以w表示,单位为kg/(m2·s)。
数学表达式为: w qm A
对于圆形管道: A d 2
4
质量流速与流速的关系为:
u 4qV
d 2
2019/11/12
2019/11/12
非定常态流动.swf
2019/11/12
三、连续性方程
在稳定流动系统中,对直径不同的管段做物料衡算:
qm1
qm2
衡算范围:取管内壁截面1-1’与截面2-2’间的管段 衡算基准:1s
对于连续稳定系统: qm1 qm2
2019/11/12
qm uA
u1
4
d12
u2
4
d22
u1 u2
d2 d1
2
表明:当体积流量qV一定时,管内流体的流速与管道直径 的平方成反比。
2019/11/12
例 如附图所示,管路由一段φ89×4mm的管1、一 段φ108×4mm的管2和两段φ57×3.5mm的分支管3a 及3b连接而成。若水以9×10-3m/s的体积流量流动 ,且在两段分支管内的流量相等,试求水在各段管
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章流体输送机械
学习目的与要求
1、掌握离心泵的工作原理、结构及主要性能参数。
2、掌握离心泵特性曲线、管路特性曲线、工作点。
3、理解汽蚀现象成因,掌握离心泵最大安装高度计算。
4、了解往复泵与旋转泵结构。
5、了解风机结构与工作原理。
6、了解真空泵、真空技术及相关知识。
综合练习
一、填空题
1.离心泵的主要部件有_________、_________与_________。
2.离心泵的泵壳制成螺壳状,其作用就是_________。
3.离心泵特性曲线包括_________、_________与_________三条曲线。
4.离心泵特性曲线就是在一定_________下,用常温_________为介质,通过实验测定得到的。
5.离心泵启动前需要向泵充满被输送的液体,否则将可能发生_________现象。
.
6.离心泵的安装高度超过允许吸上高度时,将可能发生_________现象。
7.离心泵的扬程就是指_________,它的单位就是_________。
8.若离心泵人口处真空表读数为93、32 kPa,当地大气压强为101、33 kPa,则输送42℃水(饱与蒸气压为8、2 kPa)时,则泵内_________发生气蚀现象。
9.离心泵安装在一定管路上,其工作点就是指_________。
10.若被输送液体的粘度增高,则离心泵的压头_________、流量_________、效率_________、轴功率_________。
答案:1、叶轮泵壳轴封装置 2、转能,即使部分动能转化为静压能 3、H-Q、N-Q、η-Q 4.转速水 5、气缚 6、气蚀
7、泵对单位重量流体提供的有效能量 m 8、会 9、泵的特性曲线与管路曲线交点 10、减小减小下降增大
二、选择题
1.离心泵的扬程就是指( )。
A.实际的升扬高度
B.泵的吸上高度
C.单位重量液体通过泵的能量
D.液体出泵与进泵的压强差换算成的液柱高
2.离心泵的轴功率就是( )。
A.在流量为零时最大
B.在压头最大时最大
C.在流量为零时最小
D.在工作点处最小
3.离心泵的效率η与流量Q的关系为( )。
A.Q增大,η增大
B. Q增大,η先增大后减小
C.Q增大,η减小
D. Q增大,η先减小后增大
4.离心泵的轴功率N与流量Q关系为( )。
A.Q 增大,N 增大
B. Q 增大,N 先增大后减小
C.Q 增大,N 减小.
D.Q 增大,N 先减小后增大
5.离心泵气蚀余量△h 与流量Q 关系为( )。
A. Q 增大, △h 增大
B. Q 增大, △h 减小
c. Q 增大, △h 不变 D.Q 增大, △h 先增大后减小
6.离心泵在一定管路系统下工作,压头与被输送液体密度无关的条件就是
( )。
A.z 2-z 1=0
B.Σh f =0
C.0222122=-u u
D.P 2 – P 1=0
7.离心泵停止操作时,宜( )。
A.先关出口阀后停电
B.先停电后关出口阀
C.先关出口阀或先停电均可
D.单级泵先停电,多级泵先关出口阀
8.离心泵的工作点就是指( )。
A.与泵最高效率时对应的点
B.由泵的特性曲线所决定的点
C.由管路特性所决定的点
D.泵的特性曲线与管路特性的交点
9.往复泵适用于( )。
,
A 、大流量且要求流量均匀的场合
B 、介质腐蚀性强的场合
C.流量较小、压头较高的场合 D 投资较小的场合
10.在测定离心泵性能时,若将压强表装在调节阀后面,压强表读数p 2将( )。
A.随流量增大而减小
B.随流量增大而增大
C.随流量增大而基本不变
D.随流量增大而先增大后减小
答案:1、 C 2、 C 3、 B 4、 A 5、 A 6、 D 7、 A 8、 D 9、
C 10、 B
三、计算题
1.在一定转速下测定某离心泵的性能,吸入管与压出管的内径分别为70mm 与50mm 。
当流量为30 m 3/h 时,泵入口处真空表与出口处压力表的读数分别为40kPa 与215kPa,两测压口间的垂直距离为0、4m,轴功率为3、45kW 。
试计算泵的压头与效率。
解: s m d V u s
166.207.0785.036003042211=⨯==π
s m u 246.405.0785.03600302
2=⨯=
在泵进出口处列柏努力方程,忽略能量损失; 222212112121Z u g
g p H Z u g g p e ++=+++ρρ Z u u g g p p H e ∆+-+-=
)(21212212ρ
4.0)116.2246.4(81.92181
.91010)40215(2233+-⨯+⨯⨯+= =27、07m kW g QH P e 213.207.2781.910360030
3=⨯⨯⨯==ρ %1.64%10045
.3213.2%100=⨯=⨯=∴P P e η 2.用油泵从贮槽向反应器输送44℃的异丁烷,贮槽中异丁烷液面恒定,其上方绝对压力为652kPa 。
泵位于贮槽液面以下1、5m 处,吸入管路全部压头损失为1、6m 。
44℃时异丁烷的密度为530kg/m 3,饱与蒸汽压为638 kPa 。
所选用泵的允许汽蚀余量为3、5m,问此泵能否正常操作?
解:泵允许的安装高度: ∑---=吸入允允f v h NPSH g
P P Hg )(0ρ 6.15.381
.9530106386523
--⨯⨯-=)( m 4.2-=
∴>允定y Hg Hg 此泵安装不当,会发生气蚀现象。
3. 常压贮槽内装有某石油产品,在贮存条件下其密度为760 kg/m 3。
现将该油品送入反应釜中,输送管路为φ57×2mm,由液面到设备入口的升扬高度为5m,流量为15m 3/h 。
釜内压力为148kPa(表压),管路的压头损失为5m(不包括出口阻力)。
试选择一台合适的油泵。
解: s m d V u s
89.1053.0785.0360015
422=⨯==π
在水槽液面11'-与输送管内侧22'-面间列柏努力方程,简化有:
∑++∆+∆=f e h u g
g P Z H 2221ρ
m H e 03.30598.181
.92181.976010148523=+⨯⨯+⨯⨯+= 由Q=m H h
m e 03.30153=
查油泵性能,选泵60Y-60B 其性能为;
流量:h
m 3
8.19kW m 75.338轴功率压头 m 6.2%55允许的气蚀余量效率:。