初三圆的教案

合集下载

初三圆的教案

初三圆的教案

初三圆的教案教学内容:初三圆的教学教学目标:1. 了解圆的定义和性质;2. 掌握圆相关的术语、符号和表示法;3. 能够计算圆的面积和周长;4. 能够解决与圆相关的几何问题。

教学重点:1. 圆的定义和性质;2. 圆的术语、符号和表示法。

教学难点:1. 圆的面积和周长的计算。

教学准备:1. 教学课件;2. 圆规、量角器等几何工具;3. 圆的实物模型;4. 各种几何题目。

教学过程:一、导入(5分钟)通过提出一道问题,引起学生的思考和兴趣,激发学生学习的欲望。

教师:同学们,你们对圆有什么认识吗?请你们讨论一下,然后举手发言。

学生:圆是一个闭合的曲线,任意两点间的距离都相等,圆心到圆上任意一点的距离都相等。

教师:很好,你们对圆的定义了解的很清楚。

那么,圆还有哪些特点和性质呢?学生:圆的周长是圆心到圆上任意一点的距离乘以2π,圆的面积是半径的平方乘以π。

教师:不错,你们已经掌握了圆的周长和面积的计算方法。

接下来,我们来深入学习圆的内容。

二、讲解(30分钟)1. 圆的定义和性质讲解。

教师:同学们,根据刚才你们的回答,可以知道圆是一个闭合的曲线,任意两点间的距离都相等,圆心到圆上任意一点的距离也都相等。

那么,我们可以用哪些术语和符号来表示圆呢?学生:圆心、圆弧、半径、直径、正切、弦、切线等。

教师:没错。

除了这些术语和符号外,我们还可以用圆的表示法来表示圆。

圆的表示法有很多种,最常用的是以圆心和半径来表示圆,如“O为圆心,r为半径的圆可记作△(O,r)”。

2. 圆的面积和周长的计算方法讲解。

教师:同学们,根据刚才你们的回答,我们知道圆的周长是圆心到圆上任意一点的距离乘以2π,圆的面积是半径的平方乘以π。

那么,我们来看一个例子。

教师用圆规、量角器等几何工具示范测量圆的周长和面积。

教师:同学们,你们能否通过这个实例来总结圆的周长和面积的计算方法呢?学生:圆的周长等于圆心到圆上任意一点的距离乘以2π,圆的面积等于半径的平方乘以π。

圆的有关性质教案

圆的有关性质教案

圆的有关性质教案教案一:圆的有关性质教学目标:1.了解圆的基本定义和符号表示。

2.掌握圆的半径、直径和弧长的概念。

3.理解圆的直径和半径的关系。

4.学会计算圆的周长和面积。

教学准备:1.教师准备圆的模型或幻灯片。

2.学生准备纸和铅笔。

3.学生准备直尺和量角器。

教学步骤:Step 1:导入新知识(5分钟)教师出示圆的模型或幻灯片,引导学生观察,让学生描述圆的形状和特点。

然后问学生,你们对圆有什么了解?Step 2:学习圆的定义(15分钟)教师向学生解释圆的定义:圆是由平面上所有距离中心点相等的点组成的图形。

然后,教师引导学生用纸和铅笔练习画圆。

学生按照以下步骤画圆:1.在纸上选择一个中心点,用铅笔描绘出这个点。

2.用量角器画出一个角度为360度的圆心角。

3.用铅笔在圆心角的两边画出弧线。

4.用直尺连接中心点和圆的弧线上的两个点。

Step 3:学习圆的基本概念(25分钟)教师向学生解释圆的基本概念:1.圆的半径:从圆心到圆上的任意一点的距离,用符号r表示。

2.圆的直径:通过圆心的两个相对点之间的距离,用符号d表示。

3.圆的弧:圆上的一段曲线。

4.圆的弦:两个圆上的点之间的线段。

然后,教师分发纸和铅笔给学生,让学生实践测量圆的半径和直径。

学生按照以下步骤进行操作:1.选择一个圆。

2.用量角器测量圆心角的度数。

3.用直尺测量圆心到圆上的点之间的距离,即半径。

4.用直尺测量通过圆心的两个相对点之间的距离,即直径。

Step 4:讨论圆的直径和半径的关系(15分钟)教师和学生一起讨论圆的直径和半径的关系。

指出直径是半径的两倍,即d=2r,让学生确认这个关系。

然后,教师给学生一些练习题,让他们在纸上解答。

Step 5:学习圆的周长和面积(20分钟)教师向学生解释圆的周长和面积的概念:1.圆的周长:沿着圆的边界走一圈,所经过的路程。

2.圆的面积:圆内部的所有点组成的区域。

然后,教师给学生一些公式,让他们计算圆的周长和面积:1.圆的周长公式:C=2πr2.圆的面积公式:A=πr²教师解释公式的含义并给予示范。

九年级圆复习教案5篇

九年级圆复习教案5篇

九年级圆复习教案5篇教案在书写的时候,我们需要考虑联系实际,制定教案是一件值得深思的事情,我们要保持清晰的思路,下面是作者为您分享的九年级圆复习教案5篇,感谢您的参阅。

九年级圆复习教案篇1第一单元第一课一复习生词二背诵最后一段(共两句,最后是省略号)三课文中作者的感情是自豪、赞美,体现了民族团结的精神。

四、抄写窗外安静的句子。

(读书读得认真)五、字音、字形傣昌戴(戈)舞()六、这是一所什么样的学校?(美丽、团结)第二课一、生词二、课文感情:热爱大自然,大自然给我的们生活带来了乐趣。

三、课文写了哪两件事?(第一件:哥俩在草地上玩耍,互相往对方脸上吹蒲公英的绒毛。

第二件:我发现了草地会变色及其变色的原因)四、草地为什么会变色?(花朵张开时,它是金色的,草地也是金色的;花朵合拢时,金色的花瓣被包住,草地就变成绿色的了。

)五、一本正经:很庄严,很严肃。

引人注目:引起人的注意。

第三课一、读课文,读准字音二、生词三、背诵课文第二自然段,这段写了什么?(天都峰又高又陡)四、老爷爷和我爬上天都峰后,为什么要互相道谢?(能从他人身上汲取力量,善于向他人学习,他们个人的奋斗和努力。

)五、多音字si似乎互相似相shi似的相片园地一、我的发现真假好人发现晃眼朝阳假放假好爱好发头发晃摇晃朝朝向二、背《小儿垂钓》三、记住“读读认认”里的生字四、用下面两个词造句十分:好像:第二单元第五课一、读课文二、写生词三、注意易错的字:步胸或低四、把课文描写灰雀的句子背下来(公园里有一棵高大的……非常惹人喜爱)五、列宁是怎样对待小男孩儿的,小男孩是一个怎样的人?(列宁尊重、爱护小男孩,小男孩是一个诚实天真的人)第六课一、读课文,读准字音二、会写生词三、易听写的词:摆弄清准备胶卷杂志社四、高尔基是一个怎样的人?小男是一个怎样的人?(高尔基关心爱护小男孩,小男孩崇敬、热爱高尔基)五、小男孩摆弄了很久很久,说明什么?(从高尔基和小男孩两个方面去回答)六、高尔基的三步曲:童年在人间我的大学第七课1、熟读课文2、听写词语3、容易错的字:旅考遗4、李四光是怎么提问题的?(这么重的大石头从天上掉下来,力量一定非常大。

圆的认识教案优秀9篇

圆的认识教案优秀9篇

圆的认识教案优秀9篇《圆的认识》篇一教案点评:采用游戏引入的形式,寓教于乐,即感知了圆的形成过程,渗透了集合思想,初步领悟了画圆的要领,同时密切了师生情感。

根据几何知识的特点和儿童的认知规律,通过看、想、说、画、议等形式多种感官参与学习的实践活动。

不但从感性到理性认识了圆,同时还发展了空间想像力、动手操作能力和口头表达能力。

教学目标1.使学生认识圆,知道圆的各部分名称。

2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。

4.培养学生观察、分析、抽象、概括等思维能力。

教学重点理解和掌握圆的特征,学会用圆规画圆的方法。

教学难点理解圆上的概念,归纳圆的特征。

教学过程一、铺垫孕伏(一)教师用投影出示下面的图形1.教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?2.教师指出:我们把这样的图形叫做平面上的直线图形。

(二)教师演示一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。

1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)2.小结引入:(出示铁丝围成的圆)这就是一个圆。

圆也是一种平面图形,这节课我们就来学习圆的认识。

(板书课题:圆的认识)二、探究新知(一)教师让学生举例说明周围哪些物体上有圆。

(二)认识圆的各部分名称和圆的特征。

1.学生拿出圆的学具。

2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)教师说明:圆是平面上的一种曲线图形。

3.通过具体操作,来认识一下圆的各部分名称和圆的特征。

(1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次。

教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)教师指出:我们把圆中心的这一点叫做圆心。

圆心一般用字母表示。

教师板书:圆心(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?(圆心到圆上任意一点的距离都相等)教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母表示。

圆的认识教案设计优秀8篇

圆的认识教案设计优秀8篇

圆的认识教案设计优秀8篇圆的认识数学教案篇一教学目标1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

2、进一步理解轴对称图形的特征,体会圆的特征。

3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。

教学重难点教学重、难点:1、圆的特征。

2、准确画圆3、同一个圆里半径与直径的关系。

教学过程一、师生谈话,导入新课课件出示图:师提问:同学们看,这是什么图形?在我们的生活周围,你还知道哪些物体的形状是圆形的?学生举例说。

(硬币、茶杯盖的形状、玻璃器皿的外形等等)课件出示图,这些都是由什么图形构成的?师:现在我们来做一个游戏:老师这里有一个布口袋,里面有很多的东西。

我请大家来摸一个圆形?看谁能一下子摸出来。

指名学生上台操作。

提问:你是怎么判断出来的?学生回答后,教师提问:那么,什么叫圆呢?它与我们以前学过的平面图形有什么不同?学生回答后,教师进行小结:圆是平面上的一种曲线图形。

二、动手操作,研究特征师:刚才大家已经认识了圆,那么,想不想把它画出来看一看呢?请你在白纸上画一个圆。

学生自由画,稍后,教师讲评学生的作业:说说你是怎么画的?用了什么方法?比较一下,谁的方法画的圆比较好?大家一致同意用圆规的方法比较精确。

教师讲解画圆的方法。

现在就请每个同学用圆规在第二张白纸上画一个圆。

学生开始操作,几分钟后,学生全部完成了作业。

老师让大家四人一组,把四个人的圆放在一块,相互欣赏一分钟,可以说一句表扬的话。

师:欣赏完了刚才四个同学画的圆以后,你发现四个人的作品有什么不一样啊?学生说:我发现了四个圆的大小不一样,画在纸上的位置也不一样。

老师提问:那么,你们知道为什么圆的位置会不一样?生说:我们把圆规的针尖放在纸的位置不一样。

师:对呀。

你知道这个点叫什么吗?它就是圆心。

找出自己画的圆的圆心。

并写上字母O。

师:现在大家都明白了,是谁决定了圆的位置?那么,又是谁决定了圆的大小呢?学生讨论后,得出了圆规两只脚拉开的大小就决定了圆的大小。

圆的认识教案【优秀10篇】

圆的认识教案【优秀10篇】

圆的认识教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!圆的认识教案【优秀10篇】作为一名教师,往往需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

初中 圆的定义教案

初中 圆的定义教案

初中圆的定义教案教学目标:1. 让学生理解圆的概念,掌握圆的基本性质。

2. 培养学生观察、思考、交流的能力。

3. 培养学生运用圆的知识解决实际问题的能力。

教学重点:1. 圆的定义及基本性质。

2. 圆的画法。

教学难点:1. 圆的半径与直径的关系。

2. 圆的周长和面积的计算。

教学准备:1. 圆的模型或实物。

2. 圆规、直尺、铅笔等绘图工具。

3. 课件或黑板。

教学过程:一、导入(5分钟)1. 向学生展示一些生活中的圆形物体,如硬币、篮球、地球等,引导学生观察并思考这些物体的共同特征。

2. 学生分享观察结果,教师总结:这些物体的共同特征是它们都有一个圆形的外观。

二、新课导入(10分钟)1. 教师提问:什么是圆?2. 学生根据生活经验尝试回答,教师总结:圆是平面上所有点到一个固定点(圆心)的距离相等的点的集合。

3. 教师讲解圆的半径和直径的概念,并展示实物或课件进行解释。

4. 学生跟随教师一起画一个圆,并标注半径和直径。

三、课堂练习(10分钟)1. 学生独立完成教材上的练习题,巩固圆的定义和性质。

2. 教师选取部分学生的作业进行讲解和评价。

四、圆的画法(10分钟)1. 教师讲解圆的画法,演示如何使用圆规和直尺画一个圆。

2. 学生跟随教师一起练习画圆,并尝试画出不同大小的圆。

五、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结圆的定义、性质和画法。

2. 学生分享自己的学习收获和感受。

六、作业布置(5分钟)1. 学生回家后,用圆的知识设计一个简单的几何图案,并写在日记中,记录自己的学习心得。

教学反思:本节课通过生活实例导入,引导学生观察和思考,激发学生的学习兴趣。

在教学过程中,注重学生的主体地位,鼓励学生积极参与,培养学生的观察、思考和交流能力。

通过课堂练习和画圆的实践活动,巩固所学知识,提高学生的动手操作能力。

总体来说,本节课达到了预期的教学目标,学生在轻松愉快的氛围中学习了圆的定义和基本性质。

圆的数学教案5篇

圆的数学教案5篇

圆的数学教案5篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作报告、工作计划、心得体会、合同方案、演讲稿、作文大全、教案、述职报告、调查报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work reports, work plans, reflections, contract proposals, speeches, essay summaries, lesson plans, job reports, investigation reports, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!圆的数学教案5篇一份成功的教案需要教师不断反思和总结教学经验,编写详细的教案可以帮助我们准备教学资源和教具,提高教学的实效性和趣味性,下面是本店铺为您分享的圆的数学教案5篇,感谢您的参阅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学辅导方案教学内容圆知识点
教学目标1、圆的相关概念
2、弦、弧等与圆有关的定义
3、垂径定理及其推论
4、圆的对称性
重点难点1、点和圆的位置关系
2、圆周角定理及其推论
3、直线与圆的位置关系
教学过程考点一、圆的相关概念
1、圆的定义
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”
考点二、弦、弧等与圆有关的定义
(1)弦
连接圆上任意两点的线段叫做弦。

(如图中的AB)
(2)直径
经过圆心的弦叫做直径。

(如途中的CD)
直径等于半径的2倍。

(3)半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(4)弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
考点三、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

垂径定理及其推论可概括为:
过圆心
垂直于弦
直径平分弦知二推三
平分弦所对的优弧
平分弦所对的劣弧
课堂作业1.如图5-1-12,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( ) A.CM=DM B.CB=DB C.∠ACD=∠ADC D.OM=MD
图5-1-12
2.如图5-1-13,AB,CD是⊙O的两条弦,连接AD,BC,若∠BAD=60°,则∠BCD的度数
为( )
图5-1-13
A.40°B.50°C.60°D.70°
3.如图5-1-14,已知AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( )
图5-1-14
A.45°B. 60°C.90°D. 30°
4.已知:如图5-1-15,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为( )
A.45°B.35°C.25°D.20°
图5-1-15
5.如图5-1-16,已知BD是⊙O的直径,点A,C在⊙O上,AB=BC,∠AOB=60°,则∠
BDC的度数是( )
图5-1-16
A.20°B.25°C.30°D.40°
6.如图5-1-17,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为( )
图5-1-17
A.80°B.60°C.50°D.40°
7.如图5-1-18,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为( ) A.35°B.45°C.55°D.75°
图5-1-18
8.如图5-1-19,点A,B,C在圆O上,∠A=60°,则∠BOC=______度.
图5-1-19
9.如图5-1-20,已知∠OCB=20°,则∠A=______度.
图5-1-20
10.如图5-1-21,四边形ABCD是圆的内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是( )
图5-1-21
A.115°B.105°C.100°D.95°
11.如图5-1-22,⊙C过原点,且与两坐标轴分别交于点A,B,点A的坐标为(0,3),M是第三象
限内OB上一点,∠BMO=120°,则⊙C的半径长为( )
A.6 B.5 C.3 D.3 2
图5-1-22
12.如图5-1-23,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=12,EB=2,则⊙O的直径
为( )
图5-1-23
A. 8
B. 10 C.16 D.20
13.如图5-1-24,在半径为5的⊙O中,弦AB=6,点C是优弧AB上一点(不与A,B重合),则cos C的值为________.
图5-1-24
三级训练
14.如图5-1-26,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与O D的延长线交于点P,连接PC,BC.
图5-1-26
(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论;
(2)求证:PC是⊙O的切线.
15.(20XX年广东梅州)如图5-1-25,AC是⊙O的直径,弦BD交AC于点E.
(1)求证:△ADE∽△BCE;
(2)如果AD2=AE·AC,求证:CD=CB.
图5-1-25
课后作业1.若⊙O的半径为4 cm,点A到圆心O的距离为3 cm,那么点A与⊙O的位置关系是( ) A.点A在圆内B.点A在圆上C.点A在圆外D.不能确定
2.如图5-1-39,在Rt△ABC中,∠C=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是点P( )
A.在⊙O内B.在⊙O上C.在⊙O外D.无法确定
图5-1-39
3.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是( ) A.相切B.相离C.相离或相切D.相切或相交
4.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )
A. 与x轴相交,与y轴相切
B. 与x轴相离,与y轴相交
C. 与x轴相切,与y轴相交
D. 与x轴相切,与y轴相离
5.如图5-1-40,正三角形的内切圆半径为1,那么这个正三角形的边长为( )
图5-1-40
A.2 B.3 C. 3 D.2 3
6.如图5-1-41,⊙O1,⊙O2相内切于点A,其半径分别是8和4,将⊙O2沿直线O1O2平移至两圆相外切时,则点O2移动的长度是( )
图5-1-41
A.4 B.8 C.16 D.8或16
7.已知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l与⊙O的位置关系是( ) A.相交B.相切C.相离D.以上都不对
8.已知⊙O的面积为9π cm2,若点O到直线的距离为π cm,则直线与⊙O的位置关系是( ) A.相交B.相切C.相离D.无法确定
9.如图5-1-42,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交于点P,则∠BPC=________°.
图5-1-42
10.已知直线l与⊙O相切,若圆心O到直线l的距离是5,则⊙O的半径是________.
11.如图5-1-43,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD. X k B 1 . c o m
图5-1-43
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.
12.如图5-1-44,P A与⊙O相切于点A,弦AB⊥OP,垂足为C,OP与⊙O相交于点D,已知OA=2,OP=4.
图5-1-44
(1)求∠POA的度数;
(2)计算弦AB的长.
13.如图5-1-45,点A,B,C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD 延长线上的一点,且AP=AC.
图5-1-45
(1)求证:AP是⊙O的切线;
(2)求PD的长.
14.如图5-1-46,△ABC中,∠ACB=90°,D是AB边上的一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.
图5-1-46
(1)求证:AB是⊙O的切线;
(2)若CD的弦心距为1,BE=EO,求BD的长.
15.如图5-1-47,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交A B的延长线于点E,则∠E=( )
图5-1-47
A.40°B.50°C.60°D.70°。

相关文档
最新文档