九年级数学上册第24章圆教案(共23套新人教版)

合集下载

人教版九年级上册第二十四章圆教学设计

人教版九年级上册第二十四章圆教学设计

人教版九年级上册第二十四章圆教学设计教学目标1.了解圆的基本概念,如圆心、半径、圆的公式等。

2.掌握求解圆的面积和周长的方法。

3.能够运用圆的知识解决实际问题。

4.培养学生归纳和总结的能力,提高学生思维能力和解决问题的能力。

教学准备1.教师课件。

2.学生练习册和笔记本。

3.圆规、直尺、黑板、白板等。

教学过程1. 导入教师通过学生们生活中的例子,如车轮、钟表等向学生介绍圆的概念,让学生尝试通过观察和描述来理解圆的基本属性和特点,激发学生学习兴趣。

2. 新课讲解教师通过课件向学生展示圆的各种属性和公式,并且运用简单的例子,让学生更深入地理解圆。

在讲解的过程中,教师可以与学生进行互动交流,让学生积极参与,提高他们的兴趣和学习积极性。

3. 练习教师通过黑板、白板向学生展示各种典型的计算题目,让学生在巩固理论知识的同时增加实践操作的经验。

针对不同程度的学生,可以设置不同难度的题目,提高学生的学习效果。

4. 巩固在学生对于圆已经有了深刻的理解之后,教师可以运用实际问题案例来讲解,让学生将圆的知识运用到实际生活中。

此外,还可以对上节课和中进行简单的回顾,增强学生的记忆和对圆的理解。

5. 课后作业布置学生完成书面作业和练习册上的题目,并且鼓励学生在日常生活中寻找圆的例子,加深他们的印象与理解。

教学评估1.学生能够准确地解答课堂练习和作业题目。

2.学生能够从实际生活中找到圆的例子,并且能够对其进行准确描述和分析。

3.学生在课堂上的参与度和思考能力逐渐提高。

总结本课的教学旨在让学生深入理解圆的属性、特点、公式等知识,以及将知识运用到实际生活中,提高他们的应用能力和解决实际问题的能力。

通过教师的讲解、学生的练习与讨论,学生对圆这一数学概念有了更加深入的理解,加深了他们对数学的认识。

九年级数学上册24圆学案新版新人教版

九年级数学上册24圆学案新版新人教版

第二十四章圆24.1圆的有关性质24. 1. 1圆1.了解圆的基本概念,并能准确地表示出来.2. 理解并掌握与圆有关的概念:弦、直径、圆弧、等圆、同心圆等.重点:与圆有关的概念.难点:圆的有关概念的理解.一、自学指导.(10分钟)自学:研读课本P79~80内容,理解记忆与圆有关的概念,并完成下列问题.探究:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做__圆__,固定的端点O叫做圆心,线段OA叫做__半径__.②用集合的观点叙述以O为圆心,r为半径的圆,可以说成是到定点O的距离为__r__的所有的点的集合.③连接圆上任意两点的__线段__叫做弦,经过圆心的弦叫做__直径__;圆上任意两点间的部分叫做圆弧;圆上任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做__优弧__,小于半圆的弧叫做__劣弧__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(3分钟)1.以点A为圆心,可以画__无数__个圆;以已知线段AB的长为半径可以画__无数__个圆;以点A为圆心,AB的长为半径,可以画__1__个圆.点拨精讲:确定圆的两个要素:圆心(定点)和半径(定长).圆心确定圆的位置,半径确定圆的大小.2.到定点O的距离为5的点的集合是以__O__为圆心,__5__为半径的圆.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)1.⊙O的半径为3 cm,则它的弦长d的取值范围是__0<d≤6__.点拨精讲:直径是圆中最长的弦.2.⊙O中若弦AB等于⊙O的半径,则△AOB的形状是__等边三角形__.点拨精讲:与半径相等的弦和两半径构造等边三角形是常用数学模型.3.如图,点A,B,C,D都在⊙O上.在图中画出以这4点为端点的各条弦.这样的弦共有多少条?解:图略.6条.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(15分钟)1.(1)在图中,画出⊙O的两条直径;(2)依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.解:矩形.理由:由于该四边形对角线互相平分且相等,所以该四边形为矩形.作图略.点拨精讲:由刚才的问题思考:矩形的四个顶点一定共圆吗?2.一点和⊙O上的最近点距离为4 cm,最远点距离为10 cm,则这个圆的半径是__3_cm或7_cm__.点拨精讲:这里分点在圆外和点在圆内两种情况.3.如图,图中有__1__条直径,__2__条非直径的弦,圆中以A为一个端点的优弧有__4__条,劣弧有__4__条.点拨精讲:这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.,第3题图) ,第4题图)4.如图,⊙O 中,点A ,O ,D 以及点B ,O ,C 分别在一直线上,图中弦的条数为__2__.点拨精讲:注意紧扣弦的定义.5.如图,CD 为⊙O 的直径,∠EOD =72°,AE 交⊙O 于B ,且AB =OC ,求∠A 的度数.解:24°.点拨精讲:连接OB 构造三角形,从而得出角的关系.,第5题图) ,第6题图)6.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,点D 是BC 的中点,若AC =10 cm ,求OD 的长. 解:5 cm .点拨精讲:这里别忘了圆心O 是直径AB 的中点.学生总结本堂课的收获与困惑.(2分钟)1.圆的定义、圆的表示方法及确定一个圆的两个基本条件.2.圆的相关概念:(1)弦、直径;(2)弧及其表示方法;(3)等圆、等弧.学习至此,请使用本课时对应训练部分.(10分钟)24.1.2 垂直于弦的直径1.圆的对称性.2.通过圆的轴对称性质的学习,理解垂径定理及其推论.3.能运用垂径定理及其推论进行计算和证明.重点:垂径定理及其推论.难点:探索并证明垂径定理.一、自学指导.(10分钟)自学:研读课本P 81~83内容,并完成下列问题.1.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,它也是中心对称图形,对称中心为圆心.2.垂直于弦的直径平分弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A ,B 两点;②AB⊥CD 交CD 于E ,那么可以推出:③CE=DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.3.平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧.点拨精讲:(1)画图说明这里被平分的弦为什么不能是直径.(2)实际上,当一条直线满足过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,这五个条件中的任何两个,就可推出另外三个.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.在⊙O 中,直径为10 cm ,圆心O 到AB 的距离为3 cm ,则弦AB 的长为 __8_cm __.2.在⊙O 中,直径为10 cm ,弦AB 的长为8 cm ,则圆心O 到AB 的距离为__3_cm __.点拨精讲:圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个.3.⊙O 的半径OA =5 cm ,弦AB =8 cm ,点C 是AB 的中点,则OC 的长为__3_cm __.点拨精讲:已知弦的中点,连接圆心和中点构造垂线是常用的辅助线.4.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为多少米? (8米)点拨精讲:圆中已知半径、弦长、弦心距或弓形高四者中的任何两个,即可求出另一个.。

人教版九年级数学24章《圆》全章教案(DOC)

人教版九年级数学24章《圆》全章教案(DOC)

课时计划第9周第24课(章、单元)第1节第 1课时2014 年10月29日课时计划第9周第24课(章、单元)第1节第2课时2014 年10月30日课时计划第9周第24课(章、单元)第1节第3课时2014 年10月31日课时计划第10周第24课(章、单元)第1节第 4课时2014 年11月3日课时计划第10周第24课(章、单元)第2节第 1课时2014 年11月5日课时计划第10周第24课(章、单元)第2节第 2 课时2014 年11月6日那么直线与圆分别是什么位置关系?有几个公共点?归纳:判定直线与圆的位置关系的方法有两种:(1)根据定义,由直线与圆的公共点的个数来判断;(2)根据性质,由圆心到直线的距离与半径的关系来判断.二、学习探究圆的切线的性质与判断:1、切线的性质:圆的切线垂直于过切点的半径。

2、切线的判断:经过半径的外端,并且垂直于这条半径的直线是圆的切线.对性质和判断作出证明(略)三、运用举例:例1、已知:AB是⊙O的直径,∠ABT=45°,AT=AB.求证:AT是⊙的切线.例2、如图9,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°,求证:DC是⊙O的切线.例3、如图,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:AC 是⊙O的切线四、练习1.已知⊙O的半径为5cm,点O到直线a的距离为3cm,则⊙O与直线a的位置关系是________;直线a与⊙O的公共点个数是_______.2.已知⊙O的直径是11cm,点O到直线a的距离是5.5cm,则⊙O与直线a的位置关系是______,直线a与⊙O的公共点个数是_______.课时计划第11周第 24课(章、单元)第2节第 3课时2014 年11月12日三角形的内心:三角形内切圆的圆心.(即三角形三条角平分线的交点)思考:一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?四、运用举例:例1:已知:在△ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,求AF、BD和CE的长。

人教版九年级数学上册教案第24章 圆

人教版九年级数学上册教案第24章  圆

第二十四章 圆 24.1 圆的有关性质24.1.1 圆01 教学目标1.了解圆的基本概念,并能准确地表示出来.2.理解并掌握与圆有关的概念:弦、直径、圆弧、等圆、同心圆等. 02 预习反馈阅读教材P 79~80内容,理解记忆与圆有关的概念,并完成下列问题.1.如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆.其固定的端点O 叫做圆心,线段OA 叫做半径.2.圆心为O 、半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合.3.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.以点A 为圆心,可以画无数个圆;以已知线段AB 的长为半径,可以画无数个圆;以点A 为圆心,AB 的长为半径,可以画1个圆.【点拨】 确定圆的两个要素:圆心(定点)和半径(定长).圆心确定圆的位置,半径确定圆的大小. 5.到定点O 的距离为5的点的集合是以O 为圆心,5为半径的圆.03 名校讲坛例1 (教材P80例1)矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.【思路点拨】 要求证几个点在同一个圆上,即需要证明这几个点到同一个点(即圆心)的距离相等. 【解答】 证明:∵四边形ABCD 为矩形, ∴OA =OC =12AC ,OB =OD =12BD ,AC =BD .∴OA =OC =OB =OD .∴A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上(如图).例2 (教材P80例1的变式)△ABC 中,∠C =90°.求证:A ,B ,C 三点在同一个圆上. 【解答】 证明:如图,取AB 的中点O ,连接OC .∵在△ABC 中,∠C =90°, ∴△ABC 是直角三角形.∴OC =OA =OB =12AB (直角三角形斜边上的中线等于斜边的一半).∴A ,B ,C 三点在同一个圆上.【跟踪训练1】 (例1的变式题)(1)在图中,画出⊙O 的两条直径;(2)依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.解:(1)作图略.(2)矩形.理由:因为该四边形的对角线互相平分且相等,所以该四边形为矩形. 【思考】 由刚才的问题思考:矩形的四个顶点一定共圆吗? 例3 已知⊙O 的半径为2,则它的弦长d 的取值范围是0<d ≤4. 【点拨】 直径是圆中最长的弦.例4 在⊙O 中,若弦AB 等于⊙O 的半径,则△AOB 的形状是等边三角形. 【点拨】 与半径相等的弦和两半径构造等边三角形是常用数学模型.【跟踪训练2】 如图,点A ,B ,C ,D 都在⊙O 上.在图中画出以这4点为端点的各条弦.这样的弦共有多少条?解:图略.6条.04 巩固训练1.如图,图中有1条直径,2条非直径的弦,圆中以A 为一个端点的优弧有4条,劣弧有4条. 【点拨】 这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.2.如图,⊙O 中,点A ,O ,D 以及点B ,O ,C 分别在一条直线上,图中弦的条数为2.3.(《名校课堂》24.1.1习题)点P 到⊙O 上各点的最大距离为10 cm ,最小距离为8 cm ,则⊙O 的半径是1或9cm.【点拨】 这里分点在圆外和点在圆内两种情况.4.如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点.若AC=10 cm,则OD的长为5__cm.【点拨】圆心O是直径AB的中点.5.如图,CD为⊙O的直径,∠EOD=72°,AE交⊙O于B,且AB=OC,则∠A的度数为24°.【点拨】连接OB构造三角形,从而得出角的关系.05课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?24.1.2 垂直于弦的直径01 教学目标1.理解圆的对称性.2.通过圆的轴对称性质的学习,理解垂直于弦的直径的性质. 3.能运用垂径定理计算和证明实际问题. 02 预习反馈阅读教材P 81~83内容,并完成下列问题.1.圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴,圆也是中心对称图形,对称中心为圆心. 2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,即如图,∵CD 是⊙O 的直径,且AB ⊥CD , ∴AE =BE ;AC ︵=BC ︵;AD ︵=BD ︵.3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,即 如图,∵CD 是⊙O 的直径,且AE =BE(AB 不是直径), ∴CD ⊥AB ;AC ︵=BC ︵;AD ︵=BD ︵.03 名校讲坛知识点1 垂径定理例1 (教材补充例题)已知⊙O 的半径为5 cm.(1)若圆心O 到弦AB 的距离为3 cm ,则弦AB 的长为8__cm ; (2)若弦AB 的长为8 cm ,则圆心O 到AB 的距离为3__cm .【点拨】 (1)圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个.(2)“已知弦的中点,连接圆心和中点构造垂直”或“连接半径,由半径、半弦、弦心距构造直角三角形”是常用的辅助线.例2 (例1的变式题)已知:如图,线段AB 与⊙O 交于C ,D 两点,且OA =OB .求证:AC =BD .【解答】 证明:作OE ⊥AB 于E .则CE =DE . ∵OA =OB ,OE ⊥AB ,∴AE =BE . ∴AE -CE =BE -DE ,即AC =BD .【点拨】 过圆心作垂径是圆中常用辅助线.【跟踪训练1】 若⊙O 的半径OA =5 cm ,弦AB =8 cm ,点C 是AB 的中点,则OC 的长为3__cm . 【跟踪训练2】 已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足.若AE =9,BE =1,求CD 的长. 解:连接OC.∵AE =9,BE =1,∴半径OC =5,OE =4. ∵弦CD ⊥AB ,∴在Rt △OCE 中,CE =OC 2-OE 2=3. 又∵AB 是⊙O 的直径,弦CD ⊥AB , ∴CD =2CE =6.【跟踪训练3】 ⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 的长的最小值为3,最大值为5.【点拨】 当OM 与AB 垂直时,OM 最小(为什么);当M 在A(或B)处时,OM 最大.知识点2 垂径定理的实际应用例3 (教材P82例2)赵州桥(如图)是我国隋代建造的石拱桥,距今约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m ,拱高(弧的中点到弦的距离)为7.23 m ,求赵州桥主桥拱的半径(结果保留小数点后一位).【思路点拨】 解决此问题的关键是根据赵州桥的实物图画出几何图形.【解答】 如图,用AB ︵表示主桥拱,设AB ︵所在圆的圆心为O ,半径为R .经过圆心O 作弦AB 的垂线OC ,D 为垂足,OC 与AB ︵相交于点C ,连接OA .根据垂径定理,D 是AB 的中点,C 是AB ︵的中点,CD 就是拱高.由题设可知AB =37 cm ,CD =7.23 cm , 所以AD =12AB =12×37=18.5(cm),OD =OC -CD =R -7.23.在Rt △OAD 中,由勾股定理,得 OA 2=AD 2+OD 2,即R 2=18.52+(R -7.23)2. 解得R ≈27.3.因此,赵州桥的主桥拱直径约为27.3 m.【点拨】 圆中已知半径、弦长、弦心距或弓形高四者中的任何两个,即可求出另一个.【跟踪训练4】 (教材P82例2的变式题)某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为8米.04 巩固训练1.在直径是20 cm 的⊙O 中,∠AOB 的度数是60°,那么弦AB 的弦心距是53__cm . 【点拨】 这里利用60°角构造等边三角形,从而得出弦长. 2.弓形的弦长为6 cm ,弓形的高为2 cm ,则这个弓形所在的圆的半径为134__cm .3.如图,AB 为⊙O 的直径,E 是BC ︵中点,OE 交BC 于点D ,BD =3,AB =10,则AC =8.4.(《名校课堂》24.1.2习题变式)⊙O的半径是5,P是圆内一点,且OP=3,过点P最短弦的长为8,最长弦的长为10.【点拨】过点P最短弦即为与OP垂直的弦,最长弦即为直径.5.(《名校课堂》24.1.2习题变式)已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D 两点.求证:AC=BD.【点拨】过圆心作垂径.证明:过点O作OE⊥AB于点E.则AE=BE,CE=DE.∴AE-CE=BE-DE,即AC=BD.6.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,求弦AB与CD之间的距离.【点拨】分情况讨论:①AB,CD在点O两侧;②AB,CD在点O同侧.解:过点O作直线OE⊥AB于点E,直线OE与CD交于点F.又∵AB∥CD,∴OF⊥CD.①当AB,CD在点O两侧时,如图1.连接AO,CO,则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=AO2-AE2=15 cm,OF=CO2-CF2=7 cm.∴EF=OE+OF=22 cm,即AB与CD之间的距离为22 cm;图1图2②当AB,CD在点O同侧时,如图2.连接AO,CO.则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=AO2-AE2=15 cm,OF=CO2-CF2=7 cm.∴EF=OE-OF=8 cm,即AB与CD之间的距离为8 cm.综上所述,AB与CD之间的距离为22 cm或8 cm.05课堂小结1.垂径定理及其推论.2.常用的辅助线(作垂径)和解题思路(构造由半径、半弦、弦心距组成的直角三角形).24.1.3 弧、弦、圆心角01 教学目标1.通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系. 2.运用上述三者之间的关系来计算或证明有关问题.02 预习反馈阅读教材P 83~84内容,回答下列问题. 1.顶点在圆心的角叫做圆心角.2.如图所示,下列各角是圆心角的是(B )A .∠ABCB .∠AOBC .∠OABD .∠OBC 3.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.4.在同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,它们所对应的其余各组量也相等. 如图,在⊙O 中,AB ,CD 是两条弦.(1)如果AB =CD ,那么∠AOB =∠COD ,AB ︵=CD ︵; (2)如果AB ︵=CD ︵,那么AB =CD ,∠AOB =∠COD ; (3)如果∠AOB =∠COD ,那么AB =CD ,AB ︵=CD ︵.5.如图,AD 是⊙O 的直径,AB =AC ,∠CAB =120°,根据以上条件写出三个正确结论.(半径相等除外)(1)△ACO ≌△ABO ; (2)AD 垂直平分BC ; (3)AC ︵=AB ︵.(答案不唯一)03 名校讲坛例1 (教材P84例3)如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AOC .【解答】 证明:∵AB ︵=AC ︵, ∴AB =AC ,△ABC 是等腰三角形. 又∵∠ACB =60°,∴△ABC 是等边三角形,AB =AC =BC . ∴∠AOB =∠BOC =∠AOC .【跟踪训练1】 如图,在⊙O 中,AB ︵=AC ︵,∠ACB =75°,求∠BAC 的度数.解:∵AB ︵=AC ︵,∴∠ACB =∠ABC. 又∵∠ACB =75°,∠ACB +∠ABC +∠BAC =180°, ∴∠BAC =30°.例2 (教材P84例3变式题)如图. (1)如果AD ︵=BC ︵,求证:AB =CD ; (2)如果AD =BC ,求证:DC ︵=AB ︵.【解答】 证明:(1)∵AD ︵=BC ︵, ∴AD ︵+AC ︵=BC ︵+AC ︵,即DC ︵=AB ︵. ∴AB =CD .(2)∵AD =BC ,∴AD ︵=BC ︵. ∴AD ︵+AC ︵=BC ︵+AC ︵,即DC ︵=AB ︵.例3 (教材补充例题)如图,AB 是⊙O 的直径,M ,N 分别是AO ,BO 的中点.CM ⊥AB ,DN ⊥AB ,分别与圆交于C ,D 点.求证:AC ︵=BD ︵.【思路点拨】 连接OC ,OD ,构造全等三角形.【解答】 证明:连接OC ,OD . ∵M ,N 分别为AO ,BO 的中点,∴OM =12OA ,ON =12OB .又∵OA =OB ,∴OM =ON .∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.在Rt △CMO 和Rt △DNO 中,⎩⎪⎨⎪⎧OM =ON ,OC =OD ,∴Rt △CMO ≌Rt △DNO (HL).∴∠AOC =∠BOD . ∴AC ︵=BD ︵.【跟踪训练2】 已知:如图,AB ,CD 是⊙O 的弦,且AB 与CD 不平行,M ,N 分别是AB ,CD 的中点,AB =CD ,那么∠AMN 与∠CNM 的大小关系是什么?为什么?【点拨】 (1)OM ,ON 具备垂径定理推论的条件;(2)同圆或等圆中,等弦的弦心距也相等.解:∠AMN =∠CNM.理由如下: 连接OB ,OD.∵M ,N 分别是AB ,CD 的中点,∴BM =AM ,DN =CN ,且OM ⊥AB ,ON ⊥CD ,即∠OMB =∠OND =90°. 又∵AB =CD ,∴BM =DN.在Rt △OBM 和Rt △ODN 中,⎩⎪⎨⎪⎧BM =DN ,OB =OD ,∴Rt △OBM ≌Rt △ODN(HL ).∴OM =ON.∴∠OMN =∠ONM. ∴90°-∠OMN =90°-∠ONM ,即∠AMN =∠CNM.04 巩固训练1.(《名校课堂》24.1.3习题变式)如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =35°,则∠AOE 的度数为75°.2.(《名校课堂》24.1.3习题变式)如图所示,CD 为⊙O 的弦,在CD 上截取CE =DF ,连接OE ,OF ,并且它们的延长线分别交⊙O 于点A ,B .(1)试判断△OEF 的形状,并说明理由;(2)求证:AC ︵=BD ︵.【点拨】 (1)过圆心作垂径;(2)连接AC ,BD ,通过证弦等来证弧等. 解:(1)△OEF 为等腰三角形.理由: 过点O 作OG ⊥CD 于点G ,则CG =DG . ∵CE =DF ,∴CG -CE =DG -DF ,即EG =FG .∵OG ⊥CD ,∴OG 为线段EF 的中垂线. ∴OE =OF ,即△OEF 为等腰三角形. (2)证明:连接AC ,BD . 由(1)知OE =OF , 又∵OA =OB ,∴AE =BF ,∠OEF =∠OFE .∵∠CEA =∠OEF ,∠BFD =∠OFE , ∴∠CEA =∠DFB .在△CEA 和△DFB 中,⎩⎪⎨⎪⎧AE =BF ,∠CEA =∠DFB ,CE =DF ,∴△CEA ≌△DFB (SAS).∴AC =BD . ∴AC ︵=BD ︵.05 课堂小结弧、弦、圆心角之间的关系是证明圆中等弧、等弦、等圆心角的常用方法.24.1.4 圆周角第1课时 圆周角定理及其推论01 教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.掌握圆周角定理及其两个推论,能在证明或计算中熟练的应用它们处理相关问题. 02 预习反馈阅读教材P 85~87,完成下列问题.1.顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.3.已知,如图所示,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上.若∠AOB =90°,则∠ACB 的度数为45°. 4.圆周角定理的推论:同弧或等弧所对的圆周角相等.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 5.如图所示,点A ,B ,C 在圆周上,∠A =65°,则∠D 的度数为65°.6.如图,A ,B ,C 均在⊙O 上,且AB 是⊙O 的直径,AC =BC ,则∠C =90°,∠A =45°.03 名校讲坛知识点1 圆周角定理例1 (教材补充例题)如图所示,点A ,B ,C 在⊙O 上,连接OA ,OB ,若∠ABO =25°,求∠C 的度数.【解答】 ∵OA =OB ,∠ABO =25°,∴∠BAO =∠ABO =25°. ∴∠AOB =130°. ∴∠C =12∠AOB =65°.【跟踪训练1】 如图,点A ,B ,C 在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 大小为60°.知识点2圆周角定理的推论例2(教材P87例4)如图,⊙O的直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.【思路点拨】根据AB是直径的条件,得出△ABC,△ABD都是直角三角形,由于Rt△ABC中AB,AC已知,根据勾股定理可求出BC.进一步,因为CD平分∠ACB,根据圆周角定理和弧、弦、圆心角之间的关系,可知AD=BD,这样,在Rt△ABD中可求出AD和BD的长.【解答】连接OD.∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ABC中,BC=AB2-AC2=102-62=8(cm).∵CD平分∠ACB,∴∠ACD=∠BCD.∴∠AOD=∠BOD.∴AD=BD.又在Rt△ABD中,AD2+BD2=AB2,∴AD=BD=22AB=22×10=52(cm).例3(教材补充例题)如图,△ABC的顶点都在⊙O上,AD是⊙O的直径,AD=2,∠B=∠DAC,则AC=1.【归纳总结】 1.圆周角定理及其推论中的转化思想:(1)弧是圆周角、圆心角的中介,通过弧可实现圆周角、圆心角之间的转化;(2)在同圆或等圆中,90°的圆周角和直径之间可以相互转化.2.圆周角定理及其推论中常用的辅助线:当题目中出现直径时,通常作出直径所对的圆周角,可得直角,然后结合直角三角形解决问题,即“见直径作直角”.3.利用圆周角定理及其推论进行证明时常用的思路:(1)在同圆或等圆中,若要证弧相等,则考虑证明这两条弧所对的圆周角相等;(2)在同圆或等圆中,若要证圆周角相等,则考虑证明这两个圆周角所对的弧相等;(3)当有直径时,常利用直径所对的圆周角为直角解决问题.【跟踪训练2】如图所示,点A,B,C在⊙O上,已知∠B=60°,则∠CAO=30°.【点拨】连接OC,构造圆心角的同时构造等腰三角形.【跟踪训练3】如图所示,AB是⊙O的直径,AC是弦,若∠ACO=32°,则∠B=58°.04 巩固训练1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则圆周角∠BAC 的度数为50°.2.如图所示,OA 为⊙O 的半径,以OA 为直径的⊙C 与⊙O 的弦AB 相交于点D ,若OD =5 cm ,则BE =10__cm .【点拨】 利用两个直径构造两个垂直,从而构造平行,产生三角形的中位线. 3.如图所示,在⊙O 中,∠AOB =100°,C 为优弧AB ︵的中点,则∠CAB 的度数为65°.4.如图,OA ,OB ,OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC.证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角,∴∠AOB =2∠ACB. 同理∠BOC =2∠BAC. ∵∠AOB =2∠BOC , ∴∠ACB =2∠BAC.【点拨】 看圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.05 课堂小结圆周角的定义、定理及推论.第2课时 圆内接四边形01 教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆各个推论,能在证明或计算中熟练的应用它们处理相关问题. 02 预习反馈阅读教材P 87~88,完成下列问题. 1.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 是四边形ABCD 的外接圆.2.圆内接四边形的对角互补.如图,∠A +∠C =180°,∠B +∠D =180°. 3.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠A =50°,∠BCD =130°.03 名校讲坛例 (《名校课堂》24.1.4第2课时习题变式)如图所示,已知AB 是⊙O 的直径,∠BAC =32°,D 是AC ︵的中点,那么∠DAC 的度数是多少?【解答】 连接BC . ∵AB 是⊙O 的直径, ∴∠ACB =90°. 又∵∠BAC =32°, ∴∠B =90°-32°=58°. ∴∠D =180°-∠B =122°(圆内接四边形的对角互补). 又∵D 是AC ︵的中点,∴∠DAC =∠DCA =12(180°-∠D )=29°.【跟踪训练1】 已知圆内接四边形ABCD 中,∠A ∶∠B ∶∠C =1∶3∶5,则∠D 的度数为90°.【跟踪训练2】 (《名校课堂》24.1.4第2课时习题变式)如图,在⊙O 的内接四边形ABCD 中,点E 在DC 的延长线上.若∠A =50°,则∠BCE =50°.1.(《名校课堂》24.1.4第2课时习题变式)如图,⊙O的内接四边形ABCD中,∠A=120°,则∠BOD等于120°.2.如图所示,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=56°,∠E=32°,则∠F=36°.3.如图,在⊙O中,∠CBD=30°,∠BDC=20°,求∠A的度数.解:∵在△BCD中,∠CBD=30°,∠BDC=20°,∴∠C=180°-∠CBD-∠BDC=130°.∴∠A=180°-∠C=50°.05课堂小结圆内接四边形的对角互补.24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系01教学目标1.结合实例,理解平面内点与圆的三种位置关系.2.知道确定一个圆的条件;掌握三角形外接圆及三角形的外心的概念.3.掌握反证法,并会应用于有关命题的证明.02预习反馈阅读教材P92~95,完成下列问题.1.设⊙O的半径为r,点到圆心的距离为d,则有:点在圆外⇔d>r,如图中的点C;点在圆上⇔d=r,如图中的点B;点在圆内⇔d<r,如图中的点A.如:若⊙O的半径为4 cm,点A到圆心O的距离为3 cm,则点A与⊙O 的位置关系是点A在圆内.2.经过一个已知点A可以作无数个圆;经过两个已知点A,B可以作无数个圆,它们的圆心在线段AB的垂直平分线上;经过不在同一条直线上的A,B,C三点可以作一个圆,即不在同一条直线上的三个点确定一个圆.3.经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.锐角三角形的外心在三角形内部;直角三角形的外心在三角形斜边的中点;钝角三角形的外心在三角形外部.任意三角形的外接圆有一个,而一个圆的内接三角形有无数个.03名校讲坛例1(《名校课堂》24.2.1习题)矩形ABCD中,AB=8,BC=35,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径作圆,判断点B,C与⊙P的位置关系.【解答】∵AB=8,点P在边AB上,且BP=3AP,∴BP=6,AP=2.根据勾股定理得r=PD=(35)2+22=7,PC=PB2+BC2=62+(35)2=9.∵PB=6<r,PC=9>r,∴点B在⊙P内,点C在⊙P外.【方法归纳】根据勾股定理求出点到圆心的距离d与半径r比较.【跟踪训练1】(例1变式题)如图,已知矩形ABCD的边AB=3 cm,AD=4 cm.(1)以点A为圆心,4 cm为半径作⊙A,则点B,C,D与⊙A的位置关系怎样?(2)若以A点为圆心作⊙A,使B,C,D三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是什么?【解答】(1)∵AB=3 cm<r,AC=AB2+BC2=5 cm>r,AD=4 cm=r,∴点B在⊙A内,点C在⊙A外,点D在⊙A上.(2)∵AB<AD<AC,且B,C,D三点中至少有一点在圆内,且至少有一点在圆外,∴3 cm<r<5 cm.【思考】(2)问中B,C,D三点中至少有一点在圆内,是指哪个点在圆内?至少有一点在圆外,是指哪个点在圆外?例2(教材P95练习3)如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心?【解答】因为A,B两点在圆上,所以圆心与A,B两点的距离相等,所以圆心在CD所在的直线上.因此使用这样的工具可以作出圆形工件的任意两条直径,它们的交点O就是圆心.【跟踪训练2】(《名校课堂》24.2.1习题)如图,△ABC的外接圆圆心的坐标是(-2,-1).例3(《名校课堂》24.2.1习题)用反证法证明:若∠A,∠B,∠C是△ABC的三个内角,则其中至少有一个角不大于60°.【解答】证明:假设∠A,∠B,∠C都大于60°,则有∠A+∠B+∠C>180°,这与三角形的内角和等于180°相矛盾.因此假设不成立,即∠A,∠B,∠C中至少有一个角不大于60°.【方法归纳】用反证法证明命题的一般步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证得出矛盾;③由矛盾断定假设不成立,从而得到原命题成立.【跟踪训练3】已知△ABC中,AB=AC,求证:∠B<90°.若用反证法证这个结论,应首先假设∠B≥90°.04巩固训练1.用反证法证明命题“△ABC中,至少有两个锐角”时,第一步假设为假设△ABC中,只有一个锐角.2.已知⊙O的半径r=5 cm,圆心O与点D的距离OD=3 cm,过点D且垂直于OD的直线l上有三点A,B,C,且AD=4 cm,BD>4 cm,CD<4 cm.则点A在⊙O上,点B在⊙O外,点C在⊙O内.3.已知线段AB=4 cm,以3 cm长为半径可作2个圆使其经过A,B两点,其圆心在线段AB的中垂线上,圆心与点A的距离为3cm.4.在Rt△ABC中,∠C=90°,AB=5 cm,BC=4 cm,以点C为圆心,3 cm为半径作⊙C.(1)点A,B与⊙C有何位置关系?为什么?(2)若将⊙C的半径改为2 cm,其他条件不变,则结果又如何呢?若将⊙C的半径改为4 cm呢?解:(1)由条件及勾股定理得AC=AB2-BC2=52-42=3(cm).∵AC=3 cm=r,∴点A在⊙C上.∵BC=4 cm>r,∴点B在⊙C外.(2)当⊙C的半径为2 cm时,点A,B都在⊙C外;当⊙C的半径为4 cm时,点B在⊙C上,点A在⊙C内.05课堂小结1.点与圆的三种位置关系.2.三角形外接圆及三角形的外心的概念.3.反证法.24.2.2 直线和圆的位置关系 第1课时 直线和圆的位置关系01 教学目标1.理解掌握同一平面内的直线与圆的三种位置关系. 2.理解记忆割线、切线、切点等概念.3.能根据圆心到直线的距离d 与半径r 的大小关系,准确判断出直线与圆的位置关系.02 预习反馈阅读教材P 95~96,完成下列知识探究.1.直线和圆有两个公共点时,直线和圆相交,这条直线叫做圆的割线.2.直线和圆只有一个公共点时,直线和圆相切,这条直线叫做圆的切线,这个点叫做切点. 3.直线和圆没有公共点时,直线和圆相离.4.设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,则有:直线l 和⊙O 相交⇔d <r ;直线l 和⊙O 相切⇔d =r ;直线l 和⊙O 相离⇔d >r .03 名校讲坛例1 在Rt △ABC 中,∠C =90°,AB =4 cm ,BC =2 cm ,以C 为圆心,r 为半径的圆与AB 有何种位置关系?请你写出判断过程.(1)r =1.5 cm ;(2)r = 3 cm ;(3)r =2 cm . 【解答】 过点C 作CD ⊥AB ,垂足为D. ∵AB =4 cm ,BC =2 cm ,∴AC =2 3 cm . 又∵S △ABC =12AB·CD =12BC·AC ,∴CD =BC·ACAB = 3 cm .(1)r =1.5 cm 时,相离;(2)r = 3 cm 时,相切; (3)r =2 cm 时,相交.【跟踪训练1】 在Rt △ABC 中,∠C =90°,AC =3 cm ,BC =4 cm ,以C 为圆心,r 为半径作圆. ①当r 满足0<r<125__cm 时,⊙C 与直线AB 相离;②当r 满足r =125__cm 时,⊙C 与直线AB 相切;③当r 满足r>125__cm 时,⊙C 与直线AB 相交.【跟踪训练2】 已知⊙O 的半径为5 cm ,圆心O 到直线a 的距离为3 cm ,则⊙O 与直线a 的位置关系是相交.直线a 与⊙O 的公共点个数是2.例2 已知⊙O 的半径是3 cm ,直线l 上有一点P 到O 的距离为3 cm ,试确定直线l 和⊙O 的位置关系. 【思路点拨】 这里P 到O 的距离等于圆的半径,而不是点O 到直线l 的距离等于圆的半径,因此要分情况讨论.【解答】 相交或相切.【跟踪训练2】 如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,若以C 为圆心,r 为半径的圆与斜边AB 只有一个公共点,则r 的取值范围是多少?【点拨】分相切和相交两类讨论.解:r=2.4或3<r≤4.04巩固训练1.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是(C)A.2.5 B.3 C.5 D.102.已知OA平分∠BOC,P是OA上任意的一点.若以点P为圆心的圆与OC相离,则⊙P与OB的位置关系是(B)A.相切B.相离C.相交D.相离或相切3.在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则BC与⊙A的位置关系是(C) A.相交B.相离C.相切D.不确定4.已知∠AOB=30°,M为OB上的一点,且OM=5 cm,以M为圆心,r为半径的圆与直线OA有怎样的位置关系?为什么?(1)r=2 cm;(2)r=4 cm;(3)r=2.5 cm.解:圆心M到OA的距离d=0.5OM=0.5×5=2.5(cm).(1)r=2 cm时,d>r,直线OA与⊙M相离;(2)r=4 cm时,d<r,直线OA与⊙M相交;(3)r=2.5 cm时,d=r,直线OA与⊙M相切.第2课时 切线的判定和性质01 教学目标1.探索并掌握切线与过切点的半径之间的位置关系.2.能判定一条直线是否为圆的切线;会过圆上一点画圆的切线. 3.会运用圆的切线的性质与判定来解决相关问题.02 预习反馈阅读教材P 97~98,完成下列问题.1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2.切线的性质:①切线和圆只有一个公共点;②切线到圆心的距离等于半径;③圆的切线垂直于过切点的半径.3.当已知一条直线是某圆的切线时,切点的位置是确定的,辅助线常常是连接圆心和切点,得到半径,那么半径垂直于切线.03 名校讲坛例 (教材P98例1)如图,△ABC 为等腰三角形,O 是底边BC 的中点,腰AB 与⊙O 相切于点D ,求证:AC 是⊙O 的切线.【思路点拨】 根据切线的判定定理,要证明AC 是⊙O 的切线,只要证明由点O 向AC 所作的垂线段OE 是⊙O 的半径就可以了,而OD 是⊙O 的半径,因此需要证明OE =OD .【解答】 证明:过点O 作OE ⊥AC ,垂足为E ,连接OD ,OA . ∵⊙O 与AB 相切于点D , ∴OD ⊥AB .又△ABC 为等腰三角形,O 是底边BC 的中点, ∴AO 是∠BAC 的平分线.∴OE =OD ,即OE 是⊙O 的半径.这样,AC 经过⊙O 的半径OE 的外端E ,并且垂直于半径OE ,所以AC 与⊙O 相切. 【方法归纳】 在解决有关圆的切线问题时,常常需要作过切点的半径.【跟踪训练1】 (《名校课堂》24.2.2第2课时习题)如图,AB 为⊙O 的直径,点E 在⊙O 上,C 为BE ︵的中点,过点C 作直线CD ⊥AE 于D ,连接AC .试判断直线CD 与⊙O 的位置关系,并说明理由.解:直线CD 与⊙O 相切,理由: 连接OC .∵C 为BE ︵的中点,∴BC ︵=CE ︵. ∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA .∴∠DAC =∠OCA .∴OC ∥AD . ∵AD ⊥CD ,∴OC ⊥CD . 又∵OC 为⊙O 的半径, ∴CD 是⊙O 的切线.【跟踪训练2】 如图,AB 是⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,E 是BC 边上的中点,连接PE ,则PE 与⊙O 相切吗?若相切,请加以证明,若不相切,请说明理由.解:相切.证明:连接OP ,BP ,则OP =OB. ∴∠OBP =∠OPB. ∵AB 为直径, ∴BP ⊥PC.在Rt △BCP 中,E 为斜边中点, ∴PE =12BC =BE.∴∠EBP =∠EPB.∴∠OBP +∠EBP =∠OPB +∠EPB , 即∠OBE =∠OPE.∵BE 为切线,∴AB ⊥BC. ∴OP ⊥PE.又∵OP 为⊙O 的半径, ∴PE 是⊙O 的切线.04 巩固训练1.在正方形ABCD 中,点P 是对角线AC 上的任意一点(不包含端点),以P 为圆心的圆与AB 相切,则AD 与⊙P 的位置关系是(B )A .相离B .相切C .相交D .不能确定2.如图,A ,B 是⊙O 上的两点,AC 是过点A 的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于60°时,AC 才能成为⊙O 的切线.3.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C.若∠A =25°,则∠D =40°.4.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,交AB 于点E ,过点D 作DF ⊥AB ,垂足为F ,连接DE.求证:直线DF 与⊙O 相切.证明:连接OD.∵AB=AC,∴∠B=∠C.∵OD=OC,∴∠ODC=∠C.∴∠ODC=∠B.∴OD∥AB.∵DF⊥AB,∴OD⊥DF.又∵点D在⊙O上,∴直线DF与⊙O相切.05课堂小结1.有圆的切线时,常常连接圆心和切点得切线垂直于半径;2.“连半径证垂直”与“作垂直证半径”——判定直线与圆相切.①当直线与圆有公共点时,只需“连半径、证垂直”即可;②当已知条件中没有指出圆与直线有公共点时,常运用“d=r”进行判断,辅助线的作法是过圆心作已知直线的垂线,证明垂线段的长等于半径.。

人教版九年级数学上册《二十四章 圆 第二十四章 圆(通用)》优质课教案_6

人教版九年级数学上册《二十四章 圆  第二十四章 圆(通用)》优质课教案_6

第二十四章圆的复习---切线的性质与判定教学设计课标分析1.通过小组合作,经历利用所给生活中的物品,探究解决生活中与切线相关的实际问题的过程,理解圆的切线的相关规律.2.通过本节课的探究活动,体会转化思想在数学问题中的应用.教材分析一、本章是人教版九年级上册圆的知识,本节课是在基本性质学习的基础上的第一节复习课,主要复习切线的性质与判定等知识,并用生活中的物品加以演示,加深理解.本章是今后学习解析几何等知识的重要基础,解决问题常需要综合运用代数、几何、三角等多方面知识,利用切线的性质与判定解决实际问题需要学生较强的理解能力及转化能力,综合程度较高,是本章的主要难点.二、因为探究切线的性质与判定具有一定的抽象性,需要有较高的空间想象能力和逻辑推理能力,而本节课利用锅和直尺将数学的抽象内容与生产生活实际相联系,在教学中应遵循辩证唯物主义认识论的基本观点,从直观到抽象,从感性到理性,通过观察、画图让学生经历感知切线的性质与判定,让学生在画图、拼图中思考并归纳总结出.三、数学来源于生产生活实际,反过来又应用于解决生产生活实际问题,从实际问题出发引入切线的性质与判定,并通过实际问题的直观,归纳出切线的性质与判定.让学生在实际问题的解决中感受切线的性质与判定学习的重要性.学情分析一、九年级学生由于年龄特征,不具备很强的抽象思维能力,所以教学中在复习切线的性质与判定的时候,在教师的指导、提示启发下,利用生活中的物品,让学生尝试动手操作,通过自主探究、同学间的相互交流,进而引导学生用类比的方法来研究切线的性质与判定,着重加强对数学思想和方法的渗透,使学生不断由“学会”向“会学”发展.二、因为探究切线的性质与判定具有一定的抽象性,需要有较高的空间想象能力和逻辑推理能力,而本节课利用锅和直尺将数学的抽象内容与生产生活实际相联系,在教学中应遵循辩证唯物主义认识论的基本观点,从直观到抽象,从感性到理性,通过观察、画图让学生经历感知切线的性质与判定,让学生在画图、拼图中思考并归纳总结出.1.题.变式题:已知:OB=5厘米,米,⊙O的半径解疑探究2小组合作及展示训练提升2如图,达标测评信心、毅力、激情三者具备,则天下没有做不成的事。

人教版数学九年级上册第24章圆24.1.1圆教学设计

人教版数学九年级上册第24章圆24.1.1圆教学设计
4.小组合作题:布置一些需要小组合作的题目,让学生在课后进行讨论、交流,共同解决问题。这有助于培养学生的团队协作能力和沟通能力。
5.拓展提高题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。这类题目旨在激发学生的学习兴趣,提高他们的数学思维。
作业布置要求:
1.学生需独立完成作业,确保作业质量。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础巩固题:针对圆的基本概念和性质,设计一些选择题、填空题,让学生巩固所学知识。
2.应用提高题:设计一些与生活实际相关的题目,如计算圆形花坛的面积、圆桌的周长等,让学生学会将所学知识应用于实际问题。
3.拓展挑战题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。
2.创设问题情境,引导学生通过探究、讨论的方式,发现和掌握圆的相关性质。
-设计一系列由浅入深的问题,如圆中任意两点到圆心的距离是否相等,引导学生自主探索和发现圆的性质。
-组织小组合作学习,鼓励学生之间交流想法,共同解决难题。
3.将理论知识与生活实际相结合,设计实际应用题,提高学生解决问题的能力。
-通过设计如操场跑道周长、圆形花园面积等实际问题,让学生在实际情境中应用所学的圆的周长和面积知识。
5.教学评价多元化,不仅关注学生的知识掌握,也注重学习过程中的思维方法和情感态度。
-通过课堂提问、小组讨论、课后作业、小测验等多种方式,全面评估学生的学习成效。
-鼓励学生自我评价和同伴评价,培养他们的自我反思和批判性思维能力。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用学生对日常生活的经验,激发他们对圆的好奇心和探究欲。首先,我会向学生展示一系列包含圆的图片,如车轮、硬币、圆桌等,让学生观察并思考这些图片中的共同特征。通过这种方式,引导学生发现圆在生活中的普遍存在。接着,我会提出问题:“为什么这些图形都是圆的?圆有什么特别之处?”从而引出本节课的主题——圆。

人教版九年级数学上册第24章《圆》教案

人教版九年级数学上册第24章《圆》教案

第二十四章圆1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念,理解弧、弦、圆心角的关系,探索并了解点和圆的位置关系.2.探索并证明垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.3.探索圆周角、圆心角及所对的弧的关系,理解并证明圆周角定理及其推论.4.了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径之间的关系,能判定一条直线是否为圆的切线.5.了解三角形的内心和外心,会利用基本作图方法作三角形的外接圆、内切圆.6.了解正多边形的概念及正多边形与圆的关系,会利用基本作图方法作圆的内接正方形和正六边形.7.会计算弧长、扇形的面积.1.积极引导学生从事观察、测量、平移、旋转、推理证明等活动,了解概念,掌握定理及公式.2.通过探究活动中小组合作交流,培养学生合作意识.3.在探索圆周角和圆心角之间的关系的过程中,让学生体会分类讨论的数学思想和归纳的数学方法.4.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化过程中的特点和规律,进一步发展学生的推理能力.5.探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式并理解公式的意义,提高学生计算能力和数学思维.1.通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯.3.结合相关图形性质的探索和证明,进一步培养推理能力及综合运用所学知识分析问题、解决问题的能力.4.对学生进行辩证唯物主义世界观的教育.与三角形、四边形一样,圆也是基本的平面图形,也是“空间与图形”的主要研究对象,是人们生活中常见的图形.学生在前面学习了一些基本的直线型——三角形、四边形等图形的基础上,进一步研究一个基本的曲线图形——圆,对圆的概念和性质进行系统梳理,并结合一些图形性质的证明,进一步发展学生的逻辑思维能力.在小学学过圆的基础上,进一步学习研究圆的概念和性质,圆的许多性质比较集中地反映了事物内部量变与质变、一般与特殊、矛盾的对立统一等关系,把这种针对具体图形的结论和方法推广,能使学生实现由具体到抽象、由特殊到一般的认识上的飞跃,提高学生的思维能力,圆锥侧面积的计算还可以培养学生的空间观念,所以圆这一章在初中数学学习中占有重要地位.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中阶段圆锥曲线的学习基础.【重点】1.垂径定理及其推论的推导及应用.2.圆周角定理及其推论的推导及应用.3.切线的性质及判定、切线长定理的应用.4.正多边形的有关计算.5.弧长、扇形面积及圆锥的侧面积的相关计算.【难点】1.垂径定理及其推论的推导及应用.2.圆周角定理及其推论的推导及应用.3.圆锥的侧面展开图的理解.1.“圆”这部分内容处于学生初步掌握了推理论证方法的基础上进一步巩固和提高的阶段,不仅要求学生能熟练地用综合法证明命题,通过探索,展示推理过程,而且要求了解反证法.教学中要重视推理论证的教学,进一步提高学生的思维能力.另外,这部分内容涉及的图形很多是圆和直线型图形的组合,题目比较复杂,教学时多帮助学生复习有关直线型图形的知识,做到新旧结合,加强解题思路的分析,使学生学会把复杂问题化为简单问题,把一般问题化为特殊问题.2.圆是平面图形中一种基本图形,它是一种特殊的曲线,圆的许多性质是通过与圆有关的线段和角体现的.在教学中,要注意结合相关内容,体现这种研究圆的思路.圆是日常生活中应用较广的一种几何图形,这部分内容与实际生活联系紧密,所以应在教学中创设较多的生活情境问题,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题.3.本章涉及的数学思想方法较多,如分类讨论思想、建模思想、化归思想、数形结合思想、从特殊到一般的方法等,在教学中多给学生自主探究的机会,让学生体会这些思想方法在学习中的重要作用,同时提高学生分析问题和解决问题的能力.4.圆是一种特殊曲线,它有独特的对称性,不仅是轴对称图形、中心对称图形,而且还有旋转不变性,它的对称性在本章性质的探究活动及实际生活中应用广泛,所以在本章教学中,要重视利用圆的对称性进行证明和计算.24.1圆的有关性质24.4弧长和扇形面积2课时24.1圆的有关性质1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念.2.探索并证明垂径定理.3.探索圆周角与圆心角及其所对弧的关系.4.理解并证明圆周角定理及其推论,并能应用其解决有关计算和证明.1.结合相关图形性质的探索和证明,进一步发展推理能力.2.在探索圆周角和圆心角之间的关系的过程中,让学生形成分类讨论的数学思想和归纳的数学方法.3.结合相关图形性质的探索和证明,进一步培养综合运用所学知识分析问题、解决问题的能力.1.通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高学生用数学的意识,体验数学活动中的探索性和创造性.2.让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作交流的良好学习习惯.【重点】1.垂径定理.2.圆心角、弦、弧之间的关系.3.圆周角定理.【难点】探索并证明圆的有关性质,并解决一些实际问题.24.1.1圆1.理解圆的定义,掌握弦、直径、弧、优弧、劣弧、半圆、等圆、等弧等基本概念.2.通过对圆的相关概念的理解,能够从图形中识别“弦、直径”、“弧、优弧、劣弧”、“半圆、等圆、等弧”.3.能应用圆的有关概念解决问题.1.通过观察生活中存在的大量的圆形,提高学生识图能力,体会数学与生活息息相关.2.通过探索圆的概念的过程,学会用猜想归纳的方法解决问题.1.经历动手实践、观察思考、分析概括的学习过程,养成自主探究、合作交流的良好习惯.2.引导学生对图形的观察、发现,激发学生的好奇心和求知欲.【重点】与圆有关的概念.【难点】理解“直径与弦”、“半圆与弧”、“等弧与长度相等的弧”等概念.【教师准备】多媒体课件1~6.【学生准备】预习教材P79~80.导入一:【课件1】圆是常见的图形,生活中的许多物体都给我们以圆的形象(如图所示).思考并回答:1.你能举出生活中圆的哪些例子?2.为什么车轮都做成圆形?能不能做成正方形或长方形?3.如图所示,A,B表示车轮边缘上两点,点O表示车轮的轴心,那么A,O之间的距离与B,O之间的距离有什么关系?【师生活动】学生思考后回答,教师适当点评,导出本节课课题.[设计意图]通过欣赏图片,让学生感受生活中处处有数学,激发学生学习本章的兴趣.同时让学生体会圆是实际生活中常见的图形,结合小学对圆的初步接触,让学生回忆圆的知识,思考圆的特征,为后面给出圆的定义做准备,这样从已有的知识体系自然地构建出新知识.[过渡语]实际生活中存在着大量的圆的图形,今天让我们一起认识什么活动1:思考并动手实践你怎样画圆?你能说出圆的形成有几种方法吗?【师生活动】学生思考后会用圆规作圆,教师引导还有没有其他画圆的方法,小组合作交流,共同观察思考圆的特征,老师点评.活动2:自主学习课本79页【学生活动】互相交流圆的概念及表示方法.【课件2】圆的定义:如图所示,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作☉O,读作“圆O”.活动3:根据圆的定义思考1.篮球是圆吗?太阳是圆吗?(强调定义中的同一平面内.)2.以3 cm为半径画圆,能画出几个圆?为什么?(无数个,圆心不确定.)3.以O为圆心画圆,能画出几个圆?为什么?(无数个,半径不确定.)【师生活动】学生思考、操作,小组合作交流,展示结果,教师点评.教师强调:圆心确定圆的位置,半径确定圆的大小,圆心和半径两个元素确定一个圆.[设计意图]通过自学教材形成概念,培养自主学习、合作交流的能力.通过动手操作和生活实例形成圆的概念,体会数学中的建模思想.追加思考,让学生更深入地理解圆的概念,提高学生分析问题的能力.二、共同探究2【课件3】思考并回答下列问题.1.圆上各点到定点(圆心O)的距离有什么规律?2.到定点的距离等于定长的点又有什么特点?【师生活动】学生思考后,小组合作交流,教师引导学生通过动手画图得到上述问题2的结论,学生回答问题后,教师点评,并归纳总结.【课件4】1.圆上各点到定点(圆心O)的距离都等于定长(半径r).2.到定点的距离等于定长的点都在同一个圆上.教师追问:你能不能用动态的观点归纳圆的定义?圆的第二定义:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.三、共同探究3【课件5】(教材例1)矩形ABCD的对角线AC,BD相交于点O.求证A,B,C,D四个点在以点O为圆心的同一个圆上.思路一教师引导学生思考并回答:圆的定义为,矩形的对角线的性质为.分析题意,题目中已知条件为:,所求证结论为,要证明A,B,C,D四个点在以点O为圆心的同一个圆上,只需证明,由矩形的性质:可得.【师生活动】学生独立回答问题后,教师点评并分析如何建立几何模型.证明:∵四边形ABCD为矩形,∴OA=OC=AC,OB=OD=BD,AC=BD.∴OA=OC=OB=OD.∴A,B,C,D四个点在以点O为圆心,OA为半径的圆上.(如图所示)思路二小组活动,共同探究,思考下列问题:1.圆上的点到圆心的距离有什么特点?2.要证明点在圆上,只需要证明什么?3.矩形的对角线有什么性质?4.如何把矩形的问题转化到圆上,进而解决问题?5.你能写出证明过程吗?【师生活动】小组讨论,教师在巡视过程中及时解决疑难问题,学生讨论后小组展示讨论结果,教师及时补充.证明:∵四边形ABCD为矩形,∴OA=OC=AC,OB=OD=BD,AC=BD.∴OA=OC=OB=OD.∴A,B,C,D四个点在以点O为圆心,OA为半径的圆上.[设计意图]师生共同探讨,通过探索证明点在同一个圆上的方法,找到几何问题之间的联系,为学习更多圆的知识做铺垫,同时提高学生利用圆的基本知识解决问题的能力.四、共同探究4活动1:自主学习课本80页【学生活动】互相交流和圆有关的概念及表示方法.【课件6】1.弦、直径.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.如图中,AB,AC 是弦,AB是直径.2.弧、半圆.圆上任意两点间的部分叫做圆弧,简称弧.以A,B为端点的弧记作,读作“圆弧AB”或“弧AB”.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做优弧,用三个点表示,如图中的;小于半圆的弧叫做劣弧,如图中的.3.等圆、等弧.能够重合的两个圆叫做等圆.容易看出:半径相等的两个圆是等圆;反过来,同圆或等圆的半径相等.在同圆或等圆中,能够互相重合的弧叫做等弧.活动2:思考下列问题1.直径是弦正确吗?弦是直径呢?直径是最长的弦吗?2.半圆是弧正确吗?弧是半圆呢?半圆是最长的弧吗?3.长度相等的两条弧是等弧吗?为什么?【师生活动】小组合作交流,学生展示后教师点评,强调易错点.[设计意图]通过学生自主学习,掌握和圆有关的概念,培养学生自学能力,同时通过活动2加深学生对概念的辨析与再认识.[知识拓展]1.圆上各点到圆心的距离都等于半径.2.到圆心的距离等于半径的点都在圆上.3.圆可以看作到定点的距离等于定长的点的集合.4.圆是一条封闭的曲线,是指圆周而不是指圆面,圆由圆心确定位置,由半径确定大小.5.弦是一条线段,它的两个端点都在圆上.6.直径是弦,但弦不一定是直径,直径是圆中最长的弦.1.圆的定义.(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.(2)圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r 的点的集合.2.圆的元素:圆心决定圆的位置,半径决定圆的大小.3.和圆有关的概念:弦、直径、弧、优弧、劣弧、半圆、等圆、等弧.1.下列说法正确的是()A.直径是弦,弦是直径B.半圆是弧,弧是半圆C.等弧的长度相等D.长度相等的两条弧是等弧解析:直径是弦,但弦不一定是直径,所以A错误;半圆是弧,但弧不一定是半圆,所以B错误;等弧是能够重合的弧,所以等弧的长度相等,但长度相等的弧不一定是等弧,所以C正确,D错误.故选C.2.如图所示,在☉O中,弦的条数是 ()A.2B.3C.4D.以上均不正确解析:观察可得AB,BC,BD,CD都是☉O的弦.故选C.3.圆O的半径为3 cm,则圆O中最长的弦长为.解析:∵圆O的半径是3 cm,∴圆O的直径是6 cm,又直径是圆中最长的弦,∴圆O中最长的弦长为6 cm.故填6 cm.4.证明对角线互相垂直的四边形的各边的中点在同一个圆上.已知:如图所示,四边形ABCD中,对角线AC⊥BD,E,F,G,H分别为DA,AB,BC,CD的中点.求证:点E,F,G,H在同一个圆上.证明:∵E,H分别为DA,DC的中点,∴在ΔDAC中,EH∥AC,同理得FG∥AC,EF∥DB,HG∥DB,∴EH∥FG,EF∥HG,∴四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥HG,∴四边形EHGF为矩形,∴E,H,G,F在同一个圆上.24.1.1圆一、共同探究1圆的第一定义:二、共同探究2圆的第二定义:三、共同探究3例1四、共同探究4和圆有关的概念:一、教材作业【必做题】教材第81页练习的1,2题.【选做题】教材第89页习题24.1的1题.二、课后作业【基础巩固】1.下列说法正确的是 ()A.周长相等的两个圆是等圆B.长度相等的两条弧是等弧C.同一条弦所对的两条弧是等弧D.半径确定了,圆也就确定了2.如图所示,AB是☉O的弦,∠AOB=80°,则∠A等于()A.50°B.55°C.65°D.80°3.过圆内的一点(非圆心)有条弦,有条直径.4.圆内最长的弦长为10 cm,则圆的半径等于cm.5.如图所示的圆中有条直径,条弦,以点A为一个端点的劣弧有条.6.如图所示,已知OA,OB,OC是☉O的三条半径,∠AOC=∠BOC,M,N分别为OA,OB的中点.求证MC=NC.7.如图所示,AB是☉O的弦(非直径),C,D是AB上的两点,并且AC=BD.求证OC=OD.【能力提升】8.如图所示,AB是☉O的直径,AC是弦,D是AC的中点,若OD=4,求BC的长.9.如图所示,AB是☉O的直径,点C在☉O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长.10.如图所示,CD是☉O的直径,∠EOD=84°,AE交☉O于点B,且AB=OC,求∠A 的度数.【拓展探究】11.如图所示,两正方形彼此相邻且大正方形ABCD的顶点A,D在半圆O上,顶点B,C在半圆的直径上,小正方形BEFG的顶点F在半圆O上,B,E两点在半圆O的直径上,点G在大正方形的边AB上,若小正方形的边长是4 cm,求该半圆的半径.【答案与解析】1.A(解析:周长相等的两个圆半径相等,所以是等圆,所以A正确;长度相等的弧不一定能重合,所以B错误;同一条弦所对的两条弧构成一个圆,不一定相等,所以C错误;半径确定圆的大小,圆心确定圆的位置,两者共同确定一个圆,所以D 错误.故选A.)2.A(解析:∵OA=OB,∴∠A=∠B,∵∠AOB+∠A+∠B=180°,∴∠A=-=50°.故选A.)3.无数一(解析:过圆内一点(非圆心)有无数条直线与圆相交,根据弦的定义可知过圆内一点(非圆心)有无数条弦;两点确定一条直线,所以过圆心和该点只有一条直径.)4.5(解析:∵圆内最长的弦长为10 cm,又直径是圆中最长的弦,∴圆的直径是10 cm,∴圆的半径是5 cm.故填5.)5.134(解析:根据圆的有关定义可得图中AB是直径,AB,CD,EF是弦,以A 为一个端点的劣弧有,,,.)6.证明:∵OA,OB为☉O的半径,∴OA=OB,∵M是OA中点,N是OB中点,∴OM=ON,又∵∠AOC=∠BOC,OC=OC,∴ΔMOC≌ΔNOC,∴MC=NC.7.证明:分别连接OA,OB.∵OB=OA,∴∠A=∠B.又∵AC=BD,∴ΔAOC≌ΔBOD,∴OC=OD.8.解:∵AB是☉O的直径,∴OA=OB,∵D是AC的中点,∴AD=DC,∴OD是ΔABC 的中位线,∴BC=2OD=8.9.解:连接OC.∵CD=4,OD=3,∴在RtΔODC中,OC==5,∴AB=2OC=10.10.解:连接OB.∵AB=OC,∴AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,由OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.11.解析:设大正方形边长为2x,根据勾股定理可得半圆半径,连接圆心和小正方形右上顶点,也可得直角三角形,已知小正方形的边长,利用勾股定理即可求解.解:设大正方形的边长为2x,半圆的半径为R,则BO=x,AB=2x,∵小正方形的边长为4 cm,∴BE=EF=4,连接OA,OF,由勾股定理,得R2=OB2+AB2=OE2+EF2,即x2+4x2=(x+4)2+42,解得x=4或x=-2(舍去),∴R=4cm.∴该半圆的半径为4cm.本节课由观察图形导入新课,让学生体会圆在实际生活中无处不在,可激发学生探究圆的知识的欲望.本节课的主要学习方式为自主学习、合作交流、共同探究、归纳总结,学生通过观察、操作、交流、归纳,理解圆及和圆有关的概念,由于本节课内容较为简单,故给了学生充分展示的舞台,学生交流后展示,其他组学生补充,让学生真正体会数学概念的形成过程,提高学生归纳总结能力.例题的探究与讨论,让学生体会到几何之间的互相转化,提高学生运用知识解决问题的能力.由于这节课内容较少,加上小学对圆的认识,误认为学生会通过自学掌握所有知识,教学时概念的形成过程中有点过于急躁,造成学生对概念中的细节问题掌握不牢固.对形如例1这样的几何问题,不能找到新旧知识的联系,造成解题困难,在今后的教学中,应注重培养学生逻辑思维能力.圆是一种常见的几何图形,它的应用非常广泛,许多实际问题往往可以归结为圆的问题加以研究.在教学中要重视圆的概念的形成和构建,在概念的学习过程中,让学生体验从问题出发到解决图形问题的过程,体验用函数思想去描述、研究变量之间变化规律的意义.教学中多给学生交流的空间,通过与同学、老师之间的合作交流,体验数学学习带来的快乐.练习(教材第81页)1.提示:拿一根5 m长的绳子,站定一个位置,当做圆的圆心,再让另一个人拉紧绳子,绕走一圈,并画出走的轨迹即可.2.解:=0.575(cm).3.证明:如图所示,取AB的中点O,连接CO.在RtΔABC中,∵AO=BO,∠ACB=90°,∴CO=AB,即CO=AO=BO.∴A,B,C三点在同一个圆上,圆心为点O.本节课主要探究圆的定义和圆的有关概念,是对小学里已学过的圆的认识的巩固,也为本章即将探究的圆的性质打下基础.本节课的重点是通过观察、操作、归纳,理解圆的两种定义,理解弦(直径)、弧(优弧、劣弧、半圆)、等圆、等弧等和圆有关的概念,并通过讨论等活动提高学生用圆的相关知识解决实际问题的能力.课前准备生活中圆形图片,由生活实例入手,激发学生探究圆的知识的欲望,然后引导学生自主学习课本有关概念,通过合作交流解决疑难问题并强化知识点,把课堂真正交给学生,给学生足够的时间思考和探索.教师只是一个引导者,引导学生经历知识的形成过程,从而达到强化学习重点,提高学习能力,发展创新精神的目的.圆O所在平面上的一点P到圆O上的点的最大距离是10,最小距离是2,求此圆的半径是多少.〔解析〕题目中说到最大距离和最小距离,我们首先想到的就是直径,然后过点P作圆的直径,从而得到圆的半径.通常情况下,我们进行的都是在圆内的有关计算,这逐渐成为一种习惯,使得我们忽略了圆外的情况,所以经常会出现漏解的情况.解:如图所示,分两种情况:(1)当点P为圆O内一点时,过点P作圆O的直径,分别交圆O于A,B两点,由题意可得AP=2,BP=10,所以圆O的半径为=6.(2)当点P在圆外时,作直线OP,分别交圆O于A,B两点,由题意可得BP=10,AP=2,所以圆O的半径为-=4.综上所述,所求圆的半径为6或4.24.1.2垂直于弦的直径1.通过观察试验,理解圆的轴对称性.2.掌握垂径定理及其推论.3.会用垂径定理解决有关的证明与计算问题.1.通过探索圆的对称性及相关性质,培养学生动手操作能力及观察、分析、逻辑推理和归纳概括能力.2.经历探究垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.1.通过探究垂径定理的活动,激发学生探究、发现数学问题的兴趣,培养学生大胆猜想、乐于探究的良好品质.2.培养学生观察能力,激发学生的好奇心和求知欲,并从数学学习活动中获得成功的体验.【重点】垂径定理及其应用.【难点】探索并证明垂径定理,利用垂径定理解决一些实际问题.【教师准备】多媒体课件1~5.【学生准备】圆形纸片、预习教材P81~83.导入一:【课件1】赵州桥(如图所示)是我国隋代建造的石拱桥,距今约有1400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果保留小数点后一位).复习提问:1.什么是轴对称图形?2.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?3.你是用什么方法解决上述问题的?(教师引导折叠课前准备的圆形纸片.)4.直径是圆的对称轴这种说法正确吗?【师生活动】学生思考后小组合作交流,学生回答后教师点评,指出“直径是圆的对称轴”这种说法错误的原因.【课件2】圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.[设计意图]通过实际问题导入新课,让学生感受数学来源于生活,又应用于生活.通过复习旧知识和创设动手操作活动,激发学生的学习兴趣,引出本节内容,为本节课的学习进行铺垫.思路一在自己课前准备的纸片上作图.1.任意作一条弦AA'.2.过圆心O作弦AA'的垂线,得直径CD交AA'于点M.3.观察图形,你能找到哪些相等线段?4.你能证明你的结论吗?写出你的证明过程.5.如果沿着CD折叠,你能不能得到相等的弧?6.图形中的已知条件、结论分别是什么?你能用语言叙述这个命题吗?【师生活动】让学生独立思考、尝试证明,然后小组合作交流,共同探究结论.教师在巡视过程中帮助有困难的学生.学生回答问题,并展示自己的证明过程,教师适时点评.【课件3】证明:连接OA,OA',在ΔOAA'中,∵OA=OA',∴ΔOAA'是等腰三角形.又AA'⊥CD,∴AM=MA'.即CD是AA'的垂直平分线.这就是说,对于圆上任意一点A,在圆上都有关于直线CD的对称点A',因此☉O关于直线CD对称.把圆沿着直径CD折叠时,点A与点A'重合,AM与A'M重合,,分别与,重合.因此,AM=A'M,,.即直径CD平分弦AA',并且平分,.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.思路二动手操作:1.把课前准备的圆形纸片(☉O)对折,使圆的两半部分重合;2.把得到的折痕记作CD;3.在☉O上任取一点A,过点A作折痕CD的垂线,沿垂线折叠,得到新的折痕,两条折痕的交点为M,即垂足为M.4.将纸片打开,新的折痕与圆交于另一点A'.(如上图所示)【思考】1.通过上面的操作,你发现了哪些相等的线段和相等的弧?为什么?2.你能不能把刚才的操作当成条件,观察到的结果作为结论,归纳出一个正确的命题?【师生活动】互相交流操作结果及思考后得到的结论,教师对学习有困难的学生给予帮助,学生展示后教师点评.由折叠可得A与A'重合,,分别与,重合.∴AM=MA',,.即直径CD平分弦AA',并且平分,.归纳结论:垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.。

九年级数学上册第二十四章圆教案新人教版.docx

九年级数学上册第二十四章圆教案新人教版.docx

文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持.第二十四章圆教案单元要点分析教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.( 2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,?圆和圆的位置关系.( 3)正多边形和圆.( 4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能( 1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、?弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念, ?探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用; ?理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法( 1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.?了解概念,理解等量关系,掌握定理及公式.( 2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.( 3)在探索圆周角和圆心角之间的关系的过程中,?让学生形成分类讨论的数学思想和归纳的数学思想.( 4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,?使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、 ?圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.教学重点1 .平分弦(不是直径)的直径垂直于弦,?并且平分弦所对的两条弧及其运用.2 .在同圆或等圆中,相等的圆心角所对的弧相等,?所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等, ?都等于这条弧所对的圆心角的一半及其运用.14 .半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6 .直线 L 和⊙ O相交d<r ;直线 L 和圆相切d=r ;直线 L 和⊙ O相离d>r 及其运用.7.圆的切线垂直于过切点的半径及其运用.8. ?经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等, ?这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系: d 与 r和 r2之间的关系:外离d>r +r;外切d=r +r;相11212交│ r 2-r 1│ <d<r 1+r 2;内切d=│ r 1-r 2│;内含d<│r 2-r 1│.11.正多边形和圆中的半径R、边心距 r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12. n°的圆心角所对的弧长为L= n R, n°的圆心角的扇形面积是S扇形= n R2及其180360运用这两个公式进行计算.13.圆锥的侧面积和全面积的计算.教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2 .弧、弦、圆心有的之间互推的有关定理的探索与推导,?并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径 R、边心距 r 、中心角θ的关系的应用.11. n 的圆心角所对的弧长 L= n R及 S 扇形=n R2的公式的应用.18036012.圆锥侧面展开图的理解.教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、 ?性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,?发展学生有条理的思考能力及语言表达能力.单元课时划分本单元教学时间约需13 课时,具体分配如下:24. 1圆3课时24. 2与圆有关的位置关系4课时24. 3正多边形和圆1课时224 . 4 弧长和扇形面积2课时教学活动、习题课、小结3课时3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册第24章圆教案(共23套新
人教版)
第二十四章圆
1圆的有关性质
1.1圆
※教学目标※
【知识与技能】
探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.
【过程与方法】
体会圆的不同定义方法,感受圆和实际生活的联系.
培养学生把实际问题转化为数学问题的能力.
【情感态度】
在解决问题过程中使学生体会数学知识在生活中的普遍性.
【教学重点】
圆的两种定义的探索,能够解释一些生活问题.
【教学难点】
圆的集合定义方法.
※教学过程※
一、情境导入
观察下列图形,从中找出共同特点.
学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.
二、探索新知
圆的定义
观察下列画圆的过程,你能由此说出圆的形成过程吗?
在学生归纳的基础上,引导学生对圆的一些基本概念作界定:
在一个平面内,线段oA绕它固定的一个端点o旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点o叫做圆心,线段oA叫做半径.以点o为圆心的圆,记作“⊙o”,读作“圆o”.
同时从圆的定义中归纳:
圆上各点到定点的距离都等于定长;
到定点的距离等于定长的点都在同一个圆上.
于是得到圆的第二定义:所有到定点o的距离等于定长r的点的集合.
思考为什么车轮是圆的?
把车轮做成圆形,车轮上各点到车轮中心的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与地面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.
圆的有关概念
弦:连接圆上任意两点的线段叫做弦.
直径:经过圆心的弦叫做直径.
弧:圆上任意两点间的部分叫做圆弧,简称弧.以A,B 为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
优弧:大于半圆的弧叫做优弧.
劣弧:小于半圆的弧叫做劣弧.
等圆:能够重合的两个圆叫做等圆.半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等.
等弧:在同圆或等圆中,能够相互重合的弧叫做等弧.
三、巩固练习
如何在操场上画一个半径是5的圆?说出你的理由.
你见过树木的年轮吗?从树木的年轮,可以很清楚地看出树木生长的年龄,如果一棵20年树龄的红杉树的树干直径是23c,这棵红杉树的半径平均每年增加多少?
如图,一根5长的绳子,一端拴在柱子上,另一端拴着一只羊,请画出羊的活动区域.
答案:1.首先确定圆心,然后用5米长的绳子一端固定为圆心端,另一端系在一端尖木棒,木棒以5米长尖端划动一周,所形成的图形就是所画的圆.
23÷2÷20=0.575,故这棵红衫树的半径每年增加
0.575c.
四、归纳小结
师生共同回顾圆的两种定义,弦,弧,等圆等知识点.通过这节课的学习,你还有那些收获?
※布置作业※
从教材习题24.1中选取.
※教学反思※
本节课是从学生感受生活中圆的应用开始,到通过学生动手画圆,培养学生动手、动脑的习惯,在操作过程中观察圆的特点,加深对所学知识的认识吗,并运用所学知识解决实际问题,体验应用知识的成就感,激发他们的学习兴趣.24.1.1 圆
01
教学目标
.了解圆的基本概念,并能准确地表示出来.
.理解并掌握与圆有关的概念:弦、直径、圆弧、等圆、同心圆等.
02
预习反馈
阅读教材P79~80内容,理解记忆与圆有关的概念,并完成下列问题.
.如图,在一个平面内,线段oA绕它固定的一个端点o 旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点o叫做圆心,线段oA叫做半径.2.圆心为o、半径为r 的圆可以看成是所有到定点o的距离等于定长r的点的集合.
.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.
.以点A为圆心,可以画无数个圆;以已知线段AB的长为半径,可以画无数个圆;以点A为圆心,AB的长为半径,可以画1个圆.
【点拨】确定圆的两个要素:圆心和半径.圆心确定圆的位置,半径确定圆的大小.
.到定点o的距离为5的点的集合是以o为圆心,5为半径的圆.
03
新课讲授
例1 矩形ABcD的对角线Ac,BD相交于点o.求证:A,B,c,D四个点在以点o为圆心的同一个圆上.
【思路点拨】要求证几个点在同一个圆上,即需要证明这几个点到同一个点的距离相等.
【解答】证明:∵四边形ABcD为矩形,
∴oA=oc=12Ac,oB=oD=12BD,Ac=BD.
∴oA=oc=oB=oD.
∴A,B,c,D四个点在以点o为圆心,oA为半径的圆上.
例2 △ABc中,∠c=90°.求证:A,B,c三点在同一个圆上.
【解答】证明:如图,取AB的中点o,连接oc.
∵在△ABc中,∠c=90°,
∴△ABc是直角三角形.
∴oc=oA=oB=12AB.
∴A,B,c三点在同一个圆上.
【跟踪训练1】在图中,画出⊙o的两条直径;
依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.
解:作图略.
矩形.理由:因为该四边形的对角线互相平分且相等,所以该四边形为矩形.
【思考】由刚才的问题思考:矩形的四个顶点一定共圆吗?
例3 已知⊙o的半径为2,则它的弦长d的取值范围是0<d≤4.
【点拨】直径是圆中最长的弦.
例4 在⊙o中,若弦AB等于⊙o的半径,则△AoB的形状是等边三角形.
【点拨】与半径相等的弦和两半径构造等边三角形是常用数学模型.
【跟踪训练2】如图,点A,B,c,D都在⊙o上.在图中画出以这4点为端点的各条弦.这样的弦共有多少条?
解:图略.6条.
04
巩固训练
.如图,图中有1条直径,2条非直径的弦,圆中以A 为一个端点的优弧有4条,劣弧有4条.
【点拨】这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.
.如图,⊙o中,点A,o,D以及点B,o,c分别在一条直线上,图中弦的条数为2.
.点P到⊙o上各点的最大距离为10c,最小距离为8c,则⊙o的半径是1或9c.
【点拨】这里分点在圆外和点在圆内两种情况.
.如图,已知AB是⊙o的直径,点c在⊙o上,点D是Bc的中点.若Ac=10c,则oD的长为5__c.
【点拨】圆心o是直径AB的中点.
.如图,cD为⊙o的直径,∠EoD=72°,AE交⊙o于B,且AB=oc,则∠A的度数为24°.
【点拨】连接oB构造三角形,从而得出角的关系.
05
课堂小结
.这节课你学了哪些知识?
.学会了哪些解圆的有关问题的技巧?。

相关文档
最新文档