人教版九年级数学上册圆复习课教案

合集下载

人教版数学九年级上册24.1.4圆周角定理教学设计

人教版数学九年级上册24.1.4圆周角定理教学设计
(2)结合圆周角定理,引导学生研究其他几何图形的性质,如椭圆、双曲线等。
(3)鼓励学生参加数学竞赛、课外活动,拓宽知识视野,提高数学素养。
四、教学内容与过的基本概念,如圆心、半径、直径等,为新课的学习做好铺垫。
(1)请学生回顾圆的定义及圆的基本性质。
(2)提问:圆心角和弧有什么关系?如何计算圆心角的度数?
(二)讲授新知
1.圆周角定理的推导:
(1)引导学生观察圆中的圆周角,尝试总结其性质。
(2)教师通过动画演示,直观展示圆周角定理的推导过程。
(3)讲解圆周角定理:圆周角等于其所对圆心角的一半。
2.圆周角定理的应用:
(1)结合实际例题,讲解如何运用圆周角定理解决问题。
(2)引导学生关注圆周角定理在解决角度、弧度等问题中的应用。
(二)过程与方法
1.通过观察、分析、归纳,培养学生发现问题的能力。
2.通过自主探究、合作交流,提高学生解决问题的能力。
3.通过实际操作,培养学生的动手能力和空间想象能力。
4.引导学生从不同角度思考问题,培养学生思维的灵活性和创新意识。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,提高学生对数学美的感受。
2.培养学生严谨、细致的学习态度,养成良好的学习习惯。
3.培养学生的团队协作精神,学会与人沟通交流。
4.通过圆周角定理的学习,使学生体会数学与生活的紧密联系,培养学生的应用意识。
1.导入:通过复习圆的基本概念,引导学生关注圆周角。
2.自主探究:让学生观察圆周角的特点,尝试总结圆周角定理。
3.合作交流:分组讨论,分享探究成果,互相学习,共同完善圆周角定理。
1.学生总结:请学生谈谈本节课的学习收获,对圆周角定理的理解和运用。

新听课记录2024秋季九年级人教版数学上册第二十四章圆《复习题24》

新听课记录2024秋季九年级人教版数学上册第二十四章圆《复习题24》

教学设计:新2024秋季九年级人教版数学上册第二十四章圆《复习题24》教学目标(核心素养)1.知识与技能:通过复习,学生能够巩固圆的基本概念、性质以及点与圆、直线与圆的位置关系等知识点,提高综合运用能力。

2.数学思维:培养学生归纳总结、类比推理等数学思维能力,以及解决复杂问题的能力。

3.问题解决:能够熟练运用圆的相关知识解决实际问题,包括计算、证明和作图等。

4.情感态度:激发学生对数学学习的兴趣,培养耐心细致的学习态度和良好的复习习惯。

教学重点•复习巩固圆的基本概念、性质及点与圆、直线与圆的位置关系。

•提升学生综合运用圆的知识解决问题的能力。

教学难点•复杂图形的分析与圆相关知识的综合应用。

•培养学生灵活应对各种题型,快速准确解题的能力。

教学资源•九年级人教版数学上册教材。

•《复习题24》相关练习题及解析。

•多媒体课件(包含复习要点梳理、例题解析、练习题展示等)。

•实物教具:圆规、直尺、纸板圆等(用于作图演示)。

教学方法•讲授法:梳理复习要点,强调重难点。

•讨论法:组织学生讨论解题思路和方法,促进学生间的交流与合作。

•练习法:通过大量练习巩固复习内容,提高解题能力。

•归纳法:引导学生归纳总结复习过程中的知识点和解题方法。

教学过程导入新课•情境导入:创设一个与圆相关的实际问题情境(如车轮的设计、靶心与飞镖等),引导学生思考这些问题中涉及的圆的知识点,自然过渡到复习课的主题。

•目标明确:简要介绍本节课的复习目标和要求,让学生明确学习方向。

新课教学(复习课)1.复习要点梳理•利用多媒体展示圆的基本概念、性质(如半径、直径、圆心角、圆周角等)及点与圆、直线与圆的位置关系。

•强调这些知识点之间的联系和区别,帮助学生构建完整的知识体系。

2.例题解析•选择几道具有代表性的例题(涵盖不同难度和题型),详细讲解解题步骤和思路。

•引导学生分析题目中的已知条件,运用圆的相关知识逐步推导出答案。

•强调解题过程中的关键点和易错点,帮助学生避免常见错误。

人教版九年级数学上册24.1.4圆周角定理教学设计

人教版九年级数学上册24.1.4圆周角定理教学设计
3.突破难点:
(1)运用多媒体演示或实物模型,帮助学生直观地理解弦所对圆周角与圆心角的关系。
(2)结合具体例题,引导学生总结解决圆周角定理相关问题的方法和技巧。
4.巩固练习:
设计具有梯度、层次的练习题,让学生在练习中巩固所学知识,提高解题能力。
5.课堂小结:
通过师生互动,引导学生回顾本节课所学内容,总结圆周角定理及其应用。
4.通过对圆周角定理的推导和应用,培养学生的空间想象能力和创新意识。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,使学生认识到数学在现实生活中的重要作用,提高学生的数学素养。
2.培养学生勇于探索、积极思考的精神,让学生在解决问题的过程中体验到数学学习的乐趣。
3.引导学生形成良好的学习习惯,如认真审题、规范答题、及时总结反思等,提高学生的学习效率。
(三)学生小组讨论
1.分组讨论:让学生分组讨论如何推导出圆周角定理。
师:请大家分组讨论,每个小组都要思考如何用几何方法推导出圆周角定理。
2.汇报交流:各小组汇报自己的推导过程,其他小组进行评价和补充。
师:现在请各小组派代表汇报你们的推导过程,其他小组认真听,看看有没有需要补充的地方。
3.教师点评:教师对学生的推导过程进行点评,给予肯定和指导。
1.完成作业时,请同学们认真审题,确保解答过程的规范性和准确性。
2.作业完成后,及时进行自我检查,对疑问的地方做好标记,以便在课堂上提问。
3.小组合作完成的开放性问题,鼓励大家积极参与讨论,发挥团队协作精神,共同解决问题。
师:大家的表现都非常棒!在推导过程中,我们要注意严谨的几何论证,确保每一步都合理。
(四)课堂练习
1.设计练习题:针对圆周角定理,设计不同难度的练习题,让学生在课堂上及时巩固所学知识。

圆的复习课教案

圆的复习课教案

圆的复习课教案一、教学目标:根据新课程的要求和教材的编写意图,确定以下三个教学目标:1.使学生通过圆的知识树对圆这部分的知识有一个系统的归纳。

2.通过自学,小组合作环节培养学生知识的整理能力。

3.通过以圆的文化为背景进行形式多样的练习,培养学生数学学习的兴趣。

(三个教学目标突出了学生综合总结能力的培养,注重了学生的小组交流,通过对圆这一单元的自我总结归纳,学生对所学知识有一个系统的把握,而且感觉到知识之间的紧密联系。

从而达到复习的最终目的。

)二、教学重点:整体把握有关圆的知识,理解圆的周长的意义和公式,圆面积的意义和公式,运用圆的周长和面积的知识解决有关的实际问题。

教学难点:理解圆面积公式的推导,灵活运用知识解决实际问题。

三、教学过程及方法:上好复习课的方法一定要注意激趣,让学生感觉不到老师又是在把知识复习一遍,这就可以促使学生去发现,去创新,去总结归纳出知识之间的内在联系。

课前交流:今天,老师有幸和我们这么多优秀的同学一起学习,老师感到十分的高兴,所以我想先送给同学们一句话,课件出示,“温故而知新”几个字,你们知道这句话的意思吗?要学生谈谈对这句话的理解。

教师小结:经常温习功课,不但不会让我们忘记所学的知识,而且还可以使我们在复习的过程中有新的感悟,是一种非常重要的学习方法,所以大家要做到边学习新知识,边复习旧知识,进行系统的掌握。

上课。

一、创设情境,导入复习。

课件出示小明的寻宝情境图:师:小明参加奥林匹克寻宝活动,得到一张纸条,想知道纸条上的信息吗?示“宝物距离左脚三米。

”师:读!宝物可能在哪呢?师:大家准备一张纸,上面的黑点表示小明的左脚,你能在纸上画出宝物可以在哪吗?开始画。

(生:画)师:举起来展示给周围的同学看看。

画的对不对?他画的是什么?(生:圆)师:为什么是圆呢?师:这是一个什么样的圆?(生:圆上所有的点距离圆心都是3米,即半径是3米)师:你能用一句话说出宝物有可能在哪吗?生:宝物在以左脚为圆心,3米为半径的圆上。

人教版九年级数学上册圆复习课《切线的判定和性质》教学设计

人教版九年级数学上册圆复习课《切线的判定和性质》教学设计

第15周第2 课时
一、复习知识点:提问切线的判定和切线的性质
二、复习相关题型:
出示习题一:1.如图,点D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD.
(1)判断直线CD 和⊙O 的位置关系,并说明理由; (2)过点B 作⊙O 的切线BE 交直线CD 于点E ,若AC =2,⊙O 的半径是3,求BE 的长.
出示习题二:【中考·珠海】如图,⊙O 经过菱形ABCD 的三个
顶点A ,C ,D ,且与AB 相切于点A.
(1)求证:BC 为⊙O 的切线;
(2)求∠B 的度数.
一、对理论知识有一定的认识,为运用知识解决问题打下基础。

二、引导学生认识到结合题意填
画辅助线的重要性
出示习题三:如图所示,四边形ABCD为菱形,△ABD的外接
圆⊙O与CD相切于点D,交AC于点
E.
(1)判断⊙O与BC的位置关系,并说明理由;
(2)若CE=2,求⊙O的半径r.
出示习题四:如图,AB是⊙O的直径,AC是弦,OD⊥AC于
点D,过点A作⊙O的切线AP,AP与OD的延长
线交于点P,连接PC,BC.
1)猜想:线段OD与BC有何数量关系和位置关系,
并证明你2)求证:PC是⊙O的切线的结论;
三课堂小结布置作业
板书设计:
切线的判定和性质
切线的判定:
切线的性质:。

人教版九年级上册数学《圆的有关性质》圆复习说课教学课件

人教版九年级上册数学《圆的有关性质》圆复习说课教学课件

B
C
例.已知:△ABC的三个顶点在⊙O上, ∠BAC=50°,∠ABC=47°,求∠AOB.
解:由题意知:∠A、∠B、∠C是圆周角,
∠AOB是圆心角.
C
又∵∠BAC=50°,∠ABC=47°
∴∠ACB=180°-(∠A+∠B)
O
=180°-(50°+47°)
=83°.
又 ACB 1 AOB
A
B
2
4、如图,∠A是圆O的圆周角, ∠A=40°,求∠OBC的度数。
A
O
B
C
巩固练习:
(1)如图,已知圆心角∠AOB=100°,
求圆周角∠ACB、∠ADB的度数?
(2)一条弦分圆为1:4两部分,
D
求这弦所对的圆周角的度数?
O
B A
C
圆的有关性质
垂径定理的应用
垂径定理
垂直于弦的直径平分这条弦,并 且平分弦所对的两条弧.
圆的有关性质
圆周角
1、复习提问:
(1)什么是圆心角? (2)圆心角,弧,弦,弦心
距关系定理是什么?
∠ACB与 ∠AOB 有何异同点? 你知道∠ACB这一类的角名字吗?
圆周角的概念 : C
顶点在圆上,两边 与圆相交的角,叫圆 周角。
B O
A
判断下列各图形中的是不是圆周角, 并说明理由.
归纳: 一个角是圆周角的条件:①顶点在圆上;
(2)若这个输水管道有水部分的水面宽AB=16 cm,水面最深地方的高度为4cm,求这个圆形截 面的半径.
A
B
链接中考 7. 如图,点A、B是⊙O上两点,AB=10,点
5
O A
E
B F
8、如图,在⊙O中,AB为⊙O的弦,C、 D是直线AB上两点,且AC=BD 求证:△OCD为等腰三角形。

圆复习课教案初中数学

圆复习课教案初中数学

圆复习课教案初中数学教学目标:1. 复习并巩固圆的基本概念、性质和公式;2. 提高学生解决与圆相关的实际问题的能力;3. 培养学生的逻辑思维能力和团队合作精神。

教学内容:1. 圆的基本概念:圆的定义、圆心、半径;2. 圆的性质:圆的对称性、圆的周长和面积公式;3. 与圆相关的实际问题:圆的周长和面积的计算、圆的直径和半径的关系。

教学过程:一、导入(5分钟)1. 复习圆的定义:一个平面上所有点到一个固定点的距离都相等的点的集合;2. 引导学生回顾圆的基本性质,如对称性、周长和面积公式等。

二、自主学习(15分钟)1. 学生自主复习圆的性质,总结圆的周长和面积公式;2. 学生通过练习题巩固圆的性质和公式的应用。

三、合作探究(15分钟)1. 学生分组讨论与圆相关的实际问题,如圆的周长和面积的计算、圆的直径和半径的关系;2. 各小组选取一道实际问题,进行展示和讲解,其他小组成员进行评价和补充。

四、巩固练习(15分钟)1. 学生独立完成练习题,巩固圆的性质和公式的应用;2. 教师选取部分学生的练习题进行讲解和分析,指出错误和不足之处。

五、总结和反思(5分钟)1. 学生总结本节课的收获和不足,制定下一步的学习计划;2. 教师对学生的表现进行评价,鼓励学生继续努力。

教学评价:1. 学生课堂参与度:观察学生在课堂上的发言和练习情况,了解学生的学习状态;2. 学生练习题完成情况:检查学生的练习题,评估学生对圆的性质和公式的掌握程度;3. 学生合作探究能力:评价学生在小组合作中的表现,如沟通、协作、解决问题等能力。

教学资源:1. 圆的性质和公式PPT;2. 与圆相关的实际问题练习题。

最新人教版初中九年级上册数学【圆全章复习】教学课件

最新人教版初中九年级上册数学【圆全章复习】教学课件
请补全解答过程.
E
C
6
4
4D
H4
A
O
BF
10
综合运用
小结:
E
E
C
C
D
D
3
3
1 A2
O
BF
A
12
O
BF
综合运用
小结:
E
E
C D
C D
G
H
A
O
BF
A
O
BF
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系
点和圆的位置关系 直线和圆的位置关系
综合运用
例 如图,⊙O是△ABC的外接圆,若AB=6cm,∠C=60°,则⊙O的半径为 ________cm.
C
O
A
B
综合运用
方法1:作OD⊥AB于D,连接OA,OB.
∵∠C=60°,
∴∠AOB=2∠C=120°.
∵OA=OB,OD⊥AB于D, AB=6 cm,
∴△AOD中,∠ADO=90°,
知识梳理
圆的有关性质
圆的对称性 垂径定理 弧、弦、圆心角之间的关系 定理 同弧上的圆周角和圆心角的关系
圆周角定理
初中数学
重点回顾
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
A2 A1
A3
O
B
C
重点回顾
圆周角定理的推论 推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 推论3:圆内接四边形的对角互补.
切线的判定定理:经过半径的外端并且垂直于这 条半径的直线是圆的切线.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程设计
教学过程设计
教学过程设计意图个性思考栏
5.锐角三角形的外心在三角形____,直角三角形的外心在三角形____,钝角三角形的外心在三角形____。

1.已知△ABC外切于⊙O,
(1)若AB=8,BC=6,AC=4,则AD= __;BE= __;CF= __;
(2)若C△ABC= 36, S△ABC=18,则r内=_____;
直线与圆的位置关系:相离;相切;相交。

1.如图Rt△ABC中,AB=10,BC=8,以点C为圆心,
4.8为半径的圆与线段AB的位置关系
是___________;
六、切线的判定与性质
切线的判定一般有三种方法:
1.定义法:和圆有唯一的一个公共点
2.距离法:d=r
3.判定定理:过半径的外端且垂直于半径
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

圆的内接四边形
定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

点与圆的位置关系
及时应用知识,强化记忆,加深印象。

复习相应的知识点,巩固知识。

达到知识之间的相互贯通。

复习相应的知识点,巩固知识。

达到知识之间的相互贯通。

教学过程设计。

相关文档
最新文档