线性代数习题及答案(复旦版)1
(完整版)新版线性代数习题及答案(复旦版主编:周勇朱砾)

线性代数习题及答案all in习题一1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321;(3) n (n -1)…321; (4) 13…(2n -1)(2n )(2n -2)…2. 【解】(1) τ(341782659)=11; (2) τ(987654321)=36;(3) τ(n (n -1)…3·2·1)= 0+1+2 +…+(n -1)=(1)2n n -;(4) τ(13…(2n -1)(2n )(2n -2)…2)=0+1+…+(n -1)+(n -1)+(n -2)+…+1+0=n (n -1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案.4. 本行列式4512312123122x x x D xxx=的展开式中包含3x 和4x 的项.解: 设123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑ ,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-⋅⋅⋅⋅+-⋅⋅⋅⋅=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-⋅⋅⋅⋅=.5. 用定义计算下列各行列式.(1)0200001030000004; (2)1230002030450001.【解】(1) D =(-1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)2141312112325062-----; (2)ab ac ae bd cd de bfcfef-------;(3)111001101a b c d ---; (4)1234234134124123.【解】(1)125062312101232562r r D+---=--;(2)1114111111D abcdef abcdef--==------;21011111(3)(1)111011001011;b c D a a b cd c c d d dd abcd ab ad cd --⎡--⎤=+-=+++--⎢⎥⎣⎦=++++ 321221133142144121023410234102341034101130113(4)160.1041202220044101231114r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1)22222()111a ab b a a b b a b +=-; (2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++;(3)232232232111()111a a a a b b ab bc ca b b c c cc =++(4)2000()000n n a ba b D ad bc c d cd==-; (5)121111111111111nni i i i na a a a a ==++⎛⎫=+ ⎪⎝⎭+∑∏. 【证明】(1)1323223()()()2()2001()()()()()2()21c c c c a b a b b a b b a b a b b a b a b b a b a b b a b a b a b a b--+--=--+--+==-=-=--左端右端.(2)32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c a a a a a a b b b b b b c c c c c cd d d d d d ---++++++++====++++++++左端右端. (3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11x x x a a a f x x a x b x c a b a c b c b b b c c c ==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a a ab bc ac a b a c b c ab bc ac b b cc ++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a a b b c c +- (4) 对D 2n 按第一行展开,得22(1)2(1)2(1)0000000(),n n n n ab aba ba bD abc dc dc d c d dc ad D bc D ad bc D ---=-=⋅-⋅=-据此递推下去,可得222(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=- 2().n n D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n -1阶行列式结论成立,进而证明阶数为n 时结论也成立. 按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+但由归纳假设11121111,n n n i i D a a a a ---=⎛⎫+= ⎪⎝⎭∑ 从而有11211211121111111111.n n n n n i i n n nn n i i i i i i D a a a a a a a a a a a a a a a ---=-===⎛⎫+=+ ⎪⎝⎭⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭∑∑∑∏8. 计算下列n 阶行列式.(1)111111n x xD x=(2)122222222232222n D n=;(3)000000000nx y x y D x y yx=. (4)nijD a =其中(,1,2,,)ija i j i j n =-= ;(5)2100012100012000002100012nD =.【解】(1) 各行都加到第一行,再从第一行提出x +(n -1),得11111[(1)],11n x D x n x =+-将第一行乘(-1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---(2)21311122221000101001002010002n r r n r r r r D n ---=-按第二行展开222201002(2)!.00200002n n -=---(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)0000000(1)(1).n n n n n n n n x y y x y x y D xy x y x y yxx yx x y y x y +-+-+=+-=⋅+⋅-⋅=+-(4)由题意,知11121212221201211012213123n n n n n nnn a a a n a a a D n a a a n n n --==---- 0122111111111111111111111n n ------------后一行减去前一行自第三行起后一行减去前一行0122112211111120000200002000000000220n n n n --------=-按第一列展开1122000201(1)(1)(1)(1)2002n n n n n n -----=---按第列展开.(5)210002000001000121001210012100012000120001200000210002100021000120001200012n D ==+122n n D D --=-.即有112211n n n n D D D D D D ----=-==-=由()()()112211n n n n D D D D D D n ----+-++-=- 得11,121n n D D n D n n -=-=-+=+.9. 计算n 阶行列式.121212111n n n na a a a a a D a a a ++=+【解】各列都加到第一列,再从第一列提出11ni i a=+∑,得232323123111111,11n nnn i n i na a a a a a D a a a a a a a =+⎛⎫=++ ⎪⎝⎭+∑ 将第一行乘(-1)后加到其余各行,得23111010011.001001nnnn i i i i a a a D a a ==⎛⎫=+=+ ⎪⎝⎭∑∑10. 计算n 阶行列式(其中0,1,2,,ia i n ≠=).1111123222211223322221122331111123n n n n n n n n n n nn n n n n n nn n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=.【解】行列式的各列提取因子1(1,2,,)n j a j n -=,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n ij b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-= ⎪⎝⎭∏11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式.【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+=同理43441569.A A +=-+=-12. 用克莱姆法则解方程组.(1)12312341234234 5,2 1, 2 2, 23 3.x x x x x x x x x x x x x x ++=⎧⎪+-+=⎪⎨+-+=⎪⎪++=⎩ (2) 121232343454556 1,56 0,56 0, 560,5 1.x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪+=⎪⎩ 【解】方程组的系数行列式为1110111013113121110131180;12105212110121123140123123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.122112120133123D D D D --====---====--故原方程组有惟一解,为312412341,2,2, 1.D D D Dx x x x D D D D========- 12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解.14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=⎧⎪+++=⎪⎨+-+=⎪⎪+++=⎩ 有非零解时,a ,b 必须满足什么条件? 【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111aa b=-即(a +1)2=4b . 15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-=于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2) 500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (3)[]32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4) ()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 111213212223313233100011001a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 1210131010101210021002300030003⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】(1)32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4)3322211122233312211213311323322311()()()ij i j i j a x a x a x a a x x a a x x a a x x a x x ==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 1252012400430009⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 2.设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B ,求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗?【解】(1)2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦AB A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦AB BA(3) 由于AB ≠BA ,故(A +B )(A -B )≠A 2-B 2. 3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ;(3) 若AX =AY ,≠A O , 则X =Y .【解】(1) 以三阶矩阵为例,取2001,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0(2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E(3) 令11021,=,0111210110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0则AX =AY ,但X ≠Y .4.设101A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k .【解】2312131,,,.010101k k λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A 5.100100λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =,求23A ,A 并证明:121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =.【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A = 今归纳假设121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)1020100000(1)(1)2,0(1)00k k k k k k k k k kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦A A A= 所以,对于一切自然数k ,都有121(1)2.000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =6. 已知AP =PB ,其中100100000210001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P =求A 及5A .【解】因为|P |= -1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PBP而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PBP PB P A7. 设a b cd ba d c c d ab dcba ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b c d b a dc a b cd a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0<A ,即42222222224()()a b c d a b c d -++++++A =A A =A E于是有22222()a b c d ==-+++A .8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X AY Y Bz X AY ABz z,从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B AB 也是对称阵.【证明】因为n 阶方阵A 为对称阵,即A ′=A , 所以 (B ′AB )′=B ′A ′B =B ′AB , 故'B AB 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵.(2) AB -BA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= -B ,故(B 2)′=B ′·B ′= -B ·(-B )=B 2; (AB -BA )′=(AB )′-(BA )′=B ′A ′-A ′B ′ = -BA -A ·(-B )=AB -BA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′ = -BA +A ·(-B )= -(AB +BA ).所以B 2是对称矩阵,AB -BA 是对称矩阵,AB+BA 是反对称矩阵.12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为a b c d ⎡⎤⎢⎥⎣⎦,则由 1101⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=a b c d ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦, 得a cb d a a bcd c c d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦.由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数. 13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵.【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, 而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得11122233333323232302300023222.023333c b c cb c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数. 14. 求下列矩阵的逆矩阵.(1)1225⎡⎤⎢⎥⎣⎦; (2) 123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4)1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5)5200210000830052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0n n a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦,未写出的元素都是0(以下均同,不另注). 【解】(1)5221-⎡⎤⎢⎥-⎣⎦; (2) 121012001-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3)12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4)10011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦; (5)1200250000230058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩ 【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而1110022110≠-故112311101111122.02211130122*********x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *. (2) 若A 可逆,则A *可逆且(A *)-1=(A -1)*. (3) 若AA ′=E ,则(A *)′=(A *)-1.【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |·|B |·B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A * =(AB ) *A |B |EA *=|A |·|B |(AB ) *.∵ |A |≠0,|B |≠0, ∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A -1,从而(A -1) *=|A -1|(A -1)-1=|A |-1A . 于是A * (A -1) *=|A |A -1·|A |-1A =E ,所以(A -1) *=(A *)-1. (3) 因AA ′=E ,故A 可逆且A -1=A ′. 由(2)(A *)-1=(A -1) *,得(A *)-1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换.【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X AY且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1)12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =;(2)211211************--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ;(3)142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4)010100043100001201001010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B同理(2) X =100010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.034102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若k A =O (k 为正整数),证明:121()k ---E A =E +A+A ++A .【证明】作乘法212121()()k k k k k ----=-----=-=E A E +A+A ++A E +A+A ++A A A A A E A E,从而E -A 可逆,且121()k ---E A =E +A+A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A -1及(A +2E )-1.【证】因为A 2-A -2E =0, 故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-A A E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E,A E A E E,A E A E E.由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2AB =A+B ,求B .【解】由AB =A +2B 得(A -2E )B =A . 而22310,1102121==-≠---A E即A -2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A 22. 设1-P AP =Λ.其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A .【解】因1-P 可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P 故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦A P P P P ΛΛ 23. 设m 次多项式01()m m f x a a x a x =+++,记01()m m f a a a =+++A E A A ,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kk k λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ; (2) 设1-A =P BP , 证明1k k -B =PA P ,1()()f f -=B P A P .【证明】(1)232311232200,00λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立. 今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,000kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m mm m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦A E +A++A ++++++ (2) 由(1)与A =P -1BP ,得B =PAP -1.且B k =( PAP -1)k = PA k P -1,又0111011011()()().mm m m mm f a a a a a a a a a f ----=+++=+++=++=B E B B E PAP PA P P E A+A PP A P24.a b c d ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=.【证明】将A 代入式子2()x a d x ad bc -++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc c d c d ad bca bc ab bd a ad ab bd ad bc ac cd cb d ac cd ad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E0 故A 满足方程2()0x a d x ad bc -++-=.25. 设n 阶方阵A 的伴随矩阵为*A ,证明:(1) 若|A |=0,则|*A |=0;(2)1n *-=A A .【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)-1=E ,由此又得A =AE =AA *( A *)-1=|A |( A *)-1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0. (2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n ,若|A |≠0,则| A *|=|A |n -1 若|A |=0,由(1)知也有| A *|=|A |n -1.26. 设52003200210045000073004100520062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B . 求(1)AB ; (2)BA ; (3) 1-A ;(4)|A |k (k 为正整数).【解】(1)2320001090000461300329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦AB =; (2) 19800301300003314005222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦BA =;(3)11200250000230057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A =; (4)(1)k k =-A . 27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)00310021********-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******0001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.【解】(1) 对A 做如下分块12⎡⎤=⎢⎥⎣⎦A A A 00 其中1230012;,01025001⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.000030001000001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A A A同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A A A A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关.【证明】因为1234123412341312342()2()0+++=+++⇒+++=+⇒-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关.6. 设向量组12,,,r ααα线性无关,证明向量组12,,,r βββ也线性无关,这里12.i i +++β=ααα【证明】 设向量组12,,,r βββ线性相关,则存在不全为零的数12,,,,r k k k 使得1122.r r k k k +++=0βββ把12i i +++β=ααα代入上式,得121232()()r r r r k k k k k k k +++++++++=0ααα.又已知12,,,r ααα线性无关,故1220,0, 0.r rr k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩该方程组只有惟一零解120r k k k ====,这与题设矛盾,故向量组12,,,r βββ线性无关.7. 略.见教材习题参考答案. 8.12(,,,),1,2,,i i i in i n ααα==α.证明:如果0ij a ≠,那么12,,,n ααα线性无关. 【证明】已知0ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),i i i in ααα=α1,2,,i n =组成的,所以12,,,n ααα线性无关.9. 设12,,,,r t t t 是互不相同的数,r ≤n .证明:1(1,,,),1,2,,n i i i t t i r -==α是线性无关的.【证明】任取n -r 个数t r +1,…,t n 使t 1,…,t r ,t r +1,…,t n 互不相同,于是n 阶范德蒙行列式21111212111121110,11n n rr r n r r r n nnnt t t t t t t t t t t t ---+++-≠从而其n 个行向量线性无关,由此知其部分行向量12,,,r ααα也线性无关.10. 设12,,,sααα的秩为r 且其中每个向量都可经12,,,rααα线性表出.证明:12,,,rααα为12,,,s ααα的一个极大线性无关组.【证明】若12,,,r ααα (1)线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,s ααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组.11. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组.【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k kk k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A 当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.12. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,-1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),110101002a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0).13. 设12,,,n ααα为一组n 维向量.证明:12,,,n ααα线性无关的充要条件是任一n 维向量都可经它们线性表出.【证明】充分性: 设任意n 维向量都可由12,,,n ααα线性表示,则单位向量12,,,n εεε,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组12,,,n ααα的秩为n ,因此线性无关.必要性:设12,,,n ααα线性无关,任取一个n 维向量α,则12,,,n ααα线性相关,所以α能由12,,,n ααα线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,1001103111R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且123(,,)3R =ααα,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且1234(,,,)3R =ββββ,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案. 16. 设向量组12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,m ααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r =β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价. 17. 设A 为m ×n 矩阵,B 为s ×n 矩阵.证明:max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .【证明】因A ,B 的列数相同,故A ,B 的行向量有相同的维数,矩阵⎡⎤⎢⎥⎣⎦A B 可视为由矩阵A 扩充行向量而成,故A 中任一行向量均可由⎡⎤⎢⎥⎣⎦A B 中的行向量线性表示,故 ()R R ⎡⎤≤⎢⎥⎣⎦A A B同理()R R ⎡⎤≤⎢⎥⎣⎦A B B故有max{(),()}R R R ⎡⎤≤⎢⎥⎣⎦A AB B又设R (A )=r ,12,,,i i ir ααα是A 的行向量组的极大线性无关组,R (B )=k , 12,,,j j jk βββ是B 的行向量组的极大线性无关组.设α是⎡⎤⎢⎥⎣⎦A B 中的任一行向量,则若α属于A 的行向量组,则α可由12,,,i i ir ααα表示,若α属于B的行向量组,则它可由12,,,j j jkβββ线性表示,故⎡⎤⎢⎥⎣⎦A B 中任一行向量均可由12,,,i i ir ααα,12,,,j j jk βββ线性表示,故()(),R r k R R ⎡⎤≤+=+⎢⎥⎣⎦A AB B 所以有max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .18. 设A 为s ×n 矩阵且A 的行向量组线性无关,K 为r ×s 矩阵.证明:B =KA 行无关的充分必要条件是R (K )=r . 【证明】设A =(A s ,P s ×(n -s )),因为A 为行无关的s ×n 矩阵,故s 阶方阵A s 可逆. (⇒)当B =KA 行无关时,B 为r ×n 矩阵.r =R (B )=R (KA )≤R (K ),又K 为r ×s 矩阵R (K )≤r ,∴ R (K )=r .(⇐)当r =R (K )时,即K 行无关,由B =KA =K (A s ,P s ×(n -s ))=(KA s ,KP s ×(n -s))知R (B )=r ,即B 行无关. 19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα; (2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα. 21. 略.见教材习题参考答案. 22. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n +++x x x =0}是否构成向量空间?为什么?【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++=αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++=所以11,V k V +∈∈αβα,故1V 是向量空间.23. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.24. 求由向量1234(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1)====αααα所生的向量空间的一组基及其维数.【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα∴124,,ααα是一组基,其维数是3维的.25. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.26. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标. 【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε27. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX . 则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换因有↔A E ,故123,,ααα为R 3的一个基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.习题四1. 用消元法解下列方程组.(1) 12341241234123442362242322312338;x x x x ,x x x ,x x x x ,x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩ (2) 1231231232222524246;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b 32434243324142360129200426100112614236142360129201292,0011260011260042610007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)解②-①×2得 x 2-2x 3=0 ③-① 得2x 3=4 得同解方程组由⑥得 x 3=2, 由⑤得 x 2=2x 3=4,由④得 x 1=2-2x 3 -2x 2 = -10, 得 (x 1,x 2,x 3)T =(-10,4,2)T . 2. 求下列齐次线性方程组的基础解系.(1)123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2) 1234123412341234 5 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩ (3)1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4) 123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩ 【解】(1)123123123320503580.x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 32213123132132132151021021358042000r r r r r r +--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A。
线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。
(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
所以有0=a 或0=b 。
复旦大学《线性代数I》2017-2018学年第一学期期末考试试卷A卷

2有惟一解,无解,
x1 x2 x3 1
无穷多解?并求其通解 .
解:
1 x 3 1 2 y
1 2 0
2
x
2 2 y
0 2 3
x y3
即得
3
x
16
2
y
4 7
解:
B
Ab
1
1
1 1
0 1 2
r1 r3
r2 r1 r3 r1
1 0
1 1
1
1 1 1
0 0 0 0 0 0
得基础解系
1
0
1
=
1
,2
0
0
1
1
2
0
.1
,
2
已正交,单位化得
p1 =
1 2
0
,
p2
0
1
2
当
3
=
1 时,
A
E
2
0
2 2 0
0 1
03
0 0
1 0 0
0
1 0
,
x1 x3
x2 0
0
1
1
2
得基础解系
3
=
1
,单位化得
0
得分
4= 5,2,4, 10T ,求该向量组的秩以及一个最大无关组,并将其余向量用该最大
无关组线性表示.
解:
1 1 3 5
1 1 3 5
1,
2,
3,
4
2 0
4 2
3 1
2 4
r2 2 r1
r4 2r1
0 0
6 2312Fra bibliotek1 4
复旦大学《线性代数》2017-2018学年第一学期期末试卷B

《线性代数》期末考试试卷B一、(30分)填空题(E 表示相应的单位矩阵).1. 设3阶矩阵A = (α1, α2, α3)的行列式|A | = 3, 矩阵B = (α2, α3, α1), 则矩阵A − B 的行列式|A − B | =______.解: (法一) |A − B | = |α1−α2, α2−α3, α3−α1| = |α1, α2−α3, α3−α1| + |−α2, α2−α3, α3−α1|= |α1, α2−α3, α3| + |−α2, −α3, α3−α1| = |α1, α2, α3| + |−α2, −α3, −α1| = |α1, α2, α3| − |α2, α3, α1| = |α1, α2, α3| − |α1, α2, α3| = 0.(法二) A − B = (α1−α2, α2−α3, α3−α1) = (α1, α2, α3)101110011−⎛⎞⎜⎟−⎜⎟−⎝⎠= AP ,其中P =101110011−⎛⎞⎜⎟−⎜⎟−⎝⎠, |P | =101110011−−−= 0, 故|A − B | = |AP | = |A ||P | = 0.2. 若矩阵A 满足A 2 = O , 则E +A 的逆矩阵(E +A )−1 = _______.解: A 2 = O ⇒ (E +A )(E −A ) = E 2 −A 2 = E ⇒ (E +A )−1 = E −A .3. 若向量组α1 = (1, t , 1), α2 = (1, 1, t ), α3 = (t , 1, 1)的秩为2, 则参数t 满足条件___________.解: 令A = (α1, α2, α3), 则秩(A ) = 秩(α1, α2, α3) = 2 ⇒111111tt t = |A | = 0 ⇒ (t +2)(t −1)2 = 0 ⇒ t = −2或1.当t = −2时, 秩(A ) = 2; 当t = 1时, 秩(A ) = 1. 故t = −2.4. 假设3阶矩阵A 的特征值为1, 2, −1, 矩阵B = E −2A *, 其中A *是A 的伴随矩阵, 则B 的行列式|B |= _______.解: 3阶矩阵A 的特征值为1, 2, −1 ⇒存在P 使得P −1AP =100020001⎛⎞⎜⎟⎜⎟−⎝⎠记为Λ, 而且|A | = 1×2×(−1) = −2.故P −1A −1P = (P −1AP )−1 = Λ−1 =10001/20001⎛⎞⎜⎟⎜⎟−⎝⎠. 由A *A = |A |E 可得A * = |A |A −1 = −2A −1, 于是有|B | = |P |−1⋅|B |⋅|P | = |P −1|⋅|B |⋅|P | = |P −1BP | = |P −1(E −2A *)P | = |P −1EP −2P −1A *P | = |E − 2P −1A *P |= |E + 4P −1A −1P | = |E + 4Λ−1| =500030003−= −45.5. 若矩阵A =10022312x −⎛⎞⎜⎟⎜⎟⎝⎠与矩阵B =03y ⎛⎞⎜⎟⎜⎟⎝⎠相似, 则(x , y ) =________.解: |A | = 2(1−x ), |B | = 0, tr(A ) = 1+x , tr(B ) = 3+y . 因为矩阵A 与B 相似, 所以|A | = |B |, tr(A ) = tr(B ).由此可得x = 1, y = −1. (x , y ) = (1, −1). 6. 设(1, −1, 0)T , (1, 0, −1)T 是3阶实对称矩阵A 的相应于某个非零二重特征值的特征向量. 若A 不可逆,则A 的另一个特征值为______, 相应的一个特征向量为__________.解: 3阶矩阵A 有非零二重特征值而且A 不可逆 ⇒ A 的另一个特征值为0.设ξ为对应于0的特征向量, 则ξ与(1, −1, 0)T , (1, 0, −1)T 正交, 即ξ为12130x x x x −=⎧⎨−=⎩的非零解向量. 由此可得A 的一个对应于0的特征向量为ξ = (1, 1, 1)T .7. 已知3元非齐次线性方程组Ax = b 的系数矩阵的秩为2, 并且α1, α2, α3是Ax = b 的3个解向量, 其中α1 = (1, 1, 1)T , α2 + α3 = (2, 4, 6)T , 则Ax = b 的通解是_______________.解: 3元非齐次线性方程组Ax = b 的系数矩阵的秩为2 ⇒ Ax = 0的基础解系中有且仅有1个解向量.α1, α2, α3是Ax = b 的3个解向量 ⇒ A (α2 + α3 − 2α1) = A α2 + A α3 − 2A α1 = b + b − 2b = 0. α1 = (1, 1, 1)T , α2 + α3 = (2, 4, 6)T ⇒ α2 + α3 − 2α1 = (0, 2, 4)T . 可见ξ = (0, 2, 4)T 是Ax = 0的基础解系,因而Ax = b 的通解是x = k (0, 2, 4)T + (1, 1, 1)T , 其中k 为任意实数. 8. 若4阶方阵A , B 的秩都等于1, 则矩阵A +B 的行列式|A +B | = ________.解: 4阶方阵A , B 的秩都等于1 ⇒ 秩(A +B ) ≤ 秩(A )+秩(B ) = 2 < 4 ⇒ |A +B | = 0. 9. 若矩阵A =211x ⎛⎞⎜⎟⎝⎠与矩阵B =1221⎛⎞⎜⎟−⎝⎠合同, 则参数x 满足条件___________.解: 设λ1, λ2为A 的特征值, µ1, µ2为B 的特征值.µ1µ2 = |B | = −5 < 0 ⇒ µ1, µ2异号 ⇒ B 的秩为2, 正惯性指数为1.A 与B 合同 ⇒ A 的秩为2, 正惯性指数为1 ⇒ λ1, λ2异号 ⇒ 2x − 1 = |A | = λ1λ2 < 0 ⇒ x < 1/2.二、(10分)计算下述行列式的值: D =111+11111+11111111x x x x −−. 解: +1111+111111111111x x x x −−=1111+111111111111x x x −−+1111+11000111111x x x x−−=0000001111x x x−−+ x111+111111x x x −− =000000x x x −−+ x 111+111111x x x −−= x 3 + x 2111+00x x x x x −−= x 3 + x 22111+000x x x x x−= x 3 + (x 4 − x 3) = x 4. 三、(15分)设线性方程组1231231233032314x x x x x x x x x λµ++=⎧⎪++=−⎨⎪−++=⎩. 问: 当参数λ, µ取何值时, 线性方程组有唯一解? 当参数λ, µ取何值时, 线性方程组有无穷多组解? 当线性方程组有无穷多组解时, 求出其通解.解: 该方程组的增广矩阵(A , b ) =1310(3)1323114λµ×−×⎛⎞⎜⎟−⎜⎟−⎝⎠→13100701071λµ⎛⎞⎜⎟−−⎜⎟+⎝⎠→131007010011λµ⎛⎞⎜⎟−−⎜⎟+−⎝⎠. (1) 当λ ≠ −1, µ为任意实数时, 秩(A ) = 秩(A , b ) = 3, 此时线性方程组有唯一解.(2) 当λ = −1, µ = 1时, 秩(A ) = 秩(A , b ) = 2 < 3, 此时线性方程组有无穷多组解,131007010011λµ⎛⎞⎜⎟−−⎜⎟+−⎝⎠=1713100701()0000⎛⎞⎜⎟−−×−⎜⎟⎝⎠→171310010(3)0000⎛⎞⎜⎟×−⎜⎟⎝⎠→37171010100000−⎛⎞⎜⎟⎜⎟⎝⎠由此可得3137127x x x +=−⎧⎨=⎩, 即3137127x x x =−−⎧⎨=⎩. 故通解为x = k (−1, 0, 1)T + (−37,17, 0)T , 其中k 为任意实数.四、(12分)设矩阵A =101012001⎛⎞⎜⎟−⎜⎟⎝⎠, C =103101⎛⎞⎜⎟−⎜⎟⎝⎠, 矩阵X 满足A −1X = A *C + 2X , 其中A *是A 的伴随矩阵,求X .解: |A | = −1, 在A −1X = A *C + 2X 两边同时左乘以A 得X = −C + 2AX . 故(E −2A )X = −C .(E −2A , −C ) =10210(1)0343100101(1)−−−×−⎛⎞⎜⎟−−⎜⎟−−×−⎝⎠→1021003431001014(2)⎛⎞⎜⎟−−⎜⎟××−⎝⎠→13100120303500101−⎛⎞⎜⎟−×⎜⎟⎝⎠→5312100010100101−⎛⎞⎜⎟−⎜⎟⎝⎠. 由此可得X =5312101−⎛⎞⎜⎟−⎜⎟⎝⎠. 五、(10分)已知向量组η1, η2, η3线性无关, 问: 参数a , b , c 满足什么条件时, 向量组a η1+η2, b η2+η3, c η3+η1线性相关?解: (a η1+η2, b η2+η3, c η3+η1) = (η1, η2, η3)011001a b c ⎛⎞⎜⎟⎜⎟⎝⎠. 令P =011001a b c ⎛⎞⎜⎟⎜⎟⎝⎠, 则|P | = abc + 1. 由条件可知:a η1+η2,b η2+η3,c η3+η1线性相关 ⇔ 秩(a η1+η2, b η2+η3, c η3+η1) < 3 ⇔ 秩(P ) < 3 ⇔ |P | = 0 ⇔ abc = −1. 六、(15分)已知二次型f (x 1, x 2, x 3) = x 12 + 2x 22 + x 32 − 2x 1x 3.1. 写出二次型f 的矩阵;2. 求一正交变换x = Qy , 将f 变成其标准形(并写出f 的相应的标准形);3. 求当x T x = 1时f (x 1, x 2, x 3)的最大值.解: 1. 二次型f 的矩阵A =101020101−⎛⎞⎜⎟⎜⎟−⎝⎠.2. |λE −A | =101020101λλλ−−−= (λ−2)2λ, 可见A 的特征值为λ1 = λ2 = 2, λ3 = 0.解(2E −A )x = 0得对应于λ1 = λ2 = 2的两个正交的特征向量ξ1 = (1, 0, −1)T , ξ2 = (0, 1, 0)T ,解(0E −A )x = 0得对应于λ3 = 0的一个特征向量ξ3 = (1, 0, 1)T .令Q = (11||||ξξ,22||||ξξ,33||||ξξ) =1/00101/0⎛⎜⎜⎜−⎝, 则正交变换x = Qy 将f 变成标准形2y 12 + 2y 22.3. x T x = 1 ⇔ (Qy )T (Qy ) = 1 ⇔ y T Q T Qy = 1 ⇔ y T y = 1 ⇔ y 12 + y 22 + y 32 = 1, 此时y 12 + y 22 ≤ 1. 故当x T x = 1时f (x 1, x 2, x 3) = 2y 12 + 2y 22的最大值为2.七、(8分)证明题.1. 设向量组α1, α2, α3, α4中, α1, α2, α3线性相关, α2, α3, α4线性无关, 证明: α1能由α2, α3, α4线性表示. 证明: 因为α1, α2, α3线性相关, 所以α1, α2, α3, α4线性相关.又因为α2, α3, α4线性无关, 所以α1能由α2, α3, α4线性表示.2. 设A 是n 阶正定矩阵, 证明: 矩阵A +A −1−E 也是正定矩阵.证明: 设λ1, …, λn 为A 的特征值, Λ =1n λλ⎛⎞⎜⎟⎜⎟⎝⎠O . A 是n 阶正定矩阵 ⇒ 存在可逆矩阵P 使得P −1AP = Λ, 其中λ1, …, λn > 0⇒ P −1(A +A −1−E )P = P −1AP + P −1A −1P − P −1EP = Λ + Λ−1 − E =111111n n λλλλ+−⎛⎞⎜⎟⎜⎟⎜⎟+−⎝⎠O, 其中 λ1+11λ−1, …, λn +1n λ−1> 0 ⇒ A +A −1−E 也是正定矩阵.。
线性代数习题及答案(复旦版)1

线性代数习题及答案(复旦版)1线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 9; (2) 1; (3) n (n 1)...321; (4) 13 (2)1)(2n )(2n2)…2.【解】(1) τ(9)=11; (2) τ(1)=36;(3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)=(1)2n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1).2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 本行列式4512312123122x x x D xxx=的展开式中包含3x 和4x 的项. 解:设 123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑ ,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-+-=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-=.5. 用定义计算下列各行列式.(1)0200001030000004; (2)1230002030450001.【解】(1) D =(1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)2141312112325062-----; (2) abac ae bdcd de bfcfef-------; (3)111001101a bc d ---; (4) 1234234134124123.【解】(1) 12562312101232562r r D+---=--;(2) 1114111111D abcdef abcdef --==------; 2111111(3)(1)11101100111;b c D a a b cd cc d d d d abcd ab ad cd --?--? =+-=+++--=++++ 3212 211331421441210234234102341034101130113(4)160.10412022200441012301114r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1) 22222()111a ab b a a b b a b +=-;(2) 222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d dd ++++++=++++++; (3) 232232232111()111a a a a bb ab bc ca b b c c c c =++ (4) 20000()000n n a b a b D ad bc c d cd==-ONN O;(5)121111111111111nn i i i i na a a a a ==++??=+ +∑∏L L M M M . 【证明】(1)1323223()()()2()201()()()()()2()21c c c c a b a b b a b b a b a b b a b a b b a b a b ba b a b a b a b --+--=--+--+==-=-=--左端右端.(2) 32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c a a a a a a b b b b b b c c c c c cd d d d d d ---++++++++====++++++++左端右端. (3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11xx x a a a f x x a x b x c a b a c b c b b b c c c ==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a a ab bc ac a b a c b c ab bc ac b b cc ++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a a b b c c +- (4) 对D 2n 按第一行展开,得22(1)2(1)2(1)0000000(),n n n n a b aba b a b D abc dc dc d c d d c ad D bc D ad bc D ---=-=?-?=-ONONN O NO据此递推下去,可得222(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=-L 2().n n D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n 1阶行列式结论成立,进而证明阶数为n 时结论也成立.按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+L L LL L L L L L L L L L LL LLL但由归纳假设11121111,n n n i iD a a a a ---=??+=∑L 从而有11211211121111111111.n n n n n i i n n nn n i i i i i i D a a a a a a a a a a a a a a a ---=-===?? +=+ ?++== ? ?????∑∑∑∏L L L8. 计算下列n 阶行列式.(1) 111111n x x D x=LL M M ML(2) 122222222232222n D n=L L L LL L L L L; (3)000000000000n x y x y D x y y x=L L LL L L L L L L . (4)n ij D a =其中(,1,2,,)ij a i j i j n =-=L ;(5)2100012100012000002100012n D =L L L M M M M ML L.【解】(1) 各行都加到第一行,再从第一行提出x +(n 1),得11111[(1)],11n x D x n x=+-LL M M M L将第一行乘(1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---L L M M M L (2) 213111222210000101001002010002n r r n r r r r D n ---=-MLL LL M M M M M L按第二行展开222201002(2)!.00200002n n =---L LL M M M M L(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)000000000000(1)(1).n n n n n n n n x y y x y xy D x y xy x y yxx yx x y y x y +-+-+=+-=?+?-?=+-L L L L M M M M M M L L M M M M M LL(4)由题意,知1112121222120121101221031230nnn n n nnn a a a n a a a D n a a a n n n --==----L L L LL M M MM M MM LL122111111111111111111111n n ------------LL L M M M M M L L后一行减去前一行自第三行起后一行减去前一行012211221111112000020000200000000022n n n n --------=-L L L LL LM MM M M M M M M L LL按第一列展开1122000201(1)(1)(1)(1)2002n n n n n n -----=---LL M M M L按第列展开. (5) 2100020000010001210012100121000120001200012000002100 02100021000120001200012n D ==+L L L L L L L L L M M M M M M M M M M M M MM ML L L LLL122n n D D --=-.即有 112211n n n n D D D D D D ----=-==-=L 由 ()()()112211nn n n D D D D D D n ----+-++-=-L 得 11,121n n D D n D n n -=-=-+=+. 9. 计算n 阶行列式.121212111n nn na a a a a a D a a a ++=+LL M M M L【解】各列都加到第一列,再从第一列提出11nii a=+∑,得232323123111111,11n nnn i n i na a a a a a D a a a a a a a =+??=+++∑LL L M M M M L将第一行乘(1)后加到其余各行,得23111010011.00100001n nnn i i i i a a a D a a ==??=+=+∑∑L L LM M M M L10. 计算n 阶行列式(其中0,1,2,,i a i n ≠=L ). 1111123222211223322221122331111123n n n n n n n n n n nn n n n n n nn n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=L L M M M M L L. 【解】行列式的各列提取因子1(1,2,,)n j a j n -=L ,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n ij b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤= ? ? ? ? ? ? ? ???-= ∏L LL L L L L L LL11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式. 【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+=同理43441569.A A +=-+=- 12. 用克莱姆法则解方程组.(1) 12312341234234 5,2 1, 2 2, 23 3.x x x x x x x x x x x x x x ++=??+-+=??+-+=??++=? (2) 121232343454556 1,56 0,56 0, 560, 5 1.x x x x x x x x x x x x x +=??++=??++=??++=?+=??【解】方程组的系数行列式为1110111013113121110131180;1210521211012112301401230123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.122112120133123D D D D --====---====--故原方程组有惟一解,为312412341,2,2, 1.D D D Dx x x x D D D D========-12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66 513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=??++=??++=? 有非零解【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解. 14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=??+++=??+-+=??+++=? 有非零解时,a ,b 必须满足什么条件【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111aa b=-即(a +1)2=4b .15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-= 于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件. 【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=??++=??++=? 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题二1. 计算下列矩阵的乘积.(1)[]11321023??-??-=;(2)500103120213-????;(3) []32123410;(4)()111213112321222323132333a a a x x x x a a a x a a a x ;(5) 111213212223313233100011001a a a a a a a a a;(6) 1210131010101210021002300030003---. 【解】(1) 32103210;64209630-??--?-?-??(2)531??--??; (3) (10);(4)3322211122233312211213311323322311()()()ij i j i j a x a x a x a a x x a a x x a a x x a x x ==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +++??; (6) 1252012400430009??--??-??. 2. 设111111111=--??A ,121131214=-??B ,求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗【解】(1) 2422;400024-=??AB A (2) 440;531311??-=----??AB BA (3) 由于AB ≠BA ,故(A +B )(A B )≠A 2B 2.3. 举例说明下列命题是错误的.(1) 若2=A O ,则=A O ; (2) 若2=A A ,则=A O 或=A E ;(3) 若AX =AY ,≠A O ,则X =Y . 【解】(1) 以三阶矩阵为例,取2001,000000==??0A A ,但A ≠0(2) 令110000001-??=A ,则A 2=A ,但A ≠0且A ≠E(3) 令11021,=,0111210110=≠=-A Y X 0 则AX =AY ,但X ≠Y .4. 设101A λ=-, 求A 2,A 3,…,A k .【解】2312131,,,.010101kk λλλ===?A A A L 5. 100100λλλA =,求23A ,A 并证明:121(1)2000kk k k kk k k k k k λλλλλλ----??A =. 【解】2322233223213302,03.0000λλλλλλλλλλλ??A =A = 今归纳假设121(1)2000kk k k kk k k k k k λλλλλλ----??A =那么11211111(1)1020100000(1)(1)2,0(1)00k k k k k k k k k kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-+??+=+??A A A=所以,对于一切自然数k ,都有121(1)2.000k k k k kk k k k k k λλλλλλ----??A =6. 已知AP =PB ,其中100100000210001211--B =,P =求A 及5A .【解】因为|P |= 1≠0,故由AP =PB ,得1100200,611-??==??--??A PBP而51551()()100100100100210000210200. 211001411611--===--==----????????A PBP PB P A 7. 设a bc d ba d c c d ab dcba --?--??--??A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b cd b a d c a b c d a b c d c d a b dcba *--??-+++=-+++??--??--??A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0即 42222222224()()a b c d a b c d -++++++A =A A =A E于是有22222()a b c d ==-+++A . 8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+=-++=+=++=-+?? 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z===--????===-??????-??==---??X AY Y Bz X AY ABz z,从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++??=-+??=--+? 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B AB 也是对称阵. 【证明】因为n 阶方阵A 为对称阵,即A ′=A , 所以(B ′AB )′=B ′A ′B =B ′AB , 故'B AB 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB . 则AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵. (2) ABBA 是对称矩阵,AB +BA 是反对称矩阵.【证明】因A ′=A ,B ′= B ,故(B 2)′=B ′·B ′= B·(B )=B 2; (ABBA )′=(AB )′(BA )′=B ′A ′A ′B ′= BA A ·(B )=ABBA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′= BA +A ·(B )= (AB +BA ).所以B 2是对称矩阵,AB BA 是对称矩阵,AB+BA 是反对称矩阵.12. 求与A =1101??可交换的全体二阶矩阵.【解】设与A 可交换的方阵为a b c d ??,则由 1101a b c d =a b c d 1101, 得a cb d a a bcd c c d +++=+?. 由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ??的方阵,其中a,b为任意数.13. 求与A =100012012??-??可交换的全体三阶矩阵. 【解】由于A =E +000002013-??,而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c =--????????可得11122233333323232302300023222.023333c b c cb c a b c c b c a a b b c c --=----由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=- 所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ??-??其中123,,a b b 为任意数. 14. 求下列矩阵的逆矩阵. (1) 1225; (2) 123012001??; (3)121342541----??; (4) 1000120021301 214; (5) 5200210000830052; (6) ()1212,,,0nn a a a a a a≠L O ,未写出的元素都是0(以下均同,不另注). 【解】(1) 5221--??; (2) 121012001-??-; (3) 12601741632142-----??; (4) 10011002211102631511824124??-----????; (5) 1200250000230058-??--??-??; (6) 12111n a a aO. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=??+=??-=? 【解】因123111102211102x x x =-,而1110022110≠- 故112311101111122.02211130122110221112x x x -?-===---???????--????16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A * .(2) 若A 可逆,则A *可逆且(A *)1=(A 1)* . (3) 若AA ′=E ,则(A *)′=(A *)1.【证明】(1)因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |·|B |·B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A *=(AB ) *A |B |EA *=|A |·|B |(AB ) *.∵ |A |≠0,|B |≠0, ∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A 1,从而(A 1) *=|A 1|(A 1)1=|A |1A . 于是A * (A 1) *=|A |A 1·|A |1A =E ,所以(A 1) *=(A *)1. (3) 因AA ′=E ,故A 可逆且A 1=A ′. 由(2)(A *)1=(A 1) *,得(A *)1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++??=++??=++? 求从变量123,,x x x 到变量123,,y y y 的线性变换. 【解】已知112233221,315323x y x y x y ===X AY且|A |=1≠0,故A 可逆,因而。
线性代数习题答案详解__复旦大学出版社

线性代数课后习题答案习题一1、2、3(答案略)4、 (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数故所求为127485639(2) ∵(397281564)25119τ=+++= (奇数) ∴所求为3972815645、(1)∵(532416)421106τ=++++= (偶数)∴项前的符号位()611-=+ (正号)(2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+=∴ 项前的符号位5(1)1-=- (负号) 6、 (1) (2341)(1)12n n τ-⋅L L 原式=(1)(1)!n n -=- (2)()((1)(2)21)1(1)(2)21n n n n n n τ--⋅⋅---⋅⋅L L 原式=(1)(2)2(1)!n n n --=-(3)原式=((1)21)12(1)1(1)n n n n n a a a τ-⋅--L L (1)212(1)1(1)n n n n n a a a --=-L7、8(答案略)9、 ∵162019(42)0D x =⨯-⨯+⨯--⨯=∴7x =10、 (1)从第2列开始,以后各列加到第一列的对应元素之上,得[]11(1)111001(1)1110(1)11(1)111x x n x x x n x x x n x x n x x +-+--==+-+--L LL L L L L L L L L L L L L L L L LLL[]1(1)(1)n x n x -=+--(2)按第一列展开: 11100000(1)(1)0n n n n n y xy D x x yx y xy-++=⋅+-=+-L L L L L L L L(3)1231134114512(1)2113211221n n n n n D n n n n n -+=----L L L LL L L L L L L 12310111101111(1)20111101111n n n n n n n n ---+=--L L L LL L L L L L L11111111(1)211111111n n n n n n--+=--L L LL L L L L L(2)(3)2111111111(1)(1)211111111n n nn n n n n-+-+++--+=⨯---L L L L L L L L L L(1)(2)211111111(1)(1)211111111n n n n n n n-----+=-⋅----L L LL L L L L L (1)(2)(1)1221100(1)(1)(1)221001n n n n n n n n n n n n n-------++=-⋅=-⋅----LLL L LL L LL习题二1、2、3、4、5(答案略) 6、 设 11122122xx x x ⎛⎫= ⎪⎝⎭B 为与A 可交换的矩阵,则有=AB BA即 111211122122************x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解之得 11122122,,,x a x b x b x a ==== 7、 (1)112233*********x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ , 记为X =AY11223111101y z y z y ⎛⎫⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭ ,记为Y =BZ(2)()()X =A BZ =AB Z 即 11223325013x z x z x ⎛⎫⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪-⎝⎭⎝⎭ 8(答案略)9、2345()32181010341f -⎛⎫ ⎪=++= ⎪ ⎪⎝⎭A A A E10、(1)2222()()+-=+--=-A B A B A BA AB B A B(2) 2()()()+=++A B A B A B22=+++A BA AB B=222++A AB B11、 ∵21,()2==+A A A B E∴ 222,44=-=-+=B A E B A A E E 反之 若 2=B E ,则 244-=A A O ,即 2=A A12、 (1) 设2(),()ij ij a b ==A A ∵T =A A ∴ij ji a a =又∵ 2=A O ∴0ii b =又 1122ij i j i j in nj b a a a a a a =+++L 22212i i in a a a =+++L (,1,2,,)i j n =L当 1,2,,i j n ==L 时,有1112121222120,0,0n n n n nn a a a a a a a a a ============L L L∴ 0A =(2)设 ()ij a =A ,()T ij b =AA 则1122ij i j i j in jn b a a a a a a =+++L∵ 0T =A A ∴ 0(,1,2,,)ij b i j n ==L 当 i j = 时,有 222120(1,2,,)i i in a a a i n +++==L L 故 120(1,2,,)i i in a a a i n =====L L 即 0=A 13、(1) ∵ ()T T T =A A A A ∴T A A 为对称矩阵同理 T AA 也为对称矩阵(2) ∵ ()T T T T +=+=+A A A A A A ∴ T +A A 为对称矩阵又 ∵()()T T T T -=-=--A A A A A A ∴ T -A A 为反对称矩阵(3)∵111()()()222T T T T =++-=++-A A A A A A A A A由(2)知,1()2T +A A 为对称矩阵,1()2T -A A 为反对称矩阵故 A 可表示成一个对称矩阵与一个反对称矩阵的与。
线性代数 课后作业及参考答案

《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321;(3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2.【解】(1) τ(341782659)=11; (2) τ(987654321)=36;(3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n1)=(1)2n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n1).2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 本行列式4512312123122x x x D x xx=的展开式中包含3x 和4x 的项.解: 设 123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑ ,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-⋅⋅⋅⋅+-⋅⋅⋅⋅=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-⋅⋅⋅⋅=.5. 用定义计算下列各行列式.(1)0200001030000004; (2)1230002030450001.【解】(1) D =(1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)214131211232562-----; (2) abac ae bdcd de bfcfef-------; (3)10011001101a b c d ---; (4) 1234234134124123. 【解】(1) 125062312101232562r r D+---=--;(2) 1114111111D abcdef abcdef --==------;21011111(3)(1)111011001011;b c D a a b cd c c d d d dabcd ab ad cd --⎡--⎤=+-=+++--⎢⎥⎣⎦=++++ 321221133142144121023410234102341034101130113(4)160.10412022200441012301110004r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1) 22222()111a ab b a a b b a b +=-;(2) 2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++; (3) 232232232111()111a a a a b b ab bc ca b b c c c c =++(4) 20000()000n n a b a b D ad bc c d cd==-;(5)121111111111111nni i i i na a a a a ==++⎛⎫=+ ⎪⎝⎭+∑∏. 【证明】(1)1323223()()()2()2001()()()()()2()21c c c c a b a b b a b b a b a b ba b a b b a b a b ba b a b a b a b --+--=--+--+==-=-=--左端右端.(2) 32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c a a a a a a b b b b b b cc c c cc d d d d d d ---++++++++====++++++++左端右端.(3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11xx x a a a f x x a x b x c a b a c b c b b b c c c ==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a a ab bc ac a b a c b c ab bc ac b b cc ++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a a b b c c +- (4) 对D 2n 按第一行展开,得22(1)2(1)2(1)0000000(),n n n n ab aba b a b D ab c dc dc d c d dc ad D bc D ad bc D ---=-=⋅-⋅=-据此递推下去,可得222(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=- 2().n n D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n 1阶行列式结论成立,进而证明阶数为n 时结论也成立.按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+但由归纳假设11121111,n n n i i D a a a a ---=⎛⎫+= ⎪⎝⎭∑ 从而有11211211121111111111.n n n n n i i n n nn n i i i i i i D a a a a a a a a a a a a a a a ---=-===⎛⎫+=+ ⎪⎝⎭⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭∑∑∑∏8. 计算下列n 阶行列式.(1) 111111n x xD x=(2) 122222222232222n D n=; (3)0000000000n x y x y D x y y x=. (4)n ij D a =其中(,1,2,,)ij a ij i jn=-= ;(5)2100012100012000002100012nD=.【解】(1) 各行都加到第一行,再从第一行提出x +(n 1),得11111[(1)],11n x D x n x=+-将第一行乘(1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---(2) 213111222210000101001002010002n r r n r r r r D n ---=-按第二行展开222201002(2)!.00200002n n =---(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)0000000(1)(1).n n n n n n n n x y y x y x y D xy x y x y yxxyx x y y x y +-+-+=+-=⋅+⋅-⋅=+-(4)由题意,知11121212221201211012213123n n n n n nnn a a a n a a a D n a a a n n n --==---- 0122111111111111111111111n n ------------后一行减去前一行自第三行起后一行减去前一行0122112211111120000200002000000000220n n n n --------=-按第一列展开1122000201(1)(1)(1)(1)2002n n n n n n -----=---按第列展开.(5) 210002000001000121001210012100012000120001200000210002100021000120001200012n D ==+122n n D D --=-.即有 112211n n n n D D D D D D ----=-==-=由 ()()()112211n n n n D D D D D D n ----+-++-=- 得11,121n n D D n D n n -=-=-+=+. 9. 计算n 阶行列式.121212111n n n na a a a a a D a a a ++=+【解】各列都加到第一列,再从第一列提出11nii a=+∑,得232323123111111,11n n nn i n i na a a a a a D a a a a a a a =+⎛⎫=++ ⎪⎝⎭+∑ 将第一行乘(1)后加到其余各行,得23111010011.001001n nnn i i i i a a a D a a ==⎛⎫=+=+ ⎪⎝⎭∑∑10. 计算n 阶行列式(其中0,1,2,,i a i n ≠=).1111123222211223322221122331111123n n n n n n n n n n nn n n n n n nn n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=.【解】行列式的各列提取因子1(1,2,,)n j a j n -=,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n ij b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-= ⎪⎝⎭∏11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式. 【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+=同理43441569.A A +=-+=- 12. 用克莱姆法则解方程组.(1) 12312341234234 5,2 1, 2 2, 23 3.x x x x x x x x x x x x x x ++=⎧⎪+-+=⎪⎨+-+=⎪⎪++=⎩ (2) 121232343454556 1,56 0,56 0, 560, 5 1.x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪+=⎪⎩【解】方程组的系数行列式为1110111013113121110131180;121052*********23140123123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.122112120133123D D D D --====---====--故原方程组有惟一解,为312412341,2,2, 1.D D D Dx x x x D D D D========- 12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解. 14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=⎧⎪+++=⎪⎨+-+=⎪⎪+++=⎩ 有非零解时,a ,b 必须满足什么条件?【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111aa b=-即(a +1)2=4b .15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-= 于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件. 【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2)500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (3) []32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4)()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 111213212223313233100011001a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 1210131010101210021002300030003⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】(1) 32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4) 3322211122233312211213311323322311()()()ij iji j a x a x a x a a x x a a x x a a x x a x x==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 1252012400430009⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦.2. 设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B , 求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗?【解】(1) 2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦AB A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦AB BA (3) 由于AB ≠BA ,故(A +B )(A B )≠A 2B 2.3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ; (3) 若AX =AY ,≠A O , 则X =Y . 【解】(1) 以三阶矩阵为例,取2001,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0(2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E (3) 令11021,=,0111210110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0 则AX =AY ,但X ≠Y .4. 设101A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k .【解】2312131,,,.010101k k λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A 5. 100100λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =, 求23A ,A 并证明:121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =.【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A =今归纳假设121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)102010000(1)(1)2,0(1)00k k k k k kk k k kk k k k k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦A A A= 所以,对于一切自然数k ,都有121(1)2.000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =6. 已知AP =PB ,其中100100000210001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P =求A 及5A .【解】因为|P |= 1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PBP而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PBP PB P A7. 设a bc d ba d c c d ab dcba ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b cd b a d c a b c d a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0<A ,即 42222222224()()a b c d a b c d -++++++A =A A =A E 于是有22222()a b c d ==-+++A . 8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X AY Y Bz X AY ABz z,从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B AB 也是对称阵.【证明】因为n 阶方阵A 为对称阵,即A ′=A ,所以 (B ′AB )′=B ′A ′B =B ′AB , 故'B AB 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵.(2) AB BA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= B ,故(B 2)′=B ′·B ′= B ·(B )=B 2;(AB BA )′=(AB )′(BA )′=B ′A ′A ′B ′= BA A ·(B )=AB BA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′= BA +A ·(B )= (AB +BA ).所以B 2是对称矩阵,AB BA 是对称矩阵,AB+BA 是反对称矩阵. 12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为a b c d ⎡⎤⎢⎥⎣⎦,则由1101⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=a b c d ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦, 得a cb d a a bcd c c d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦.由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数.13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵. 【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得11122233333323232302300023222.023333c b c cb c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数. 14. 求下列矩阵的逆矩阵.(1) 1225⎡⎤⎢⎥⎣⎦; (2) 123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4) 1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5) 5200210000830052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0n n a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦,未写出的元素都是0(以下均同,不另注). 【解】(1) 5221-⎡⎤⎢⎥-⎣⎦; (2)121012001-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3) 12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4) 100011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦; (5) 1200250000230058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩ 【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而1110022110≠- 故112311101111122.02211130122110221112x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *. (2) 若A 可逆,则A *可逆且(A *)1=(A 1)*. (3) 若AA ′=E ,则(A *)′=(A *)1. 【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |·|B |·B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A * =(AB ) *A |B |EA *=|A |·|B |(AB ) *.∵ |A |≠0,|B |≠0, ∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A 1,从而(A 1) *=|A 1|(A 1)1=|A |1A . 于是A * (A 1) *=|A |A 1·|A |1A =E ,所以(A 1) *=(A *)1. (3) 因AA ′=E ,故A 可逆且A 1=A ′. 由(2)(A *)1=(A 1) *,得(A *)1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换. 【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X AY且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1) 12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =; (2)211211************--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ;(3) 142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4) 010100043100001201001010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A 故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B同理(2) X =100010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.034102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若kA =O (k 为正整数),证明:121()k ---E A =E +A+A ++A .【证明】作乘法212121()()k k k k k ----=-----=-=E A E +A+A ++A E +A+A ++A A A A A E A E,从而E A 可逆,且121()k ---E A =E +A+A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A 1及(A +2E )1.【证】因为A 2A 2E =0, 故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-A A E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E,A E A E E,A E A E E. 由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2AB =A+B ,求B . 【解】由AB =A +2B 得(A 2E )B =A .而22310,1102121==-≠---A E即A2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A 22. 设1-P AP =Λ. 其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A . 【解】因1-P 可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P 故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦A P P P P ΛΛ 23. 设m 次多项式01()m m f x a a x a x =+++,记01()m m f a a a =+++A E A A ,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kk k λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ; (2) 设1-A =P BP , 证明1k k -B =PA P ,1()()f f -=B P A P . 【证明】(1)232311232200,00λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立. 今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,000kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m mm m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦A E +A++A ++++++ (2) 由(1)与A =P 1BP ,得B =PAP 1.且B k =( PAP 1)k = PA k P 1,又0111011011()()().mm m m mm f a a a a a a a a a f ----=+++=+++=++=B E B B E PAP PA P P E A+A PP A P24. a b c d ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=. 【证明】将A 代入式子2()x a d x ad bc -++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc c d c d ad bca bc ab bd a ad ab bd ad bc ac cd cb d ac cd ad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E0 故A 满足方程2()0x a d x ad bc -++-=. 25. 设n 阶方阵A 的伴随矩阵为*A ,证明:(1) 若|A |=0,则|*A |=0;(2) 1n *-=A A .【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)1=E ,由此又得A =AE =AA *( A *)1=|A |( A *)1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0. (2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n ,若|A |≠0,则| A *|=|A |n 1 若|A |=0,由(1)知也有| A *|=|A |n 1.26. 设52003200210045000073004100520062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B . 求(1) AB ; (2)BA ; (3) 1-A ;(4)|A |k (k 为正整数). 【解】(1)2320001090000461300329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦AB =; (2) 19800301300003314005222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦BA =;(3) 11200250000230057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A =; (4)(1)k k =-A . 27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)00310021********-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******0001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.【解】(1) 对A 做如下分块 12⎡⎤=⎢⎥⎣⎦A A A 00其中1230012;,01025001⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.000030001000001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A A A同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A A A A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关.【证明】因为1234123412341312342()2()0+++=+++⇒+++=+⇒-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关.6. 设向量组12,,,r ααα线性无关,证明向量组12,,,r βββ也线性无关,这里12.i i +++β=ααα【证明】 设向量组12,,,r βββ线性相关,则存在不全为零的数12,,,,r k k k 使得1122.r r k k k +++=0βββ把12i i +++β=ααα代入上式,得121232()()r r r r k k k k k k k +++++++++=0ααα.又已知12,,,r ααα线性无关,故1220,0, 0.r rr k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩该方程组只有惟一零解120r k k k ====,这与题设矛盾,故向量组12,,,r βββ线性无关.7. 略.见教材习题参考答案. 8. 12(,,,),1,2,,i i i in i n ααα==α.证明:如果0ij a ≠,那么12,,,n ααα线性无关.【证明】已知0ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),i i i in ααα=α1,2,,i n =组成的,所以12,,,n ααα线性无关.9. 设12,,,,r t t t 是互不相同的数,r ≤n .证明:1(1,,,),1,2,,n i i i t t i r -==α是线性无关的.【证明】任取n r 个数t r +1,…,t n 使t 1,…,t r ,t r +1,…,t n 互不相同,于是n 阶范德蒙行列式21111212111121110,11n n rr r n r r r n nn nt t t t t t t t tt t t ---+++-≠从而其n 个行向量线性无关,由此知其部分行向量12,,,r ααα也线性无关.10. 设12,,,s ααα的秩为r 且其中每个向量都可经12,,,r ααα线性表出.证明:12,,,r ααα为12,,,s ααα的一个极大线性无关组.【证明】若 12,,,r ααα (1)线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,sααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组.11. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组. 【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A 当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.12. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),110101002a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需b a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0). 13. 设12,,,n ααα为一组n 维向量.证明:12,,,n ααα线性无关的充要条件是任一n 维向量都可经它们线性表出.【证明】充分性: 设任意n 维向量都可由12,,,n ααα线性表示,则单位向量12,,,n εεε,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组12,,,n ααα的秩为n ,因此线性无关.必要性:设12,,,n ααα线性无关,任取一个n 维向量α,则12,,,n ααα线性相关,所以α能由12,,,n ααα线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,1001103111R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且123(,,)3R =ααα,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且1234(,,,)3R =ββββ,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案. 16. 设向量组12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,m ααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r =β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.17. 设A 为m ×n 矩阵,B 为s ×n 矩阵.证明:max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .【证明】因A ,B 的列数相同,故A ,B 的行向量有相同的维数,矩阵⎡⎤⎢⎥⎣⎦A B 可视为由矩阵A 扩充行向量而成,故A 中任一行向量均可由⎡⎤⎢⎥⎣⎦A B 中的行向量线性表示,故()R R ⎡⎤≤⎢⎥⎣⎦A A B同理()R R ⎡⎤≤⎢⎥⎣⎦A B B故有max{(),()}R R R ⎡⎤≤⎢⎥⎣⎦A AB B又设R (A )=r ,12,,,i i ir ααα是A 的行向量组的极大线性无关组,R (B )=k , 12,,,j j jkβββ是B 的行向量组的极大线性无关组.设α是⎡⎤⎢⎥⎣⎦A B 中的任一行向量,则若α属于A 的行向量组,则α可由12,,,i i ir ααα表示,若α属于B 的行向量组,则它可由12,,,j j jk βββ线性表示,故⎡⎤⎢⎥⎣⎦A B 中任一行向量均可由12,,,i i ir ααα,12,,,j j jk βββ线性表示,故()(),R r k R R ⎡⎤≤+=+⎢⎥⎣⎦A AB B 所以有max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .18. 设A 为s ×n 矩阵且A 的行向量组线性无关,K 为r ×s 矩阵.证明:B =KA 行无关的充分必要条件是R (K )=r . 【证明】设A =(A s ,P s ×(n s )),因为A 为行无关的s ×n 矩阵,故s 阶方阵A s 可逆. (⇒)当B =KA 行无关时,B 为r ×n 矩阵.r =R (B )=R (KA )≤R (K ),又K 为r ×s 矩阵R (K )≤r ,∴ R (K )=r . (⇐)当r =R (K )时,即K 行无关,由B =KA =K (A s ,P s ×(n s ))=(KA s ,KP s ×(n s)) 知R (B )=r ,即B 行无关.19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦.【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα;(2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα.21. 略.见教材习题参考答案. 22. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n +++x x x =0}是否构成向量空间?为什么? 【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++=αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++= 所以11,V k V +∈∈αβα,故1V 是向量空间.23. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3. 【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.24. 求由向量1234(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1)====αααα所生的向量空间的一组基及其维数. 【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα∴124,,ααα是一组基,其维数是3维的.25. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.26. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标.【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε27. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX .则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换因有↔A E ,故123,,ααα为R 3的一个基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.习题四1. 用消元法解下列方程组.(1) 12341241234123442362242322312338;x x x x ,x x x ,x x x x ,x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩ (2)1231231232222524246;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b 32434243324142360129200426100112614236142360129201292,0011260011260042610007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)1231231232222524246x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ ① ② ③解②①×2得 x 22x 3=0③① 得 2x 3=4 得同解方程组123233222 20 24x x x x x x ++=⎧⎪-=⎨⎪=⎩④ ⑤ ⑥由⑥得 x 3=2,由⑤得 x 2=2x 3=4,由④得 x 1=22x 3 2x 2 = 10, 得 (x 1,x 2,x 3)T =(10,4,2)T . 2. 求下列齐次线性方程组的基础解系.(1) 123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2)1234123412341234 5 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩ (3) 1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4)123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩ 【解】(1)123123123320503580.x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 32213123132132132151021021358042000r r r r r r +--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A得同解方程组1323123232333723,23201,202,x x x x x x x x x x x x x ⎧=--=-⎪++=⎪⎧⇒⎨⎨=-=⎩⎪⎪=⎩得基础解系为T71122⎛⎫- ⎪⎝⎭. (2) 系数矩阵为32213142413211511151112302743181027413970414811510274() 2.00000000r r r r r r r r r r r ---------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦A A∴ 其基础解系含有4()2R -=A 个解向量.1342123434342343344331225077222227400110x x x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+-=-⎧⎢⎥⎢⎥⎢⎥-⎢⎥⇒==+⎨⎢⎥⎢⎥⎢⎥-+=⎢⎥⎩⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦基础解系为。