航空用新型高强度铝合金

合集下载

铝合金在航天航空中的应用

铝合金在航天航空中的应用

d/g·cm-2
Kic /MPa·m-1/2
2.54 2.54 2.54
2.60 2.60 2.60 2.57 2.57 2.57 ≤2.58 2.56 2.47~2.50 2.47~2.50 2.47~2.50 2.49 2.49
130~135 138~177
KQ=32
Kic≥30 - Kic=24 Kic=26.6 Kic=42~46 -
表 1 主要铝锂合金的力学性能
抗拉 强度 Rm/MPa
450~465
规定非比 例延伸 Rp0.2/MPa
382~414
断后伸长率 A50mm/%
4.7~6.3
405~454 310~369
5~10
418~426 327~332 9.5~10.5
380~455 365~410
4.0
578
531
5.5
601
航空航天用铝合金厚板铝合金厚板是现代航天航空工业重要的结构材料目前发达国家铝工业界不断开发出性能优异的新型铝合金厚板其中有以下几种常用合其一是7075t7651铝合金厚板它具有高的强度良好的韧性抗应力性能和抗剥落腐蚀性能它属于铝锌镁铜系超硬铝合金泛应用于飞机框架整体壁板起落架蒙皮其二是7055超硬铝合金它是目前变形铝合金中强度最高的合金美国铝业公司生产的7075t77合金板材强度比7150的高出107075高出30而且断裂韧性较好抗疲劳裂纹扩展能力强
正当美国铝锂合金研究降温时, 原苏联开始 了 铝 锂 合 金 的 研 究 , 研 制 出 独 特 的 1420 合 金 (Al-Li-Mg-Zr)系, 锂含量达到 1.5% ~ 2.6%, 含镁 达 4% ~ 7%, 比 2020 合金的比重 更低而弹性 模 量 更高, 1971 年用于航空器, 逐步扩大到苏 27、 米 格 25、 米 格 29、 舰 载 飞 机 、 图 204 等 多 种 飞 机 上, 1420 合金 成功的另一 个重要的原 因是具有 优 良的焊接性, 可采用氩弧焊、 电子束焊、 离子焊 和 电 阻 焊 焊 接 , 材 料 本 生 减 重 效 益 12%, 用 焊 接 代替铆接, 省去了连接固件和密封胶圈减重效益 12% 。 后 来 在 1420 的 基 础 上 又 进 一 步 研 究 出 1421、 1423、 1424 等 合 金 , 强 度 明 显 改 善 , 且 抗 蚀性更佳、 焊接性更优。 目前, 俄罗斯已初步形 成了一个包括可焊、 中强、 高强的铝锂合金系列, 铝锂合金已经成为俄罗斯最重要的航天航空用轻 合金之一。 于复合材料、 钛合金一同构成了新型 航天航空新材料的三足鼎立局面。

铝合金材料在航空航天领域中的应用研究

铝合金材料在航空航天领域中的应用研究

铝合金材料在航空航天领域中的应用研究航空航天领域一直是世界科技发展的前沿领域,需要运用先进技术与材料来保障航空器在危机中的性能、重量和安全。

铝合金材料作为一种轻量、高强度和耐腐蚀性能优良的材料,在航空航天领域中得到了广泛应用。

本文将介绍铝合金材料在航空航天领域中的应用研究,包括其特性、制备技术、以及正在研究的前沿。

一、铝合金材料的特性铝合金材料是以铝为主要成分的合金,其中掺杂了其他元素,如铜、镁、锌等。

它的密度远低于其他金属,如钢和钛合金,同时其强度也比这些材料高。

由于其特殊的性能,铝合金材料被广泛应用于航空航天领域的制造中,如航空器中的机身、翼、发动机部件等。

此外,铝合金材料还具有优良的可成型性和耐腐蚀性,可以满足飞行器制造中的高要求。

二、铝合金材料的制备技术铝合金材料的制备技术主要包括熔炼、挤压、锻造、粉末冶金、等离子喷涂等。

其中,薄板及粉末冶金材料制备技术因其能够满足生产成本和良好的变形性能而被广泛运用于航空航天领域中。

在薄板制备中,薄板的厚度通常在0.2mm到6mm之间,其制备方法一般包括顶轧、轧制和挤压等。

具体来说,顶轧方法将铝板材与另一种金属薄片经过热轧以制备出一个复合材料。

而轧制方法以金属拉伸、挤压和弯曲等方式来获得所需厚度的铝板。

最后,挤压方法可以通过同时应用高温和高压来将铝同其他合金化材料复合在一起以制备出铝板材,这种方法应用广泛。

三、铝合金材料在航空航天领域的应用铝合金材料在航空航天领域的应用主要包括飞机机身、翼、起落架和发动机等部件。

在飞机机身方面,铝合金材料被用于制造大型铝合金蒙皮。

在这种情况下,将大型铝合金薄板用冲压成形的方法制成一个结构完整的飞机机身部件,以确保其强度和重量符合航空器设定的标准。

在翼部分,铝合金材料被用于制造高强度的结构组件,以确保它们在飞行中的危机中保持形状和轮廓。

铝合金材料在发动机和航空电子中也有广泛的应用,以确保它们在不同的工作条件下保持其需要的性能。

铝合金在中国民用航空器上的应用

铝合金在中国民用航空器上的应用

铝合金在中国民用航空器上的应用铝合金在中国民用航空器上的应用非常广泛,它可以用于制造机翼、机身以及座舱等结构部件。

其他重要元件,如发动机、燃油系统和液压系统,也都可以使用铝合金材料。

机翼是飞机的重要结构之一,而铝合金可以为这种结构提供强度、刚性和轻量化。

铝合金通常在机翼翼尖和斜流面上使用,因为这样可以提高该部件的强度和耐久性。

铝合金也可以用于机翼下缘,可以减少机翼的阻力,显著提高机翼的气动效果。

机身的结构也是飞机的重要组成部分,由于铝合金具有良好的耐腐蚀性能、高强度和低密度等特点,因此铝合金也用于机身结构制作。

一些低层次的机身制作也可以用铝合金材料,以降低机身重量,提高飞行效果。

座舱是飞机的核心结构部分,座舱采用铝合金制成可以增加座舱的强度,减少重量,提高座舱的安全性和耐用性。

此外,铝合金也是制造天窗、货舱和其他舱门的首选材料。

发动机是飞机的关键组件,尽管它的制造过程复杂,但发动机的外壳仍然可以用铝合金来制作。

由于铝合金的低密度和良好的热导能力,可以大大改善发动机的散热性能,并有效降低发动机的重量。

此外,燃油系统和液压系统也可以使用铝合金材料。

铝合金可以提高燃油系统的耐腐蚀性能,减少燃油系统的重量;液压系统中也使用了铝合金,可以提高系统的强度,减少系统体积。

总之,铝合金在中国民用航空器上的应用非常广泛,可以用于制造机翼、机身、座舱、发动机、燃油系统和液压系统等诸多部件。

它的各项特性,如低密度、良好的强度和耐腐蚀性,为航空器的制造和应用提供了技术支持,在保证轻量化、安全和相对低成本的同时,大大提升了民用航空器的性能。

航空铝发展史

航空铝发展史

航空铝发展史航空铝,一种轻盈且强度高的铝材料,在航空工业中发挥着至关重要的作用。

随着航空技术的飞速发展,航空铝也经历了从无到有,从初级到高级的演变历程。

下面将详细回顾航空铝的发展历史。

一、航空铝的起源19世纪末,铝作为一种新兴材料开始进入人们的视野。

随着冶炼技术的进步,铝的产量逐渐增加,价格逐渐降低,使得铝在各个领域得到广泛应用。

20世纪初,人们开始尝试将铝用于飞机制造。

与传统木材、钢等材料相比,铝具有重量轻、强度适中、耐腐蚀等优点,为航空工业带来了新的可能性。

二、航空铝的初期发展在航空铝的初期发展阶段,主要关注的是提高铝的冶炼技术和生产工艺。

这个时期的航空铝主要是铸造铝合金,通过改变铝的成分和铸造工艺,以获得更强的力学性能。

然而,由于技术限制和材料科学的认知不足,这个时期的航空铝存在一些问题,如韧性不足、易断裂等。

三、航空铝的成熟期随着科技的不断进步,人们对于材料科学的理解越来越深入。

在20世纪中期以后,航空铝进入了成熟期。

这个时期的航空铝主要是变形铝合金,通过轧制、锻造等工艺获得所需形状和性能。

变形铝合金的出现大大提高了航空铝的力学性能和使用范围。

此外,人们还研究了各种新型的铝合金,如高强度铝合金、耐高温铝合金等,以满足航空工业日益增长的需求。

四、航空铝的未来展望随着环保意识的日益增强和能源消耗的持续增加,航空工业面临着越来越大的压力。

未来,航空铝的发展将更加注重环保、节能和可持续发展。

新型的航空铝材料将不断涌现,以提高飞机的燃油效率、降低排放、减轻机身重量等为目标。

例如,研究开发具有更高强度的轻质铝合金、耐腐蚀性能更好的铝合金、可回收再利用的环保型铝合金等。

同时,随着3D打印等先进制造技术的普及和应用,航空铝的生产工艺也将迎来新的变革。

3D打印技术可以实现复杂结构的快速成型,减少材料浪费和加工时间,进一步提高航空铝的生产效率和材料性能。

五、结语回顾航空铝的发展历程,我们可以看到一种材料从无到有,从初级到高级的演变过程。

新型金属材料在航空制造中的应用研究

新型金属材料在航空制造中的应用研究

新型金属材料在航空制造中的应用研究近年来,新型金属材料在航空制造领域得到了广泛的应用和研究。

这些材料具有很多优秀的性能,在提高航空器性能、减轻重量、提高安全性和寿命等方面发挥了重要作用。

一、新型金属材料简介新型金属材料主要指高强度、高导热、高耐腐蚀等性能优异的航空材料,如钛合金、镁合金、铝合金等。

钛合金,是一种以钛为主要成分的杂质元素少的合金,具有强度高、硬度大、重量轻、抗腐蚀性好等优点,被广泛应用于航空制造中。

镁合金,以镁为主体的合金材料,具有密度低、强度高、刚度大、制造加工方便等优点,也被广泛应用于航空制造中。

铝合金,是一种以铝为主要成分的合金,具有薄、轻、强、耐腐蚀等优点,被广泛用于航空器的制造。

二、新型金属材料在航空制造中的应用新型金属材料在航空制造中有很多种应用形式。

以下将钛合金、镁合金、铝合金三种新型金属材料分别进行介绍。

1、钛合金在航空制造中的应用:钛合金具有极高的强度、硬度和抗腐蚀性能,是航空制造的重要材料之一。

钛合金主要应用于以下领域:(1)航空发动机制造。

在发动机的叶片、扇叶、转子等部位都有广泛的应用。

(2)先进的航空航天结构部件。

如机翼、机身、升降舵等。

(3)航空器耐腐蚀。

航空器中许多部位都要求具有良好的耐腐蚀性能,钛合金便成为了很好的选择。

2、镁合金在航空制造中的应用:镁合金因其低密度、高强度、高辐射吸收性能等特点而在航空制造领域广泛应用。

其主要应用领域有:(1)航空器结构零件。

航空器的机身、机翼、尾部都需要用到镁合金制造的零部件。

(2)航空器前缘板。

前缘板需要具有轻质、高强度和高辐射吸收性能,镁合金正好满足这些要求。

(3)先进航空航天结构零件。

由于镁合金的高强度和低密度特点,可以制造出更轻、更强度的航空与航天零件。

3、铝合金在航空制造中的应用:铝合金在航空制造中应用广泛,因为它具有重量轻、刚度大、易于加工及抗腐蚀等优点。

铝合金主要应用领域有:(1)航空和航天结构材料。

机翼、机身、尾翼、发动机罩等部件都需要用到铝合金。

2024铝合金t351热处理工艺

2024铝合金t351热处理工艺

2024铝合金t351热处理工艺
2024 铝合金是一种新型高强度铝合金,常用于制造航空航天器、汽车零部件、建筑结构件等。

t351 是一种热处理状态的名称,表示该状态材料的力学性能达到了疲劳寿命要求。

2024 铝合金 t351 热处理工艺通常包括以下步骤:
1. 预处理:进行表面预处理,如抛丸、喷砂等,以去除表面污渍和油脂,提高表面光洁度。

2. 热加工:将材料加热到适当温度,通常在 900°C 左右,进行热加工,如轧制、挤压等。

3. 冷却:将热加工后的铝合金材料快速冷却至室温,以便获得所需的组织结构和性能。

4. 热处理:将材料再次加热至 900°C 左右,进行 t351 状态的热处理,以增加材料的疲劳寿命。

5. 冷却:将热处理后的铝合金材料快速冷却至室温,以便获得所需的组织结构和性能。

不同的热处理工艺可能会产生不同的组织结构和性能,因此需要根据具体情况进行调整和优化。

同时,热处理过程需要严格控制温度、时间和冷却速度等参数,以确保热处理效果的稳定性和可靠性。

讲一讲稳坐飞机结构材料头把交椅的铝合金

讲一讲稳坐飞机结构材料头把交椅的铝合金

讲一讲稳坐飞机结构材料头把交椅的铝合金【材料+】说:铝合金是工业中应用最广泛的一类有色金属结构材料,通常添加铜、锌、锰、硅、镁等元素,密度小、比强度高、耐蚀性和成型性好、成本低。

在航空方面,铝合金可谓是重中之重!大量采用铝厚板加工而成的复杂的整体结构件代替以前用很多零件装配而成的部件,不但能减轻结构重量,提高载重量和航程,而且高强铝合金还能保证飞机性能的稳定,高强铝合金主要用于飞机机身部件、发动机舱、座椅、操纵系统等,在大多数情况下可替代铝模锻件。

近年来,由于复合材料和钛合金的用量增加,最新设计的飞机中铝合金的用量相对减少,但高纯、高强、高韧、耐蚀的高性能铝合金用量却在增加。

翱翔天空的飞机耐热铝合金与普通结构合金和高强铝合金相比合金化程度更高,多用于制备温度达200~400℃的靠近电动机的机舱、空气交换系统的零件。

耐蚀铝合金具有足够高的性能指标,其强度、塑性、冲击韧性、疲劳性能和可焊性都很好,主要具有耐蚀性,这样就可用于水上飞机。

它属于铝-镁系合金和铝-镁-锌系合金。

铝-镁-锌三元相图铝合金在航空上的发展历程作为飞机机体结构的主要材料,铝合金的发展与航空事业的发展密不可分。

下面就让小编带大家来看看航空铝合金的5个阶段吧。

按照铝合金的成分-工艺-组织-性能特征,可将铝合金在航空上的发展历程大体划分为5个阶段。

铝合金发展的5个阶段第一代高静强度铝合金:1906年,Wilm发现Al-Cu合金的沉淀硬化现象。

揭开了高强铝合金发展的序幕。

1923年,Sander和Meissner又发现Al-Zn-Mg合金在经过了淬火-人工时效热处理后产生的主要强化相MgZn2(η′相)比Al-Cu-Mg系合金中的θ′和S′相尺寸更小、分布更弥散,沉淀硬化效应更显著。

此后研发的2024-T3,7075-T6和7178-T6铝合金满足了飞机最初阶段提高强度安全系数、减轻结构重量和提高航程为目标替代木材的静强度设计需求,成为了第一代高强铝合金的代表。

铝合金、镁合金在航天中的应用

铝合金、镁合金在航天中的应用

铝合金、镁合金在航天器上的应用实例1引言我国航天事业的未来发展重点包括:载人航天空间站、高分辨率对地观测系统、深空探测、空间科学、在轨服务平台和激光通信卫星等。

这些航天器的特点是:长期在轨运行、体积和质量大幅增加、需要配置更多的载荷和燃料、承受更加复杂的空间环境,对形状精度及其保持能力要求更高。

为满足上述需求,航天器未来将朝着长寿命、大型化、高承载、轻量化、高尺寸稳定性,以及耐受复杂空间环境等方向发展。

[1]长寿命:空间站在轨密封寿命达10年,通信卫星在轨寿命要求12年-15年,星际探测器可能在轨道上飞行20年以上。

大型化:空间站大型舱体结构直径将超过4m,长度15m以上;卫星外包络直径4m以上;未来载人登月舱体外包络直径达到10m以上;另外,对于空间站、大型通信卫星等航天器,需配置大型可展结构,如大型太阳翼、天线等。

高承载:空间站结构承载能力将达25t;“十二五”期间,大型卫星结构承载能力9t,未来可能达15t;载人登月着陆器承载能力达30t以上。

轻量化:结构占航天器总质量的百分比下降到6%甚至更低。

高尺寸稳定性:要求航天器结构单向变形比达到0.1ppm/℃量级,以减小在空间交变热环境对载荷指向精度的影响。

[2]耐受复杂空间环境:如耐受月面-180℃-150℃的交变温度环境、其它行星表面环境,以及再入和行星进入热环境等。

而材料是形成航天器结构的基础,航天器结构的性能和可靠性在很大程度上取决于材料的性能。

为了降低航天器结构的重量、提高结构的刚度和强度,虽然可以在结构型式、尺寸等方面进行各种设计和改进,但最直接和最有效的途径是选择密度小而弹性模量和强度高的材料。

[3]铝合金材料的特点是密度低,有较高的比模量和比强度值;导热性和导电性良好;抗腐蚀性能好;制造工艺性能良好。

故其一直是航天器上最主要的结构材料之一。

镁合金材料具有比强度、比刚度高,阻尼性好等优点,是有效解决航天器轻量化需求的轻质金属材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档