小学四年级奥数 第47讲:排列组合综合应用(一)

合集下载

四年级奥数-排列组合(1)

四年级奥数-排列组合(1)

排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有2112520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

小学奥数之排列组合问题

小学奥数之排列组合问题
题目:有五本不同的书分给甲、乙、丙三人,其中一人一本,另两人各两本,不同的分配方法有 _______ 种. 答案:90
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。

排列组合综合应用课件大习题课

排列组合综合应用课件大习题课

解: 2A A
2 2
5 5
问:若7个座位3个孩子去坐,要求每个孩子的旁边都 有空位置,有多少种不同的排法?
解:A (搬凳子插入)
3 3
分 配 问 题
例 3: ( 1 ) 6 本 不 同的 书 分给 5 名同 学 每 人一本,有多少种不同分法?
A
5 6 5 6 5 5
(2)5本相同的书分给 6名同学每人至
解 1 :C C
3 7 3 4
3 7
3 4
C C 2 解2: ( ). A 2 2 A2
分 配 问 题
例 3: ( 7)将5名实习教师分配到高一年级的 3 个班实习,每个班至少1名,最多2名,则 不 同 的 分 配 方 案 有 多 少 ?
C C 3 解: ( ). A 90 3 2 A2
2 5
解2:将 5 块地转化为 块地 解1 : 3 2 (2 2 3 3 ) 42 1,3,5 ; 2; 4, 1,3; 2,5; 4, 1,3; 2,4; 5 , 1,5; 2,4; 3 3,5; 1,4; 2, 3,5; 2,4; 1 , 1,4; 2,5; 3
3 3
共有7 A 42种
2 1 有 5 个,因此共有 N=4A3 + 6A + 5A 9 8 7+5=2392 种.

例2:



4个男孩3个女孩,站成一排照相留念。 1)若三个女孩要站在一起,有多少种不同的排法?
解:A . A
3 3
5 5
2)若三个女孩要站在一起,四个男孩也 要站在一 起,有多少种不同的排法?
解:A .A .A 288
(2) 若允许某些盒子不放球,则相当于在 n+m-1 个位置 中选m-1个隔板,把n个小球分隔成m份,共有 种

排列组合综合应用第1课时教案

排列组合综合应用第1课时教案

排列组合综合应用 第1课时一、教学目标1.掌握排列和组合数的各个性质并能熟练运用. 2.认识分组分配和分组组合问题的区别. 3.能够区分和解决分组分配和分组组合问题. 二、教学重点难点重点:熟练掌握排列和组合数的各个性质并能熟练运用; 难点:能够区分和解决分组分配和分组组合问题. 三、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性. (二)情景导入、展示目标.前面,我们已经分别对排列组合问题做了较全面的研究,我们知道排列组合相互联系又相互区别.在实际问题中,有些问题既涉及排列问题又涉及组合问题,因此只有将两个知识点结合起来,才能更好的解决实际问题,今天我们先解决以下几类综合问题.(三)合作探究、精讲点拨. 1.分组分配问题 探究:将3件不同的礼品(1)分给甲乙丙三人,每人各得1件,有多少种分法? (2)分成三堆,一堆一件,有几种分法?答案:(1)633 A (2)1种(4)因为没有规定谁得1件,谁得2件和3件,那么谁都可以得1,2,或3件,故应比(2)扩大33A 倍,则一共有36033332516=A C C C 种. (5)解法一:第一堆有26C 种分法,第二堆有24C 种分法,第三堆有22C 种分法,所以一共有222426C C C 种分法,但因为堆与堆之间没有区别,故每33A 种情况只能算一种情况,因此,共有1533222426=A C C C 种分法. 解法二:设6件礼品分3堆有x 种分法,在平均分成3堆后再分给三个人,又有33A 种分法,故将6件礼品分给三个人,每人2件共有x 33A 种分法,再由(1)知它应等于222426C C C 种,列方程得x 33A 222426C C C ,可得x 1533222426==A C C C . 点评:本题中的每一个小题都提出了一种类型的问题,搞清类型的归属对今后的解题大有裨益.其中:(1)均匀不定向分配问题(2)非均匀定向分配问题(3)非均匀不定向分配问题(4)非均匀分配问题(5)均匀分配问题.这是一个典型的问题,要认真体会.变式训练1 按下列要求把12个人分成3个小组,各有多少种不同的分法? (1)各组人数分别为2,4,6人; (2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间.简答:(1)66410212C C C =13860,(2)334448412A C C C =5775, (3)分两步:第一步平均分成3组,第二步让3个小组分别进入不同车间,故有334448412A C C C 33A =4448412C C C =34650种不同的分法.2.分组组合问题例2 6名男医生,4名女医生(1)选3名男医生,2名女医生,让他们到5个不同的地区巡回医疗,共有多少种不同的分派方法?(2)把10名医生分成2组,每组5人且每组要有女医生,有多少种不同的分派方法?若将这两组医生分派到两地去,并且每组选出正,副组长2人,又有多少种方法?解析:取部分元素进行排列,一定要先取后排.解:(1)法1:分三步:①从6名男医生中选3名 ②从4名女医生中选2名 ③对选出的5人全排列,故一共有14400552436=C C C 种法2:分两步:从5个地区中选出3个地区,再将3个地区的工作分配给6个男医生中的3个,3635A C再将剩下的2个地区的工作分给4个女医生中的2个24A ,故一共3635A C 1440024=A(2)医生的选法有两类:第一类:一组女医生1人男医生4人,另一组女医生3人男医生2人,因为组合组之间没有顺序,故一共有4614C C 种不同的选法. 第二类:两组都是3男2女,考虑两组没有顺序,因此有种223624A C C 不同的 选法,因此医生不同的选法总数为+4614C C 种120223624=A C C .分派到两地22A 种方法,每个小组选出正副组长各有25A 种选法,故一共有96000120252522==A A A N . 点评:对于排列组合的综合题,常采用先组合(选出元素),再排列(将选出的这些元素按要求进行排序).变式训练2.从6个男同学和4个女同学中,选出3个男同学和2个女同学分别承担A 、B 、C 、D 、E 五项不同的工作,一共有多少种分配工作的方法?简答:一般方法是先选后排,按元素的性质“分类”和按事件发生的连续过程分步,故有2436C C 55A =14400种方法.3.相同元素的分组分配问题例3 某校高二年级有6个班级,现要从中选出10人组成高二年级女子篮球队参加县高中年级篮球比赛,且规定每班至少要选1人参加,这10个名额有多少种不同的分配方案?解析:名额分配问题,名额之间没有区别,可以采用隔板法.解:因为名额之间没有区别,所以可以把它们视作是排成一排的10个相同的小球,要把这10个小球分开成6段,且每段至少一个小球,为达到这个目的,我们把这10个球拉开,每两个球之间空出一个位置,两端不留位置,共9个位置,现在要把这9个位置中放入5个隔板,则每一种放法把这10个球都能分成6段,得到的结果对应于一种分配方案,故有12659=C 种放法. 点评:相同元素的分配问题,通常可以采用隔板法. 例4 求方程X+Y+Z=10的正整数解的个数.解析:可以将方程解的问题转化为相同元素的分配问题.解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值,则隔法与解的个数之间建立了一一对立关系,故解的个数为29C =36(个).点评:该题的转化是关键,将方程的解转化为小球的分配的问题,使问题豁然开朗;既好理解,又便于计算.在做题时注意体会.变式训练3 20个不加区别的小球放入编号为1,2,3的三个不同盒子中,要求每个盒子里的球数不少于该盒子的编号数,问有多少种不同的方法.简答:由于每个盒子里的球数不少于编号数,则在2号盒子内放入1个球,3号盒子放入2个球,然后把余下的17个小球分成3份放入3个盒子中,相当于16个空位放2个隔板,故一共2C种不同的方法.16变式训练4求方程X+Y+Z=10的非负整数解的个数.简答:注意到x、y、z可以为零,故上题解法中的限定“每空至多插一块隔板”就不成立了,怎么办呢?只要添加三个球,给x、y、z各一个球.这样原问题就转化为求X+Y+Z=13的正整数解的个数了,故解的个数为2C=66(个).12(四)反思总结,当堂检测教师组织学生反思总结本节课的主要内容,并进行当堂检测.四、板书设计排列组合综合问题第一课时一、预习检查2分组组合问题.3.相同元素的分组分配二、合作探究、精讲点拨例2例31.分组分配问题例1例4三、小结五、作业布置1.六本不同的书,分为三组,一组四本,另外两组各一本,有多少种分法?2.有5个男生和3个女生,从中选5 个担任5门学科代表,求符合下列条件的选法数.(1)有女生但人数少于男生(2)某女生一定要担任语文科代表.(3)某男生必须在内,但不担任数学科代表.(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不是数学科代表.3.把12本相同的笔记本全部分给7位同学,每人至少一本,有多少种分法?。

小学奥数排列组合教案

小学奥数排列组合教案

小学奥数-排列组合教案一、教学目标1. 让学生理解排列组合的概念,掌握排列组合的基本算法。

2. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3. 激发学生的学习兴趣,培养学生的耐心和细心。

二、教学内容1. 排列的概念和排列数公式2. 组合的概念和组合数公式3. 排列组合的综合应用三、教学重点与难点1. 教学重点:排列组合的概念,排列数和组合数的计算方法。

2. 教学难点:排列组合的综合应用,解决实际问题。

四、教学方法1. 采用直观演示法,让学生通过实际操作理解排列组合的概念。

2. 采用案例教学法,分析典型例题,引导学生运用排列组合知识解决实际问题。

3. 采用讨论法,鼓励学生提问、交流、探讨,提高学生的逻辑思维能力。

五、教学安排1. 课时:每课时约40分钟2. 教学步骤:引入新课讲解概念举例讲解练习巩固课堂小结3. 课后作业:布置相关练习题,巩固所学知识。

教案一、引入新课1. 老师:同学们,你们平时喜欢做游戏吗?今天我们就来玩一个有趣的游戏,请大家观察这些数字(出示数字卡片),看看你能发现什么规律?2. 学生观察数字卡片,发现规律。

二、讲解概念1. 老师:同学们观察得很仔细,这些数字卡片其实就是我们今天要学习的内容——排列组合。

什么是排列呢?2. 学生回答:排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。

3. 老师:很好,那什么是组合呢?4. 学生回答:组合是指从n个不同元素中取出m(m≤n)个元素的所有可能的组合的个数。

5. 老师:同学们掌握得很好,我们来学习排列数和组合数的计算方法。

三、举例讲解1. 老师:我们以n=5,m=3为例,来计算排列数和组合数。

2. 学生计算排列数:5×4×3=60,计算组合数:C(5,3)=10。

3. 老师:同学们计算得很好,这些排列和组合在实际生活中有哪些应用呢?四、排列组合在实际生活中的应用1. 老师:比如说,我们有一排5个位置,要从中选出3个位置来安排3个同学,就有60种排列方式,10种组合方式。

四年级奥数讲义:排列组合的综合应用

四年级奥数讲义:排列组合的综合应用

四年级奥数讲义:排列组合的综合应用排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.)当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握.例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例 6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2 C47+6 C37+3 C27+ C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.。

排列组合综合应用PPT课件

排列组合综合应用PPT课件
种,只会唱的5人中只有1人选上唱歌人
员__C_15C__13C__24 _种,只会唱的5人中只有2人
选上唱歌人员有_C_52_C_52种,由分类计数
原理共有___C__32 C_32_+__C__15C__13C__24 +__C_52_C_52__种。
本题还有如下分类标准: *以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人的5个节目已排成节 目单,开演前又增加了两个新节目.如果将这 两个节目插入原节目单中,那么不同插法的 种数为( 42 )
2. 某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法
( 78 )
2021
22
练习题 6颗颜色不同的钻石,可穿成几种钻石圈
要注意合并元素2内021 部也必须排列.
14
练习题
某人射击8枪,命中4枪,4枪命中恰好 有3枪连在一起的情形的不同种数为 ( 20 )
2021
15
6.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个
独唱,舞蹈节目不能连续出场,则节目的出
场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
2021
17
7. 合理分类与分步策略 例4.在一次演唱会上共10名演员,其中8人能
唱歌,5人会跳舞,现要演出一个2人
唱歌2人伴舞的节目,有多少选派方法? 解:10演员中有5人只会唱歌,2人只会跳舞
3人为全能演员。以只会唱歌的5人是否
选上唱歌人员为标准进行研究 只会唱
的5人中没有人选上唱歌人员共有_C_32C__32
10.3.3 排列组合综合应用
2021

四年级奥数-排列组合(1)

四年级奥数-排列组合(1)

排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合综合应用(一)2.组合:
从n个不同元素中任意取出m个(m≤n)元素组成一组,不.计.较.组.内.各.元.素.
【温故知新】的.顺.序.,叫做从n个不同元素中取出m个元素的一个组合。

一、你必须知道的
1.排列:
不同元素中任意取出m个(m≤n)元素,按.照.一.定.的.顺.序.排成一列,叫做从n 个不同元素中取出m个元素的一个排列。

所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A
m
n
A n n n n m
m
n 1 2 1
所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C
m
n C n n n n m m
n 1 2 1 !
m
重要结论
【例2】(★★★)
正六边形的中心和顶点共7 个点,以其中3 个点为顶点的三角形共有多少个?
【例1】(★★★)
六个人排成一排照相,
⑴若小明必须与小丽排在一起,有多少种排法?
⑵若小明和小丽不能排在一起,有多少种排法?
1
【例3】(★★★★) 【例4】(★★★★)
在新学期的班会上,大家从11 名候选人中选出班干部。

请问:从15 名同学选出5 人,上场参加篮球比赛。

⑴选出三人组成班委会,那一共有多少种选法?请问:
⑵从剩下的候选人中,选出三人分别担任语文、数学、英语的课代表,一共⑴如果甲、乙、丙三人中恰好入选一人,共有多少种选法?有多少种选法?⑵如果甲、乙、丙不能同时都入选,共有多少种选法?
【例5】
⑴(★★)
在图中1×5的格子中填入1,2,3,4,5 这5 个数,要求,填入的数各不相同并且填在黑格里的数比它旁边的两个数都大。

共有_____种不同的填法。

⑵(★★★★)
在图中1×5的格子中填入1,2,3,4,5,6,7,8 中的5 个数,要求,填入的数各不相同并且填在黑格里的数比它旁边的两个数都大。

共有_____ 种不同的填法。

【例6】(★★★★★)
从10 名男生,8 名女生中选出8 人参加游泳比赛。

在下列条件下,分别有多少种选法?
⑴恰有3 名女生入选;
⑵至少有两名女生入选;
⑶某两名女生,某两名男生必须入选;
⑷某两名女生,某两名男生不能同时入选;
⑸某两名女生,某两名男生最多入选两人。

2。

相关文档
最新文档