生物化学

合集下载

生物化学知识重点

生物化学知识重点

生物化学知识重点第一章绪论1.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学;2.生物化学研究的内容大体分为三部分:①生物体的物质组成及生物分子的结构与功能②代谢及其调节③基因表达及其调控第二章糖类化学1.糖类通常根据能否水解以及水解产物情况分为单糖、寡糖和多糖;2.单糖的分类:①按所含C原子的数目分为:丙糖、丁糖......②按所含羰基的特点分为:醛糖和酮糖;3.葡萄糖既是生物体内最丰富的单糖,又是许多寡糖和多糖的组成成分;4.甘油醛是最简单的单糖;5.两种环式结构的葡萄糖:6.核糖和脱氧核糖的环式结构:见下图CH2OH CH2OHO O OH HOCH2O OH HOCH2O OHHO OH OH HO OHOH OH OH OH OH Hα-D-+-砒喃葡萄糖β-D-+-砒喃葡萄糖β-D-核糖β-D-脱氧核糖7.单糖的重要反应有成苷反应、成酯反应、氧化反应、还原反应和异构反应;8.蔗糖是自然界分布最广的二糖;9.多糖根据成分为:同多糖和杂多糖;同多糖又称均多糖,重要的同多糖有淀粉、糖原、纤维素等;杂多糖以糖胺聚糖最为重要;10.淀粉包括直链淀粉和支链淀粉;糖原分为肝糖原和肌糖原;11.糖胺聚糖包括透明质酸、硫酸软骨素和肝素;第三章脂类化学1.甘油脂肪脂肪酸短链脂肪酸、中链脂肪酸和长链脂肪酸根据C原子数目分类脂类饱和脂肪酸和不饱和脂肪酸根据是否含有碳-碳双键分类类脂:磷脂、糖脂和类固醇2.亚油酸、α亚麻酸和花生四烯酸是维持人和动物正常生命活动所必必需的脂肪酸,是必需脂肪酸;3.类花生酸是花生四烯酸的衍生物,包括前列腺素、血栓素和白三烯;4.脂肪又称甘油三酯;右下图是甘油三酯、甘油和脂肪酸的结构式:5.皂化值:水解1克脂肪所消耗KOH的毫克数; CH2-OH CHOOC-R1皂化值越大,表示脂肪中脂肪酸的平均分子量越小; R-COOH HO- CH R2-COO-CH6.磷脂根据所含醇的不同分为甘油磷脂和鞘磷脂; CH2-OH CH2-OOC-R37.糖脂包括甘油糖脂和鞘糖脂; 脂肪酸甘油甘油三酯8.类固醇是胆固醇及其衍生物,包括胆固醇、胆固醇脂、维生素D、胆汁酸和类固醇激素等;9.胆汁酸有游离胆汁酸和结合胆汁酸两种形式;10.类固醇激素包括肾上腺皮质激素如醛固酮、皮质酮和皮质醇和性激素雄激素、雌激素和孕激素;11.肾上腺皮质激素具有升高血糖浓度和促进肾脏保钠排钾的作用;其中皮质醇对血糖的调节作用较强,而对肾脏保钠排钾的作用很弱,所以称为糖皮质激素;醛固酮对水盐平衡的调节作用较强,所以称为盐皮质激素;第四章蛋白质化学1.蛋白质的作用:①生物催化—酶②运载和储存③免疫保护④机械支持⑤激素——受体系统⑥产生和传递神经冲动2.氨基酸的结构:①在20种标准氨基酸中只有脯氨酸为亚氨基酸,其他氨基酸都是α-氨基酸; COOHCOOH②除了甘氨酸之外,其他氨基酸的α-碳原子都结合了4个不同的原子或原子团;H2N-C-HH-C-NH2羧基、氨基、R基和1个氢原子; R R③氨基酸是手性分子,有L-氨基酸和D-氨基酸之分;标准氨基酸均为L-氨基酸;3.氨基酸的分类:L-氨基酸D-氨基酸①非极性疏水R基氨基酸②极性不带电荷R基氨基酸③带正电荷R基氨基酸④带负电荷R基氨基酸4.氨基酸的性质:①紫外吸收特征蛋白质的肽键结构对220nm以下的紫外线有强吸收,其所含的色氨酸和络氨酸对280nm的紫外线有强吸收;②两性解离与等电点氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的静电荷为零;此时溶液的PH值称为氨基酸的等电点;③茚三酮反应5.蛋白质的分类:根据组成成分分为单纯蛋白质和缀合蛋白质;根据构象分为纤维状蛋白质和球状蛋白质;6.蛋白质的分子结构:分为一级结构、二级结构、三级结构和四级结构后三种结构称为蛋白质的空间结构;7.肽分为寡肽2-10个氨基酸组成和多肽更多氨基酸构成;8.一些重要的肽:抗氧化剂:谷胱甘肽GSH是由谷氨酸、半胱氨酸和甘氨酸通过肽键连接构成的三肽;激素:抗利尿激素、血管紧张素Ⅱ、催产素、促肾上腺皮质素、内啡肽、脑啡肽;9.蛋白质的一级结构:蛋白质的一级结构:蛋白质分子内氨基酸的排列顺序;包括二硫键的位置;10.蛋白质的二级结构:蛋白质的二级结构:指多肽链主链的局部构象,不涉及侧链的空间排布;二级结构的种类:①肽单元与肽平面②α-螺旋③β折叠④β转角⑤无规卷曲⑥超二级结构超二级结构:指二级结构单元进一步聚集和组合在一起,形成规则的二级结构聚集体;作用:降低了蛋白质分子的内能,使之更加稳定;11.蛋白质的三级结构:蛋白质的三级结构:一条完整的蛋白质多肽链在二级结构基础上进一步折叠形成的特定的空间结构;维持蛋白质三级结构的化学键是疏水作用、氢键、部分离子键和少量共价键如二硫键;由一条肽链构成的蛋白质只有形成三级结构才可能具有生物活性;12.蛋白质的四级结构:蛋白质的四级结构:多亚基蛋白的亚基按特定的空间排布结合在一起形成的空间结构;13.维持蛋白质构象的化学键:蛋白质的天然构象是由多种化学键共同维持的,这些化学键包括肽键、二硫键、氢键、疏水作用、离子键和范德华力;后四种化学键属于非共价键;14.蛋白质的理化性质:实验一般性质:①蛋白质含有肽键和芳香族氨基酸,所以对紫外线有吸收;②蛋白质是两性电解质,所以有等电点; ③蛋白质还能发生呈色反应;15.沉降系数:沉降速度与离心加速度相对重力之比为一常数;该常数称为~ ;第五章核酸化学信使RNA—把遗传信息从DNA带给核糖体,指导蛋白质合成;核糖核酸RNA转移RNA—在蛋白质合成过程中转运氨基酸,同时把核酸翻译成蛋白质语言;核酸核糖体RNA—是核糖体的结构成分,而核糖体是合成蛋白质的机器;脱氧核糖核酸DNA——遗传的物质基础;核酸的结构单位是核苷酸,是核酸的水解产物;磷酸——核酸是含磷酸最多的生物大分子;核苷酸的组成戊糖——核酸的戊糖包括核糖和脱氧核糖;碱基——包括两种嘌呤碱基A、G和两种嘧啶碱基C、T ;糖苷键——碱基与戊糖以N-β-糖苷键连接;核苷酸的结构磷酸酯键——磷酸与戊糖以磷酸酯键连接;酸酐键——磷酸通过酸酐键连接第二、第三个磷酸;核苷酸的功能:①合成核酸②为生命活动提供能量③参与其他物质合成④构成酶的辅助因子⑤调节代谢ATP——为生命活动提供能量UTP——参与糖原的合成CTP——参与磷脂合成腺苷酸构成酶的辅助因子核酸的分子结构:一级结构:指核酸的碱基组成和碱基序列;分子结构二级结构:核酸中由部分核苷酸形成的有规律、稳定的空间结构;三级结构:在二级结构的基础上,DNA双螺旋进一步盘曲形成三级结构;一、核酸的一级结构——研究核酸的核苷酸序列;核苷酸以3’,5’—磷酸二酯键连接构成核酸;核酸有方向性,5’端为头,3’端为尾;核酸是核苷酸的缩聚物;根据长度将核苷酸分为:寡核苷酸长度<50 nt和多核苷酸;nt:单链核酸长度单位,1nt为1个核苷酸二、核酸的二级结构不同的生物DNA的碱基组成具有以下规律,称为C hargaff法则:①DNA的碱基组成有物种差异,没有组织差异,即不同物种DNA的碱基组成不同,同一个体不同组织DNA的碱基组成相同.②DNA的碱基组成不随个体的年龄、营养和环境改变而改变;③不同物种DNA的碱基组成均存在以下关系:A = T , G = C , A + G = C + T .C hargaff法则是研究DNA二级结构及DNA复制机制的基础;DNA二级结构的特点:①DNA是由两股反向平行互补构成的双链结构;主链位于外侧,碱基侧链位于内侧;②两条链由碱基之间的氢键相连:A + G = C + T ;③在双螺旋中,碱基平面与螺旋轴垂直;④碱基之间的氢键维系双链结构的横向稳定性;碱基平面之间的碱基堆积力维系双螺旋结构的纵向稳定性;三、核酸的三级结构——主要研究DNA和染色体的超级结构.1.真核生物的细胞核DNA与RNA、蛋白质构成染色体,其结构更复杂;2.如果把真核生物DNA形成双螺旋结构看成是DNA的一级压缩,那么DNA的二级压缩就是形成核小体;3.核小体由DNA与组蛋白构成;各两个亚基构成核小体的八聚体核;四、RNA的种类和分子结构碱基互补配对的原则是A对U、G对C.1.mRNA的特点:种类多、寿命短、含量少;2.真核生物大多数mRNA的5’端有一个帽子m7GpppNmp,3'端有一段聚腺苷酸尾或PolyA尾; 帽子结构既能抵抗RNA 5’外切酶的水解;又是蛋白质合成过程中起始因子的识别标记;在组成和结构上都有以下特点:①大小为73-93 nt②含有较多的稀有碱基③ 3'端含有CCA-OH序列;5’端大多是鸟苷酸;④二级结构呈三叶草形⑤三级结构成倒“L”形.4.rRNA是细胞内含量最多的RNA,与蛋白质构成核糖体;原核生物核糖体有三种rRNA,真核生物核糖体有四种rRNA;5.核酶:是由活细胞合成的、具有催化作用的RNA;核酸的理化性质碱基使核酸具有特殊的紫外线吸收光谱,吸收峰在260nm附近;名词解释DNA的变性:指双链DNA解旋、解链,形成无规线团,从而发生性质改变如黏度下降、沉降速度加快等;导致DNA变性的理化因素:高温和化学试剂酸、碱、乙醇、尿素等;DNA的复性:缓慢降低温度,恢复生理条件,变性DNA单链会自发互补结合,重新形成原来的双螺旋结构;又称退火;DNA片段越大复性越慢,DNA浓度越高复性越快;增色反应:DNA变性导致其紫外线吸收增加;减色反应:DNA复性导致变性DNA恢复其天然构象时,其紫外吸收减少;解链温度:使DNA变性解链达到50%时的温度;又称变性温度、熔解温度、熔点;核酸分子杂交:不同来源的核酸链因存在互补序列而形成互补双链的结构的过程;是分子生物学的核心技术;第六章酶1.新陈代谢:生物体内的全部化学反应的总称;包括物质代谢和能量代谢;2.生物催化剂:酶——是由活细胞合成的、具有催化作用的蛋白质;核酶——是由活细胞合成的、具有催化作用的核酸;单纯酶——仅由氨基酸构成,如尿素酶、蛋白酶、淀粉酶、脂酶和核糖核酸酶等3.酶结合酶蛋白质部分非蛋白质部分全酶4.只有全酶才具有催化活性,脱辅基酶蛋白单独存在时没有催化活性;5.辅助因子金属离子:K+、Na+、Zn2+等;B族维生素的活性形式;辅助因子根据与脱辅基酶蛋白的结合程度等分为:辅酶和辅基;辅助因子的作用——承担着传递电子、原子或基团的作用;①通常一种脱辅酶蛋白必须与特定的辅助因子结合,才能成为有活性的全酶白②一种辅助因子可与不同的脱辅基酶蛋白结合,组成具有不同特异性的全酶; 此决定酶的特异性6.酶的活性中心又称活性部位:是酶蛋白构象的一个特定区域,由必需基团构成,能与底物特异地结合,并催化底物生成产物;酶促反应:由酶催化进行的化学反应; 底物S ,生成产物P7.酶的必需基团——那些与酶活性密切相关的基团;结合基团:与底物结合,使底物与一定构象的酶形成复合物,又称中间产物;-催化基团:改变底物中某些化学键的稳定性,使底物发生反应生成产物;对于单纯酶来说,活性中心内的必需基团完全来自酶蛋白的氨基酸侧链,如组氨酸的咪唑基、丝氨酸的羟基半胱氨酸的的巯基和天冬氨酸的羧基等;对结合酶来说,活性中心内的必需基团还有一个来源,即辅助因子;实际上,辅助因子是指参与构成活性中心的非氨基酸成分;8.酶按分子结构分为:单体酶、寡聚酶、多酶体系和多功能酶又称串联酶;9.酶促反应的特点:酶和一般催化剂的共有特点:①只催化热力学上允许的化学反应; ②可以提高化学反应的速度,但不改变化学平衡; ③它们的催化机制都是降低化学反应的活化能; ④很少量就可以有效催化反应;①酶的催化效率极高绝对特异性——一种酶对一种底物酶的②酶具有很高的特异性相对特异性——一种酶对一类酶或一种化学键特点③酶蛋白容易失活立体异构特异性——一种酶对两种立体异构体中的一种④酶活性可以调节酶和一般催化剂之所以能提高化学反应速度,是因为它们能降低化学反应的活化能——中间产物学说;10.酶原与酶原的激活:酶原:有些酶在细胞内刚合成或初分泌时只是酶的无活性前体,必须水解掉一个或几个特定肽段,使酶蛋白构象发生改变,从而表现出酶的活性;酶的这种无活性前体称为酶原;酶原的激活:酶原向酶转化的过程;酶原的激活实际上是形成暴露酶的活性中心的过程;酶原的生理意义:①酶原适于酶的安全转运; ②酶原适于酶的安全储存;11.同工酶:是指能催化相同的化学反应,但酶蛋白的分子组成、分子结构和理化性质乃至免疫学性质和电泳行为都不相同的一组酶,是生命在长期进化过程中基因分化的产物;12.酶促反应动力学影响酶促反应的因素:酶浓度E、底物浓度S、温度、PH值、抑制剂、激活剂;根据抑制剂与酶作用方式的不同,抑制剂对酶的抑制作用分为可逆性抑制作用和不可逆性抑制作用;根据抑制剂与底物的竞争关系,可以将可逆性抑制作用分为:竞争性抑制作用、非竞争性抑制作用和反竞争性抑制作用;13.酶的分类:课本P7814.1个酶活性国际单位:在25℃、最适PH值、最适底物浓度时,每分钟催化1μmol底物反应所需的酶量;15.酶的比活性:1mg酶蛋白所具有的酶活性单位;第七章维生素维生素是维持生命正常代谢所必需的一类小分子有机化合物,是人体重要的营养物质之一;1.维生素的特点:①维生素既不是构成机体组织结构的原料,也不是供能物质,但在代谢过程中发挥着重要作用,它们大多数参与构成酶的辅助因子;②种类多,化学结构各异,本质上都属于小分子有机化合物;③维生素的需要量很少,但多数不能在体内合成或合成量不足,必须从食物中摄取;④维生素摄取不足会造成代谢障碍,但若应用不当或长期过量摄取,也会出现中毒症状;2.维生素的分类:根据溶解性分水溶性维生素:维生素C和B族维生素核黄素、泛酸、生物素等维生素脂溶性维生素:维生素A、维生素D、维生素E和维生素K ;3.水溶性维生素的共同特点:①易溶于水,不溶或微溶于有机溶剂; ②机体储存量很少,必须随时从食物中摄取;③摄入过多部分可以随尿液排出体外,不会导致积累而引起中毒;B族维生素通常都以构成酶的辅助因子的方式参与代谢;5.脂溶性维生素的共同特点:①不溶于水,易溶于脂肪及有机溶剂; ②在食物中常与脂类共存;③随脂肪的吸收不足而相应其吸收减少; ④可以在肝脏内储存,摄入过多会出现中毒症状;第一节概述生命活动需要能量供应,所需的能量来自生物氧化;生物氧化是指糖类、脂类和蛋白质等营养物质在体内氧化分解、最终生成CO2和H2O并释放能量满足生命活动需要的过程;又称组织呼吸或细胞呼吸; 生物氧化的特点:在温和条件进行连续的酶促反应,通过脱羧基反应产生CO2,能量逐步释放并得到有效利用;生物氧化的过程:第一阶段:营养物质氧化生成乙酰CoA.第二阶段:乙酰基进入三羧酸循环氧化生成CO2;第三阶段:前两阶段释放出的电子经呼吸链传递给O2生成H2O,传递电子的过程驱动合成ATP; CO2生成方式:根据是否伴有氧化反应分为:单纯脱羧和氧化脱羧;根据脱掉的羧基在底物分子结构中的位置分为:α-脱羧和β-脱羧;第二节呼吸链呼吸链是起递氢或递电子作用的酶或辅酶按一定顺序排列在线粒体内膜上,组成的递氢或递电子体系;又称电子传递链;其功能是将营养物质氧化释放的电子传递给O2生成H2O;呼吸链的组成成分包括Q 、Cyt c和四种具有传递电子功能的复合体,这些成分含有递氢体和递电子体;递氢体包括NAD、FMN、FAD和Q,递电子体包括铁硫蛋白、Cyt a 、Cyt b 和Cyt c ;呼吸链成分的排列顺序1. NADH氧化呼吸链NADH 复合体I Q 复合体III Cyt c 复合体IV O22. 琥珀酸氧化呼吸链琥珀酸复合体IIQ复合体IIICyt c 复合体IVO2细胞液NADH的氧化细胞液NADH通过3-磷酸甘油穿梭和苹果酸-天冬氨酸穿梭将电子送入呼吸链:3-磷酸甘油穿梭主要在肌肉及神经组织中进行,每传递一对电子推动合成两个ATP;苹果酸-天冬氨酸穿梭主要在心肌和肝脏内进行,每传递一对电子推动合成三个ATP;第三节生物氧化与能量代谢ATP的合成底物水平磷酸化——在生物氧化过程中,底物因脱氢、脱水等反应而使能量在分子内重新分布,形成高能磷酸基团,然后将高能磷酸基团转移给ADP,生成A TP的过程;氧化磷酸化——在生物氧化过程中,营养物质释放的电子经呼吸链传递给O2生成H2O,所释放的自由能推动ADP磷酸化生成ATP的过程;是合成ATP的主要方式;氧化磷酸化的影响因素有呼吸链抑制剂、解偶联剂、ADP、甲状腺激素和线粒体DNA ;研究氧化磷酸化最常见的方法是测定线粒体的磷、氧消耗量的比值,即磷/ 氧比值;在能量代谢中,ATP是许多生命活动的直接供能者;ATP的合成与利用构成ATP循环;ATP循环是生物体内能量转换的基本方式;第九章糖代谢物质代谢是指生物体与周围环境不断地进行物质交换的过程;包括消化吸收、中间代谢和排泄三阶段; 第一节糖的生理功能①糖是人体主要的供能物质:主要是糖原和葡萄糖;②糖也是人体的重要组成成分之一:③糖与蛋白质形成的糖蛋白是具有重要生理功能的物质;第二节血糖通过各种途径进入血液的葡萄糖称为血糖;血糖的来源和去路氧化供能主要途径食物糖消化吸收合成肝糖原、肌糖原肝糖原分解转化成核糖、脂肪、氨基酸非糖物质糖异生过高时随尿液排出不超过~ L血糖的调节机制肝脏调节——肝脏是维持血糖浓度的最主要器官;肾脏调节——肾脏对糖具有很强的重吸收能力;神经调节——交感神经和副交感神经;激素调节——胰岛β细胞胰岛素| 胰岛α细胞胰高血糖素和肾上腺皮质肾上腺素第三节糖的分解代谢④糖醛酸途径UDP-乳酸+能量①糖酵解途径③磷酸戊糖途径NADPH +磷酸戊糖乙酰CO2 + H2O + 能量②有氧氧化途径一、糖酵解途径1.葡萄糖生成1,6 - 二磷酸果糖:一分子葡萄糖生成1,6 - 二磷酸果糖消耗两分子ATP.,6 - 二磷酸果糖分解成两分子3-磷酸甘油醛:一分子1,6 - 二磷酸果糖生成两分子3-磷酸甘油醛; 磷酸甘油醛转化成丙酮酸:两分子3-磷酸甘油醛生成丙酮酸的同时产生四分子ATP.4.丙酮酸还原成乳酸:乳酸是葡萄糖无氧代谢的最终产物;全过程:葡萄糖 + 2Pi + 2ADP 2乳酸 + 2ATP + 2H2O糖酵解的生理意义糖酵解是在相对缺氧时机体补充能量的一种有效方式;某些组织在有氧时也通过糖酵解供能; 磷酸二羟丙酮是甘油的合成原料;糖酵解的中间产物是其他物质的合成原料3-磷酸甘油酸是丝氨酸、甘氨酸和半胱氨酸的合成原料;丙酮酸是丙氨酸和草酰乙酸的合成原料;二、糖的有氧氧化途径葡萄糖氧化分解生成丙酮酸丙酮酸氧化脱羧生成乙酰CoA①乙酰CoA与草酰乙酸缩合成柠檬酸. ②柠檬酸异构成异柠檬酸.三羧酸循环③异柠檬酸氧化脱羧生成α-酮戊二酸④α-酮戊二酸氧化脱羧生成琥珀酰CoA .⑤琥珀酰CoA生成琥珀酸. ⑥草酰乙酸再生.三羧酸循环的意义:1. 三羧酸循环是糖类、脂类和蛋白质分解代谢的共同途径;2. 三羧酸循环是糖类、脂类和蛋白质代谢联系的枢纽;三、磷酸戊糖途径反应过程见课本P125图9-8生理意义:磷酸戊糖途径所生成的5-磷酸核糖和NADPH是生命物质的合成原料;5-磷酸核糖——为核酸的生物合成提供核糖;提供NADPH + H+作为供氢体,参与多种代谢反应;NADPH ①为脂肪酸和胆固醇等物质的合成提供氢;还原②作为谷胱甘肽还原酶的辅酶,参与GSSG GSH ;四、糖醛酸途径葡萄糖6-磷酸葡萄糖1-磷酸葡萄糖UDP-葡萄糖UDP-葡萄醛酸第四节糖原代谢和糖异生一、糖原合成1. 6-磷酸葡萄糖的生成2. 1-磷酸葡萄糖的生成3. UDP-葡萄糖的生成4. 糖原的合成二、糖原分解1. 1-磷酸葡萄糖的生成2. 6-磷酸葡萄糖的生成磷酸葡萄糖的水解4.极限糊精的水解糖原的合成与分解是维持血糖正常水平的重要途径;三、糖异生由非糖物质合成葡萄糖的过程,称为糖异生;主要在肝脏内进行,在肾皮质中也可以进行,但较弱;糖异生的反应过程1.丙酮酸羧化支路2.1,6-二磷酸果糖水解成6-磷酸果糖3.6-磷酸葡萄糖水解生成葡萄糖糖异生的生理意义① 在饥饿时维持血糖水平的相对稳定 ② 参与食物氨基酸的转化与储存 ③ 参与乳酸的回收利用 第五节 糖代谢紊乱低血糖:空腹时血糖浓度低于L 称为 ~ ; 高血糖:空腹时血糖浓度超过L 称为 ~ ;饮食性糖尿:进食大量糖; 不糖 糖尿 情感性糖尿:情绪激动,交感神经兴奋,肾上腺素分泌增加;属尿肾糖尿:肾脏疾患导致肾小管重吸收能力减弱; 于 病 糖尿病的症状:“三多一少”多食、多饮、多尿和体重减轻 糖尿病患者会出现下列糖代谢紊乱:① 糖酵解和有氧氧化减弱 ② 糖原合成减少③ 糖原分解增加 ④ 糖异生作用加强 ⑤ 糖转化为脂肪减少葡萄糖耐量:人体处理所给予葡萄糖的能力;又称耐糖现象;是临床上检查糖代谢的常用方法; 正常人体耐糖曲线的特点:空腹血糖浓度正常,进食葡萄糖后血糖浓度升高;在1小时内达到高峰,但不超过肾糖阈; 而后血糖浓度迅速降低,在2-3小时内回落到正常水平; 课本P 133 图9-14第十章 脂类代谢第一节 脂类的分布和生理功能 一、 脂类的分布脂肪:分布在皮下、腹腔大网膜、肠系膜等处,这些部位称为脂库; 储存脂、可变脂 类脂:类脂是构成生物膜的组成成分; 基本脂或固定脂 二、 脂类的生理功能脂肪:① 维持体温 ② 减少器官间的摩擦 ③ 人体重要的营养物质和能源;类脂:① 构成生物膜的重要成分 ② 参与细胞识别及信号传导 ③合成多种活性物质 第二节 脂类的消化和吸收小肠是食物脂类的消化吸收场所;消化脂类的酶来自胰腺,主要有胰脂肪酶、磷脂酶A 2和胆固醇酯酶; 脂类的吸收场所主要是十二指肠下部和空肠上部; 第三节 血脂血浆中的脂类统称为血脂;血脂包括甘油三酯、磷脂、胆固醇酯、胆固醇和脂肪酸; 血脂的来源和去路:食物脂类的消化吸收氧化供能体内合成脂类进入脂库储存脂库动员释放构成生物膜转化为其他物质血浆脂蛋白; 电泳分类法: α脂蛋白 前β脂蛋白 β脂蛋白 乳糜微粒 超速离心分类法: HDL LDL VLDL CM 脂类:包括甘油三酯、磷脂、胆固醇和胆固醇酯等;血浆蛋白的组成 载体蛋白:是指血浆脂蛋白中的蛋白质成分,分为apoA 、apoB 、apoC 、apoD 、。

生物化学概述

生物化学概述
• 生物化学是生物学的分支学科
– 研究对象: 生物体
– 研究内容:
• 生命的物质组成和功能 • 物质代谢和能量代谢 • 遗传信息的传递与表达 • 细胞信号转导 • 分子生物学
– 研究对象:生物大分子(蛋白质、酶、核酸、多糖等)
– 研究内容:
• 生物大分子的结构与功能 • 遗传信息传递与表达 • 生物工程 • 生物化学和分子生物学是现代生物学的带头学科
二硫键是巯基的氧化形式,二硫键可加氢再还原为巯基 谷胱甘肽、巯基蛋白及巯基酶的活性基团是巯基,通过巯
基参与反应。
生物分子的常见基团
磷酸基
体内含磷酸基的化合物非常广泛 2分子磷酸可以脱水缩合为焦磷酸酐(亦称焦磷酸酯),如
ATP分子含有三个磷酸基,其中3个磷酸基之间含有2个磷酸酯 (酐)键,此键断开时可释放大量能量,因此称为高能键。 在细胞的很多代谢反应中,往往第一阶段的反应是使底物分 子活化,活化的常见反应是由ATP提供一个高能磷酸基团给被 活化的分子,如葡萄糖由ATP供能活化为葡萄糖-6-磷酸。
而特称为苷(旧称甙),淀粉、糖原等分子中的-C-O-C-称为糖苷键 苯环上连接羟基的化合物称为酚
生物分子的常见基团
醛基 酮基 羧基
羰基
>C=O称为羰基 羰基(酮基)在碳链中间的化合
物称为酮; 羰基在碳链末段,含-CHO的分子
称为醛 羰基在碳链末段,含-COOH的称
为羧酸 如果同时有2个羰基存在于苯环上
生物分子的常见基团
72
酯、Байду номын сангаас、酐
含氧酸与醇的脱水缩合产物称为酯。羧酸与-SH形成的硫酯(-SH与-OH 性质类似
含氧酸与含氧酸的脱水缩合产物称为酐
氨基中的氮原子电负性较强,可以 结合氢离子而成-NH3+、=NH2+, 因此,氨基和亚氨基是碱性基团

《生物化学》全套PPT课件

《生物化学》全套PPT课件
现状
生物化学已经成为生命科学领域的重要分支,与分子生物学、遗传学、细胞生 物学等学科相互渗透,共同揭示生命的奥秘。同时,生物化学在医学、农业、 工业等领域的应用也越来越广泛。
生物化学在医学领域重要性
A
疾病诊断
生物化学方法可用于检测血液中特定生物分子 的含量或结构异常,从而辅助疾病的诊断,如 血糖、血脂检测等。
脂类分类方法
根据化学结构和性质,脂类可分为简单脂质(如脂肪酸、甘油酯等 )和复合脂质(如磷脂、糖脂等)。
脂类在生物体内的分布
不同生物体内的脂类分布有差异,如动物体内主要储存甘油三酯, 而植物体内则以脂肪酸为主。
甘油三酯分解代谢过程剖析
01
甘油三酯的分解代谢途径
甘油三酯在体内主要通过脂肪酶的催化作用分解为甘油和脂肪酸,进而
药物研发
通过对生物体内代谢途径和药物作用机制 的研究,有助于设计和开发新的药物,提 高治疗效果和降低副作用。
B
C
营养与健康
生物化学在营养学领域的应用有助于了解食 物中营养成分的代谢和利用,为合理膳食和 营养补充提供科学依据。
遗传性疾病研究
生物化学方法可用于研究遗传性疾病的发病 机制和治疗方法,如基因疗法和干细胞疗法 等。
酶活性调节的方式
包括共价修饰、变构调节、酶原激活 和抑制剂作用等。
酶在医学领域应用实例分析
酶与疾病的关系
酶的异常与多种疾病的发生和发展密切相关,如酶缺陷病、代谢 性疾病等。
酶在疾病诊断中的应用
利用酶的特异性催化反应,开发酶学诊断方法,如酶活性测定、同 工酶分析等。
酶在疾病治疗中的应用
通过补充或抑制特定酶的活性,达到治疗疾病的目的,如酶替代疗 法、酶抑制剂疗法等。
进入血液循环被组织细胞摄取利用。

生物化学

生物化学

第一章.生物化学绪论1.生命的生物化学定义:生命系统包含储藏遗传信息的核酸和调节代谢的酶蛋白。

但是已知某种病毒生物却无核酸(朊病毒)。

2.生命(生物体)的基本特征:(1)细胞是生物的基本组成单位(病毒除外)。

( 2 ) 新陈代谢、生长和运动是生命的基本功能。

( 3 )生命通过繁殖而延续,DNA是生物遗传的基本物质。

(4)生物具有个体发育和系统进化的历史。

( 5 )生物对外界可产生应激反应和自我调节,对环境有适应性。

3.化学是在原子、分子水平上,研究物质的组成,结构、性质和变化规律的一门基础自然科学。

生物化学就是生命的化学。

4.生物化学:运用化学的原理和方法,研究生物体的物质组成和生命过程中的化学变化,进而深入揭示生命活动的化学本质的一门科学。

5.生命体的元素组成:在地球上存在的92种天然元素中,只有28种元素在生物体内被发现。

第一类元素:包括C、H、O和N四种元素,是组成生命体最基本的元素。

这四种元素约占了生物体总质量的99%以上。

第二类元素:包括S、P、Cl、Ca、K、Na和Mg。

这类元素也是组成生命体的基本元素。

第三类元素:包括Fe、Cu、Co、Mn和Zn。

是生物体内存在的主要少量元素。

第四类元素:包括Al、As、B、Br、Cr、F、Ga、I、Mo、Se、Si等。

偶然存在的元素。

6.生命分子是碳的化合物:生命有机体的化学是围绕着碳骨架组织起来的。

生物分子中共价连接的碳原子可以形成线状的、分支的或环状的结构。

7.生物(生命)分子是生物体和生命现象的结构基础和功能基础,是生物化学研究的基本对象。

生物分子的主要类型包括:多糖、聚脂、核酸和蛋白质等生物大分子。

维生素、辅酶、激素、核苷酸和氨基酸等小分子。

8 .生物大分子的结构与功能:研究生物分子的结构和功能之间的关系,代表了现代生物化学与分子生物学发展的方向。

9.生物化学的内容:静态生物化学:研究生物有机体的化学组成、结构、性质和功能。

动态生物化学:研究生命现象的物质代谢、能量代谢与代谢调节。

生物化学的概念

生物化学的概念

二、研究内容
1、生物体的化学成份和组成 大量元素:C、H、O、N四种,
根据元素分析 微量元素:Fe、Zn、Cu、Mg等。
生物体的化合物组成有:糖类、脂类、蛋白质、 核酸、维生素、激素、 水、无机盐等8类,。
2、结构和功能的关系 DNA
3、研究生物体内的代谢过程即新陈代谢 分解代谢
物质代谢: 合成代谢
汉斯·克雷勃斯(Hans A. Krebs)
1949 Pauling(美)指出 镰刀形红细胞性贫血是一 种分子病,并于1951年提 出蛋白质存在二级结构。 1954年获诺贝尔奖
李纳斯·鲍林(Linus Pauling)

1953年 Watson(美)与 Crick(英)提出DNA分子的双 螺旋结构模型,1962年共获诺贝尔奖。
1972 Berg(美)在基因工 程基础研究方面作出了杰出 成果,获1980年诺贝尔奖。 1973 Cohen等(美)用核 Paul Berg 酸限制性内切酶EcoR1,首 次基因重组成功。
Herbert Boyer Stanley Cohen
2001 Venter(美)等报道完成了人类基因组草图测序。
生物化学的概念微生物的概念及分类与生物化学有关的专业生活中的生物化学生物化学的应用有关生物化学的论文我对生物化学的认识对生物化学的认识组成生物体的化学元素生物的概念
第一章 绪 论
第一节
概述
一、生物化学的概念:
简单地讲:就是生命的化学。 即它是以生物体为研究对象,用化学的方法和理论, 从分子水平来研究生物体的化学组成和生命过程中的 化学规律的一门学科。
我国生物化学的开拓者——吴宪教授
蛋白质研究领域内国际上最具有权威性的综 述性丛书《Advances in Protein Chemistry》第47卷(1995年)发表了美国 哈佛大学教授、蛋白质研究的老前辈J. T. Eddsall的文章“吴宪与第一个蛋白质变性 理论(1931)Hsien Wu and the first Theory of Protein Denaturation(1931)”, 对吴宪教授的学术成就给予了极高的评价。 该卷还重新刊登了吴宪教授六十四年前关于 蛋白质变性的论文。一篇在1931年发表的论 文居然在1995年仍然值得在第一流的丛书上 重新全文刊登,不能不说是国际科学界的一 件极为罕见的大事。

生物化学总结

生物化学总结

生物化学(biochemistry)是研究生命化学的科学,它在分子水平上探讨生命的本质,即研究生物体的分子结构与功能,物质代谢与调节,遗传信息的传递与调控,及其在生命活动中的作用。

人们通常将研究核酸、蛋白质等所有生物大分子的结构、功能及基因结构、表达与调控的内容,称为分子生物学。

所以分子生物学是生物化学的重要组成部分。

一、生物化学发展简史1.初期阶段(18世纪—20世记初)生物化学的研究始于18世纪,但作为一门独立的科学是在20世纪初期。

主要研究生物体的化学组成。

2.蓬勃发展阶段(从20世记初—20世记中期)主要在营养学,内分泌学,酶学,物质代谢及其调控等方面取得了重大进展。

3.分子生物学发展阶段(从20世纪中期至今)主要有物质代谢途径的研究继续发展,重点进入代谢调节与合成代谢的研究。

另外,显着特征是分子生物学的崛起。

DAN双螺旋结构模型的提出,遗传密码的破译,重组DNA技术的建立等。

20世纪末始动的人类基因组计划(human genome project)是人类生命科学中的又一伟大创举。

以基因编码蛋白质的结构与功能为重点之一的功能基因组研究已迅速崛起。

当前出现的的蛋白质组学(proteomics)领域。

阐明人类基因组功能是一项多学科的任务,因而产生了一门前景广阔的新兴学科-----生物信息学(bioinformatics)。

我国科学家对生物化学的发展做出了重大的贡献。

二、生物化学研究的主要内容1.生物分子的结构与功能2.物质代谢及其调节3.基因信息传递及其调控三、生物化学与医学生物化学是一门重要的医学基础课,与医学有着紧密的联系。

生物大分子通常都有一定的分子结构规律,即由一定的基本结构单位,按一定的排列顺序和连接方式而形成的多聚体。

蛋白质和核酸是体内主要的生物大分子,各自有其结构特征,并分别行使不同的生理功能。

酶是一类重要的蛋白质分子,是生物体内的催化剂。

本篇将介绍蛋白质的结构、功能;核酸的结核与功能;酶等三章。

生物化学知识点总结

生物化学复习题第一章绪论1. 名词解释生物化学:生物化学指利用化学的原理和方法,从分子水平研究生物体的化学组成,及其在体内的代谢转变规律,从而阐明生命现象本质的一门科学。

其研究内容包括①生物体的化学组成,生物分子的结构、性质及功能②生物分子的分解与合成,反应过程中的能量变化③生物信息分子的合成及其调控,即遗传信息的贮存、传递和表达。

生物化学主要从分子水平上探索和解释生长、发育、遗传、记忆与思维等复杂生命现象的本质2. 问答题(1)生物化学的发展史分为哪几个阶段?生物化学的发展主要包括三个阶段:①静态生物化学阶段(20世纪之前):是生物化学发展的萌芽阶段,其主要工作是分析和研究生物体的组成成分以及生物体的排泄物和分泌物②动态生物化学阶段(20世纪初至20世纪中叶):是生物化学蓬勃发展的阶段,这一时期人们基本弄清了生物体内各种主要化学物质的代谢途径③功能生物化学阶段(20世纪中叶以后):这一阶段的主要研究工作是探讨各种生物大分子的结构与其功能之间的关系。

(2)组成生物体的元素有多少种?第一类元素和第二类元素各包含哪些元素?组成生物体的元素共28种第一类元素包括C、H、O、N四中元素,是组成生命体的最基本元素。

第二类元素包括S、P、Cl、Ca、Na、Mg,加上C、H、O、N是组成生命体的基本元素。

第二章蛋白质1. 名词解释(1)蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物(2)氨基酸等电点:当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点(3)蛋白质等电点:当蛋白质溶液处于某一pH时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH称为蛋白质的等电点(4)N端与C端:N端(也称N末端)指多肽链中含有游离α-氨基的一端,C端(也称C 末端)指多肽链中含有α-羧基的一端(5)肽与肽键:肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽(6)氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残余部分称为氨基酸残基(7)肽单元(肽单位):多肽链中从一个α-碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转(8)结构域:多肽链的二级或超二级结构基础上进一步绕曲折叠而形成的相对独立的三维实体称为结构域。

生物化学


遗传信息的贮存、传 遗传信息的贮存、 代、表达 遗传的物质基础) (遗传的物质基础) 260nm 粘度↓ 粘度↓ Tm
α-螺旋和β-折叠结构比较 螺旋和β
区别点 形 氢 状 键 α-螺旋 螺旋状 链内,与长轴平行 链内, 较大 较大 0 .15nm 毛发角蛋白 β-折叠 锯齿状 链间,与长轴垂直 链间, 较小 较小 0.36nm 蚕丝蛋白
> 1056
个不同的氨基酸、 (* 由3个不同的氨基酸、核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目) 个不同的氨基酸 核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目)
生物信息大分子的特点: 生物信息大分子的特点:
• • 质量一般在10 之间或以上。 质量一般在 4~106之间或以上。 由特殊的亚单位( 由特殊的亚单位(subunit)按一定的顺序、首 亚单位 )按一定的顺序、 尾连接形成的多聚物( 尾连接形成的多聚物(polymer)。 )。 亚单位在多聚物中的排列是有一定顺序(称为序 亚单位在多聚物中的排列是有一定顺序(称为序 )。序列决定着生物大分子的空 列,sequence)。序列决定着生物大分子的空 )。 立体)结构形式和功能, 间(立体)结构形式和功能,决定着生物大分子 的信息内容。 的信息内容。
3、重要性质:两性解离及带电状态判定;紫外吸收;沉淀;变性 、重要性质:两性解离及带电状态判定;紫外吸收;沉淀; 4、分离纯化:超滤;盐析;电泳;亲和层析;离子交换层析;分子筛 、分离纯化:超滤;盐析;电泳;亲和层析;离子交换层析; 5、结构与功能关系(举例) 、结构与功能关系(举例)
复习思考题
1.为什么说: 蛋白质是生命的物质基础” 1.为什么说:“蛋白质是生命的物质基础”? 为什么说 2.简述蛋白质α螺旋和β折叠的结构特点。 2.简述蛋白质α螺旋和β折叠的结构特点。 简述蛋白质 3.什么是Pr的一、二、三和四级结构,分别指出 3.什么是Pr的一、 什么是Pr的一 三和四级结构, 维持它们结构的化学键。 维持它们结构的化学键。 4.举例说明Pr结构与功能的关系。 4.举例说明Pr结构与功能的关系。 举例说明Pr结构与功能的关系 5.简述Pr变性、沉淀和凝固的定义及彼此之间的关系。 5.简述Pr变性、沉淀和凝固的定义及彼此之间的关系。 简述Pr变性 6.Pr定量测定的方法主要有哪些? 6.Pr定量测定的方法主要有哪些? 定量测定的方法主要有哪些

生物化学

什么是生物化学生物学的分支学科。

它是研究生命物质的化学组成、结构及生命过程中各种化学变化的科学。

生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。

若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。

因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。

研究各种天然物质的化学称为生物有机化学。

研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。

60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。

生物化学发展简史生物化学这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。

例如18世纪80年代,A.-L.拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是动物呼吸的逆过程。

又如1828年F.沃勒首次在实验室中合成了一种有机物──尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。

1860年L.巴斯德证明发酵是由微生物引起的,但他认为必需有活的酵母才能引起发酵。

1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进行如发酵这样复杂的生命活动,终于推翻了“生机论”。

生物化学的发展大体可分为3个阶段。

第一阶段从19世纪末到20世纪30年代,主要是静态的描述性阶段,对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。

其中E.菲舍尔测定了很多糖和氨基酸的结构,确定了糖的构型,并指出蛋白质是肽键连接的。

1926年J.B.萨姆纳制得了脲酶结晶,并证明它是蛋白质。

此后四、五年间J.H.诺思罗普等人连续结晶了几种水解蛋白质的酶,指出它们都无例外地是蛋白质,确立了酶是蛋白质这一概念。

通过食物的分析和营养的研究发现了一系列维生素,并阐明了它们的结构。

生物化学名词解释

生物化学名词解释零、绪论1.生物化学:从分子水平来研究生物体内基本物质的化学组成、结构,及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。

2.新陈代谢:生物体与外界环境进行有规律的物质交换,称为新陈代谢。

3.分子生物学:是现代生物学的带头学科,主要研究分子遗传学,生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能。

4.药学生物化学:是研究与药学科学相关的生物化学理论、原理和技术,及其在药物研究、药品生产、药物质量监控与药品临床方面应用的基础学科。

一、糖的化学1、糖基化工程:通过增加、删除或调整蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。

2、单糖:凡不能被水解成更小分子的糖称为单糖。

3、多糖:由许多单糖分子缩合而成的长链结构。

4、寡糖:是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。

5、结合糖:也称糖复合物或复合糖,是指糖和蛋白、脂质等非糖物质结合的复合分子。

6、同聚多糖:也称均一多糖,由同类型的单糖缩合而成。

7、杂多糖:也称不均一多糖,由不同类型的单糖缩合而成。

8、粘多糖:也称糖胺聚糖,是一类含氮的不均一多糖,其化学组成通常为糖醛酸及氨基己糖或其衍生物,有的还含有硫酸。

9、糖蛋白:是糖与蛋白质以共价键结合的复合分子。

10、肽聚糖:又称胞壁质,是构成细菌细胞壁基本骨架的主要成分,是一种多糖与氨基酸链相连的多糖复合物。

11、蛋白质聚糖:是一类由糖和蛋白质结合形成的非常复杂的大分子糖复合物,其中蛋白质含量一般少于多糖。

12、脂多糖:一般由外层低聚糖链、核心多糖及脂质三部分组成。

13、内切糖苷酶:可水解糖链内部的糖苷键,有的可将长的多糖链切为较短的寡糖片段。

14、外切糖苷酶:只能切下多糖非还原末端的一个单糖,并对单糖组成和糖苷键有专一性要求。

二、脂的化学1、必需脂肪酸:人体不能合成必须从食物获取的脂肪酸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物化学资料第二章蛋白质化学要点内容多肽中的氨基酸通过肽键相连接。

肽键是酰胺键,通过一个氨基酸的α—氨基和另一个氨基酸的α—羧基连接同时失去一分子的水而形成的。

一级结构是对多聚物共价主链的描述。

因此,多肽中氨基酸的排序是它的一级结构。

二级结构是指多肽主链原子的局部空间排列方式而不涉及侧链构象。

α-螺旋和β-折叠是蛋白质中常见的二级结构。

三级结构是多肽的三维空间构象。

四级结构被定义为不同亚基之间的相互作用。

具有特异天然构象的蛋白质或核酸部分或全部地失去折叠被认为是变性。

多肽或蛋白质因接触变性剂(如高温或去污剂),将失去它原来的天然构象,这种作用称为蛋白质的变性作用。

1、氨基酸同有机化学中的有机酸类有何关系?氨基酸的化学结构有何特点?氨基酸是有机羧酸分子中α-碳原子中一个氢原子被氨基取代而生成的化合物,又称α-氨基酸。

氨基酸的化学结构有何特点:(1)两性电解质(具有酸性的—COOH 基及碱性的—NH 2基)(2)若R ≠H ,则具有不对称碳原子,因而是光活性物质,具有旋光性。

(3)R 基不同,构成不同的氨基酸。

2、自然界的氨基酸以哪些形式存在?氨基酸在生物体内可以单独存在,但是更多的则是作为肽、蛋白质的组成部分。

除甘氨酸外,氨基酸有D-型及L-型之分,蛋白质中存在的氨基酸大多为L-型。

3、甘氨酸、脯氨酸和羟脯氨酸的结构与其他氨基酸常见氨基酸有何异同?甘氨酸、脯氨酸和羟脯氨酸的结构与其他氨基酸常见氨基酸相比较,其相同点是:具有酸性的—COOH 基及碱性的—NH 2基,为两性电解质其不同点是:甘氨酸(氨基乙酸)不含手性碳原子的氨基酸,因此不具旋光性。

OHH 2NCH C OHO HNC O H NCO脯氨酸(吡咯啶-2-甲酸)没有自由的а-氨基,是一种а-亚氨基酸,可以看成是а-氨基酸的侧链取代了自身氨基上的一个氢原子而形成的杂环结构。

羟脯氨酸(4-羟基吡咯啶-2-甲酸)是脯氨酸经过羟化反应生成的,是一种不常见的蛋白质氨基酸,羟脯氨酸的羟基可形成额外的氢键,因羟基既是质子的供体,又可充当质子的受体。

4、什么叫两性离子?为什么和在什么环境下氨基酸才以两性离子形式存在?两性离子:在一定的pH条件下,当一个分子中既含有正电荷又含有负电荷时被称为两性离子由于氨基酸分子中具有酸性的—COOH基及碱性的—NH2基,当氨基酸处于等电点附近时,氨基酸分子中所含—NH2基以-NH3+形式存在,—COOH基以-COO-形式存在成为两性离子。

5、什么叫等电点?丙氨酸的等电点值与它的pK’1和pK’2数值有何关系?当溶液浓度为某一pH值时,氨基酸分子中所含的-NH3+和-COO-数目正好相等,净电荷为0。

这一pH值即为氨基酸的等电点,简称pI。

丙氨酸为中性氨基酸,其等电点是它的pK’1和pK’2的算术平均值:pI = (pK’1 + pK’2 )/2 = (2.3 + 9.7) /2 = 6.06、把一个aa结晶加入到PH7.0的纯水中,得到的是PH6.0的溶液,问此aa的PI值是大于或小于6.0?还是等于6.0?此aa的PI值是小于6.0。

因为把一个aa结晶加入到PH7.0的纯水中,得到的是PH6.0的溶液,说明此aa在PH7.0的纯水中电离出H+,自己则变为负离子,为了得到两性离子(PI),则必须在PH6.0的溶液加入H+,故PI值必是小于6.0。

7、你用什么方法理解比较复杂的氨基酸的化学性质?为什么我们要学习氨基酸的这些性质?由于氨基酸分子中具有酸性的—COOH基、碱性的—NH2基及R残基,氨基酸的化学性质主要上由上述三个基团参与的反应所决定的,故可从氨基酸的羧基具有一羧酸羧基的性质(如成盐、成酯、脱羧、酰氯化等)、氨基酸的氨基具有一级胺氨基的一切化学性质(如与HCl结合、脱氨、与HNO2作用等)、还有一部分则为氨基、羧基共同参加或氨基酸R残基参加的反应来氨基酸的化学性质。

学习氨基酸的这些性质,我们可以更好地理解氨基酸的酸性、碱性及两性的性质,同时为氨基酸的合成、分析、检测、应用等提供理论基础。

8、构型与构象两个名词的意义是什么?它们的区别是什么?在什么地方该用构型?在什么地方该用构象?构型是指在一个化合物分子中原子的空间排列,这种排列的改变会牵涉到共价键的形成和破坏,但与氢键无关,属于立体异构。

如aa的构型有两种,即D-型和L-型。

构象是指同一构型的化合物,由于分子中共价键的旋转所表现出来的原子或基团的不同的空间排布。

构象的改变不涉及共价键的断裂和重新组成,也没有光学活性的变化,构象形式有无数种。

如蛋白质的a-螺旋与β-折叠结构。

9、肽链的基本化学键是什么?在蛋白质分子中有哪些重要的化学键?它们的功用是什么?链的的基本化学键是肽键(酰胺键)。

在蛋白质分子中有肽键、二硫键、酯键、氢键、离子键、范德华作用力、疏水作用、配位键等重要的化学作用力,它们的功用如下:肽键是肽链的基本化学键,一级结构的肽链是由肽键连接而成,但同一肽链中的不同部位有的还有二硫键、酯键的参与。

蛋白质分子的二级结构的构象要靠氢键来维持。

蛋白质分子的三、四级结构的构象主要由非共价键,包括氢键、离子键、范德华作用力、疏水作用等来维持。

此外,金属蛋白质还含有配位键主要参与维持蛋白质分子三、四级结构的构象。

10、螺旋肽链的左旋、右旋如何区别?平行β-折叠结构与反平行β-折叠结构是如何形成及如何区别的?螺旋肽链的左旋、右旋的区别:右手螺旋是指从C末端为起始点围绕螺旋中心向右盘旋的肽链;左手螺旋是指从C末端为起始点围绕螺旋中心向左盘旋的肽链。

β-折叠是由两条或多条几乎完全伸展的肽链平行排列,通过链间的氢键交联而形成的。

β—折叠有两种类型:一种为平行式,即相邻两条肽链的方向相同,所有肽链的N-端都在同一边,氢键不平行。

另一种为反平行式,即相邻两条肽链的方向相反,但氢键近于平行。

11、如何从血红蛋白的结构解释它的呼吸功能?试写出DPG的结构式?血红蛋白是脊椎动物红细胞主要组成部分,它的主要功能是运输氧和二氧化碳。

血红蛋白有4个亚基(2条α链和2条β链),每个亚基中含有1个血红素辅基。

血红素Fe原子的第六配价键可以与不同的分子结合:有氧存在时,能够与氧结合形成氧合血红蛋白(HbO2) 无氧时为去氧血红蛋白(Hb)。

4个亚基是通过盐桥(键)及氢键作用联接起来的。

由于多个盐桥的存在,使整个血红蛋白分子的结构绷得相当紧密,不易与氧分子结合。

但当氧与血红蛋白分子中的1个亚基的血红素的铁(Fe2+)结合后,产生别构作用,其四级结构将发生相当剧烈的变化,导致亚基间的盐桥断裂,从而使原来结合紧密的血红蛋白分子变得松散,易与氧结合。

血红蛋白有两种可以互变的构象:与O2亲和力低不易与O2结合的紧密型(T型)和与O2亲和力高容易与O2结合的松弛型(R型)。

HbO2的形成和离解受氧的分压和pH等因素的影响,氧的分压和pH较高时,有利于血红蛋白与氧的结合,反之,则有利于离解。

DPG(2,3 –二磷酸甘油酸)CH2O(PO3H2)CHO(PO3H2)COOH12、蛋白质的二级结构与三级结构的区别在什么地方?蛋白质的二级结构是指蛋白质分子中多肽链本身的折叠方式,从而形成有规律的构象。

三级结构是描述带有二级结构的肽链,如何进一步通过氨基酸残基的R基团的相互作用,产生三维空间结构等。

两者之间的区别如下:二级结构是蛋白质分子中多肽链的主链构象的结构单元,不涉及氨基酸残基的侧链构象。

维系二级结构的力是氢键。

而三级结构是在二级结构基础上,肽链的不同区段的侧链基团的相互作用,并在空间进一步盘绕、折叠形成的包括主链和侧链构象在内的特征三维结构,或者说三级结构是指多肽链中所有原子的排布。

维系三级结构的力有疏水作用(疏水效应)、氢键、范德华力、盐键(静电作用力)等。

尤其是疏水作用,在蛋白质三级结构中起着重要作用。

13夏天鲜牛奶如果不煮沸,放置在室温下,就变成酸味,同时有白色的絮状出现或沉淀,这是什么缘故?夏天鲜牛奶如果不煮沸,放置在室温下,就变成酸味,这是由于微生物的作用使牛奶中的蛋白质分子处于等电点附近,就会有白色的絮状物或沉淀出现。

14、什么是Pr的变性作用?引起蛋白质变性的因素有哪些?天然蛋白质受物理或化学因素的影响,分子内部原有的高度规则性的空间排列(构象)发生变化,致使其原有性质和功能发生部分或全部丧失,这种作用称Pr的变性作用。

引起蛋白质变性的因素有物理因素如热、紫外线照射、高压和表面张力等;化学因素如有机溶剂、脲、胍、酸、碱等。

15、蛋白质的别构与变性在本质上的区别是什么?含亚基的蛋白质由于一个亚基的构象改变而引起其余亚基和整个分子构象、性质和功能发生改变的作用称别构作用。

因别构产生的效应称别构效应。

某些物理或化学因素,能够破坏蛋白质的结构状态(改变空间排布),引起蛋白质理化性质改变并导致其生理活性丧失,这种现象称为蛋白质的变性。

从蛋白质的别构与变性的概念可知,两者的本质区别地在于蛋白质的别构是一个亚基的构象改变而引起其余亚基和整个分子构象、性质和功能发生改变的作用,但不会丧失其生理活性。

而变性一般会引起蛋白质理化性质改变并导致其生理活性丧失。

16、为什么提取酶和蛋白质激素时多采用盐析法而且常用丙酮脱水(将制品制成所谓的丙酮粉)?酶和蛋白质激素是需具有活性才有生物学意义,因此提取酶和蛋白质激素时必须专考虑保持其活性,蛋白质溶液是一种胶体溶液加入高度的中性盐后(盐析法)可以吸去胶体粒子外层的水,也可中和胶体粒子的带电性,从而使蛋白质沉淀,在使用这种方法的沉淀过程中,由于处在温和条件下,结构和性质都没有发生变化,在适当的条件下,可以重新溶解形成溶液,所以这种沉淀又称为非变性沉淀(可逆沉淀)。

同时低温时,用丙酮脱水(将制品制成所谓的丙酮粉),也可以保持其原有的生物活性。

17、使蛋白质沉淀的因素各有优缺点,根据什么原则选用沉淀剂?使蛋白质沉淀的目的有两个:一是为了制备有生物活性蛋白质制剂,二是为了去掉某些蛋白质。

可根据以上两个目的选用沉淀剂(或方法),若制备有生物活性蛋白质时,可采用等电点沉淀法、盐析法和有机溶剂沉淀法等;若不需保持生物活性时,可采用加热沉淀、强酸碱沉淀、重金属盐沉淀和生物碱沉淀等。

18、从理论上和应用上说明蛋白质的重要性●理论上的重要性:(1)蛋白质有多种生理功能:催化(酶) 调节(调节Pr,例胰岛素) 转运(转运Pr ,例:血红Pr、膜转运Pr ) 贮存氨基酸(用作有机体及其胚胎或幼体生长发育的原料) 运动(引起肌肉收缩等,例:肌动Pr和肌球Pr) 结构成分(结构Pr,例:胶原Pr) 支架作用(支架Pr,含有多个不同的组件,在它上面可以装配成一个多Pr复合体) 防御和进攻(参与免疫反应等) 异常功能(例:甜Pr、节肢弹性Pr等)(2)蛋白质与生命起源有关经过长期的科学研究,有理由相信原始生物是由蛋白质、核酸和其他有机物(如糖及脂等)组成的蛋白体(原始单细胞生物)。

相关文档
最新文档