核医学简介

合集下载

核医学汇总

核医学汇总

核医学汇总1、核医学的定义:是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进行疾病诊治和生物医学研究。

在反映脏器或组织的血流、受体密度和活性、代谢、功能变化方面有独特的优势。

2、核医学的分类:实验核医学和临床核医学3、实验核医学:利用核技术探索生命现象的本质和物质变化规律,其内容主要包括核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。

4、临床核医学:是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。

5、临床核医学分类:诊断核医学和治疗核医学6、诊断核医学:包括以脏器显像和功能测定为主要内容的体内(in vivo)诊断法和以体外放射分析为主要内容的体外(in vitro)诊断法。

7、治疗核医学:是利用放射性核素发射的核射线对病变进行高度集中照射治疗。

8、核医学的特点:1、安全、无创2、分子功能现象3、超敏感和特异性强4、定量分析5、同时提供形态解剖和功能代谢信息。

9、分子功能影像:核医学功能代谢显像是现代医学影像的重要组成内容之一,其显像原理与X线、B超、计算机体层摄影(CT)和核磁共振(MR)等检查截然不同,它通过探测接收并记录引入体内靶组织或器官的放射性示踪物发射的γ射线,并以影像的方式显示出来,这不仅可以显示脏器或病变的位置、形态、大小等解剖学结构,更重要的是可以同时提供有关脏器和病变的血流、功能、代谢甚至是分子水平的化学信息,有助于疾病的早期诊断。

单光子发射型计算机断层仪(SPECT)和正电子发射型计算机断层仪(PET)10、锝-99m(99mTc)特点:核性能优良,为纯γ光子发射体,能量140keV,T1/2为6.02h,99mT c是现象检查中最常用的放射性核素。

11、氟[18F]脱氧葡萄糖(18F-FDG)是目前临床应用最为广泛的正电子放射性药物。

131I是治疗甲状腺疾病最常用的放射性药物12、放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。

核医学重点归纳

核医学重点归纳

核医学重点归纳核医学是一门结合核物理学、生物学和医学的学科,利用放射性同位素及其产生的辐射,应用于诊断和治疗疾病。

本文将对核医学的重要概念和应用进行详细阐述。

1. 核医学概述核医学是利用放射性同位素技术进行医学诊断和治疗的一门学科。

它主要包括核医学影像学和核医学治疗两个方面。

核医学影像学主要通过放射性同位素的放射性衰变过程及其特征辐射来获取人体内部器官的形态、功能和代谢信息,为疾病的诊断和治疗提供依据。

核医学治疗则是利用放射性同位素的特殊性质和作用机制,直接作用于人体,治疗某些疾病。

2. 核医学影像学2.1 放射性同位素的选择和制备核医学影像学中,选择合适的放射性同位素是关键。

常用的同位素有技99mTc、201Tl、131I等。

制备这些同位素通常需要一个核反应堆作为能源供应的源泉。

2.2 核医学影像设备核医学影像设备主要包括单光子发射计算机断层摄影(SPECT)和正电子发射计算机断层摄影(PET)。

SPECT技术使用单个探测器在360度旋转的过程中记录放射性同位素的发射。

PET技术则利用正电子发射的特性来观察放射性同位素的分布。

2.3 核医学影像的分类核医学影像可分为核素显像和功能代谢显像。

核素显像是通过观察放射性同位素在人体内部分布情况,来获得器官形态的影像。

功能代谢显像则是通过观察人体器官的代谢情况,来评估其功能状态。

2.4 核医学临床应用核医学影像学在临床上广泛应用于诊断各种疾病,如癌症、心脏病、骨科疾病等。

核医学影像可以提供关于病变的位置、大小、代谢活性以及与周围组织的关系等信息,为医生制定诊断方案提供重要依据。

3. 核医学治疗3.1 放射性同位素治疗核医学治疗主要通过放射性同位素的放射性衰变来实现。

这些同位素可以通过口服、静脉注射等方式进入人体,在体内靶向作用于病变部位,杀死或抑制异常细胞的生长。

3.2 放射性碘治疗放射性碘治疗是一种常见的治疗甲状腺疾病的方法。

通过口服放射性碘同位素,碘同位素会富集在甲状腺组织中,辐射杀死异常细胞,从而治疗甲状腺癌和甲状腺功能亢进等疾病。

核医学概念与分类

核医学概念与分类

核医学概念与分类
核医学概念与分类
核医学是一门医学学科,主要研究利用放射性核素、放射性物质和反应源检测、诊断和治疗疾病的技术。

核医学的主要任务是运用放射性核素来发现、诊断和治疗疾病,为疾病治疗和遗传改良提供有效诊断技术和治疗手段。

核医学应用的范围包括核素检查、X射线定位检查、核素摄影检查、核医学疗法治疗等。

核医学可以分为几大类:
1.放射性核素检查:这类检查利用放射性元素提供肌肉、骨骼和内部器官等图像,以便发现疾病的轻微的变化。

2.X射线定位检查:这类检查利用X射线,根据植入的物体的位置,拍摄到特定部位的图像,以检测隐藏在内部的疾病。

3.核素摄影检查:这类检查利用放射性元素,通过拍摄图像,对肝脏、胰腺、肾脏、膀胱等器官的变化进行检测,以便及时发现疾病。

4.核医学疗法治疗:这类治疗利用放射性元素,把放射性元素植入或者注射到需要治疗的部位,以达到治疗疾病的目的。

核医学是一门医学科,它以放射性物质、放射性核素、反应源为检测和治疗疾病的基础,是当今社会先进的医学技术,在诊断与治疗方面发挥着重要的作用。

- 1 -。

核 医 学

核 医 学

目前最先进的PET是探头多环型、模块和3D结构。 探头晶体除外经典锗酸铋(BGO),已推出硅酸镥(LSO) 硅酸钆(GSO)和混合型晶体,如LYSO。
近年来,PET与CT合二为一的显像设备问世,称之PET/CT
PET/CT以PET特性为主,同时将PET影像叠加在 CT图像上,使得PET影像更加直观,解剖定位 更加准确。
治疗用放射性药物 种类很多,常用 放射性核素多是发射纯β -射线(32P、89Sr、 90Y等)或发射β -射线时伴有γ 射线(131I、 153Sm、188Re、117mSn、117Lu等)的核素, 其中适宜的射线能量和在组织中的射程是 选择性集中照射病变组织而避免正常组织 受损并获得预期治疗效果的基本保证。
功能测定仪
功能测定仪由一个或多个探头、电 子线路、计算机和记录显示装置组 成。
甲 状 腺 功 能 测 定 仪
a:正常志愿者 b:甲亢 c:甲亢高峰前移 d:甲低
肾 图 仪
其 他
活度计(radioactivity calibrator) 是用于测量并直接给出放射性药物 或试剂所含放射性活度的一种专用 放射性计量仪器。它主要由探头、 后续电路、显示器及计算机系统组 成。 活度计 国家规定 惟一强制 检定的计 量工具
三、污染、剂量监 测仪
主要用于放射防
护。 表面污染监测仪 用于对工作人员体表、 衣物表面和工作场所 有无放射性沾染的检 测。剂量监测仪用于 测量工作场所的照射 剂量和放射性工作人 员的吸收剂量。
放射性药物
放射性药物基本概念 放射性药物制备 诊断与治疗放射性药物 质量保证与控制 正确使用、不良反应及防治
核素治疗总原则
1.正当性的判断 。在决定是否给病人使用放射性 药物进行诊断或治疗时,首先要作出正当性判断。 2.最优化分析。若有几种同类放射性药物可供诊 断检查用,则选择所致辐射吸收剂量最小者;对用于 治疗疾病的放射性药物,则选择病灶辐射吸收剂量最 大而全身及紧要器官辐射吸收剂量较小者。 3. 在保证显像或治疗的前提下使用放射性剂量必须 尽量小。 (1)诊断检查时尽量采用先进的测量和显像设备。 (2) 采用必要的保护 。 (3)对小儿、孕妇、哺乳妇女、育龄妇女应用放射 性药物要从严考虑。

核医学简介介绍

核医学简介介绍
神经传导与功能
通过核医学技术,可以研究神经传导的机制和功 能,了解神经系统在生理和病理状态下的变化。
3
细胞信号转导
核医学技术可以用于研究细胞信号转导的机制和 过程,了解细胞对外部刺激的应答和反应,为疾 病治疗提供新的思路。
生物医学工程
生物材料与组织工程
01
核医学技术可以用于研究生物材料的性能和组织工程中细胞的
定义
核磁共振成像是一种基于 磁场和射频脉冲的医学成 像技术。
应用
MRI广泛应用于医学诊断 中,能够提供高分辨率和 高对比度的解剖结构和生 理功能图像。
优势
MRI具有无创、无辐射、 无骨伪影等优点,能够提 供高质量的解剖结构和生 理功能图像。
03
核医学在临床诊断中的应用
肿瘤诊断与治疗
肿瘤诊断
核医学利用放射性示踪剂来检测肿瘤的存在和位置,如正电子发射断层扫描( PET)和单光子发射计算机断层扫描(SPECT)。这些技术能够早期发现肿瘤 ,提高诊断的准确性和可靠性。
核医学的历史与发展
核医学的历史可以追溯到20世纪初,当时科学家发现了放射性元素并开始研究其 在医学中的应用。随着科技的发展,核医学逐渐成为一门独立的学科,并在诊断 、治疗和科研方面取得了显著进展。
核医学的发展经历了多个阶段,包括放射性元素的发现、放射免疫分析、正电子 发射断层扫描(PET)等技术的出现和应用。如今,核医学已经成为一种高度专 业化、技术密集型的医学领域,为临床医生和科研人员提供了重要的工具和手段 。
肿瘤治疗
核医学通过放射性药物来治疗肿瘤。放射性药物能够选择性地集中在肿瘤组织 ,释放出辐射能量来杀死癌细胞。这种方法具有创伤小、副作用少等优点。
心脑血管疾病的诊断与治疗
诊断

核医学定义

核医学定义

核医学定义
核医学是研究核素在生物体内的分布、代谢及其应用的学科。

它是核科学与医学的交叉领域,主要应用于放射性药物的制取、核素显像、放射性治疗等方面,已成为现代医学的不可或缺的一部分。

一、核医学的起源
核医学的诞生源于20世纪40年代的研究。

当时,原子弹爆炸和放射性同位素的应用使人们开始关注放射性物质在人体内的行为,尤其是在癌症等疾病诊断和治疗方面的应用。

二、核医学的应用
核医学的应用非常广泛,主要包括以下几个方面:
1. 核医学显像:通过注射放射性药物,可以观察到有关器官或组织的代谢状态和血流情况,进而对疾病做出更为准确的诊断。

2. 核医学治疗:通过放射性同位素治疗,可以破坏癌细胞,达到治疗肿瘤的目的。

3. 核医学研究:通过分析放射性药物在人体内的分布、代谢等情况,可以深入研究疾病的发病机理和治疗效果等问题。

三、核医学的未来发展
随着现代医学的不断发展和技术的不断创新,核医学将得到更广泛的应用和进一步的发展。

例如,利用分子影像学技术,可以更为准确地观察微小的生物分子水平上的变化,从而为治疗疾病提供更加精确的依据;同时,人工智能技术的逐步普及,将使得医学影像的处理和分析更趋高效化和智能化。

总的来说,核医学在现代医疗中发挥着重要的作用,未来的发展前景非常广阔。

我们期待着更多的技术和理论的突破,为医学健康事业做出更大的贡献。

核医学的定义和内容

核医学的定义和内容

核医学的定义和内容核医学是一门研究核素在人体内的应用的学科,它综合了核物理学、放射医学和生物医学等多个学科的知识。

核医学通过使用放射性同位素,以及利用核反应和核辐射等原理来诊断疾病和治疗疾病。

核医学在现代医学中起着重要的作用,它能够提供非侵入性的诊断手段,并且在某些疾病的治疗中也能发挥重要的作用。

核医学主要包括以下几个方面的内容:1. 核素的生产和标记:核医学使用放射性同位素来进行诊断和治疗,因此核素的生产和标记是核医学的重要内容之一。

核素的生产可以通过核反应、裂变或衰变等方式进行,而核素的标记则是将核素与某种生物活性分子结合,使其能够在人体内发挥特定的作用。

2. 核医学的诊断应用:核医学在诊断疾病方面具有独特的优势。

核医学可以通过核素的放射性特性来观察人体内部的生物过程和器官功能,从而帮助医生进行疾病的诊断。

核医学的常用诊断方法包括单光子发射计算机断层显像(SPECT)和正电子发射计算机断层显像(PET)等。

3. 核医学的治疗应用:除了诊断应用外,核医学还在某些疾病的治疗中发挥着重要的作用。

核医学治疗主要通过放射性同位素的辐射效应来杀死肿瘤细胞或抑制其生长。

核医学治疗广泛应用于癌症治疗领域,如放射性碘治疗甲状腺癌、放射性磷治疗骨癌等。

4. 核医学的安全性和辐射防护:核医学使用放射性物质,因此安全性和辐射防护是核医学的重要内容。

在核医学应用中,医务人员需要正确使用和处理放射性物质,以确保患者和医务人员的安全。

同时,辐射防护也是核医学应用中的重要环节,通过合理的防护措施,可以最大程度地减少辐射对人体的损伤。

5. 核医学的发展趋势:随着科学技术的不断发展,核医学也在不断创新和进步。

新的核素和标记方法的出现,使核医学在诊断和治疗上具有更高的灵敏度和准确度。

此外,核医学还与其他医学领域相结合,如核医学影像与分子生物学、基因治疗等,为医学研究和临床应用带来了新的可能性。

核医学作为一门综合性的学科,通过核素的应用来进行疾病的诊断和治疗。

核医学(放射性核素的医学应用)

核医学(放射性核素的医学应用)
核医学利用放射性核素标记的肿瘤显像剂,可以早期发现肿瘤的位置、大小 和分布,提高肿瘤的诊断准确率。
肿瘤治疗
通过注射放射性核素标记的抗体或药物,可以精准地攻击肿瘤细胞,同时减 少对正常细胞的损伤。
心脑血管疾病诊断与治疗
心脑血管疾病诊断
利用核医学技术可以检测心脏和血管的病变位置、程度和范围,为心脑血管疾病 的早期诊断提供依据。
辐射防护的基本原则
包括优化、防护、限制和正当化。这些原则指导着辐射防护工作的各个方面,包括辐射源的管理、防护设施的 设计和运行、个人和群体的防护、照射的限制和正当化等。
辐射防护的实践与方法
辐射防护的实践
包括识别和控制电离辐射源,以减少对公 众、患者和医务人员的照射。实践还涉及 开发和实施质量保证计划,以确保辐射防 护工作的有效性。
VS
辐射防护的方法
包括屏蔽、距离、时间和控制进入等。这 些方法应结合使用,以最大程度地减少辐 射照射。例如,屏蔽材料可以阻挡辐射, 距离可以减少照射剂量,时间可以避免长 时间或高强度暴露在辐射下,控制进入可 以防止非必要的人员进入高辐射区域。
核医学设施的安全管理
核医学设施的安全要求
核医学设施应符合相关的安全标准和规定, 以确保患者和医务人员的安全,以及公众的 健康。这些标准和规定通常包括辐射源的管 理、防护设施的设计和运行、个人和群体的 防护、照射的限制和正当化等。
在应用方面,随着个性化医疗和精准 医疗的推广,核医学将更加注重个体 差异和特定疾病的诊断和治疗。通过 对个体基因组、蛋白质组等信息的分 析,可以实现个体化诊断和治疗方案 的设计,提高治疗效果和患者的生存 质量。同时,随着医疗技术的不断发 展,核医学还将涉及更多新兴领域, 如纳米医学、免疫疗法等。
02
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京临床核医学中心
骨显像的临床应用:转移性骨肿瘤
骨显像表现:
单发或多发性放射性浓聚灶
应用评价:
• 骨显像可较X线检查提早3~6个月发现骨转移灶,因此临床上全 身骨显像被作为恶性肿瘤患者诊断骨转移灶时首选的筛选检查。对 于肿瘤分期和治疗决策有重要意义。
• 早期、动态连续地进行骨显像追踪监测,对于病人得到及时正确 的诊断与治疗及疗效随访十分重要。
南京临床核医学中心
异常表现:
放射性异常浓聚
南京临床核医学中心
异常表现:放射性缺损
前位
后位
多发性骨髓瘤骨显像病例
南京临床核医学中心
异常表现:放射性浓聚 + 缺损
“炸面圈”征(doughnut sign) 左:胸骨肿瘤 右:左股骨头坏死位 南京临床核医学中心
异常表现:超级骨显像(super scan)
核医学
SPECT/CT
南京临床核医学中心
PET/CT
PET/CT
南京临床核医学中心
实现了PET(功能)与CT(形态)图 像同机融合 举例:卫星云图与地图
同时获得全身PET、CT及PET/CT 图像。
CT数据可用于PET图像的透射衰减校正 显像检查时间大大减少。
(一)PET/CT的结构及功能
由PET和多排螺旋CT组合而成 同一个机架内有PET探测器、CT探测器和X线球管 共用同一个扫描床、图像采集和图像处理工作站 可以采用X线CT图像对PET图像进行衰减校正
骨显像剂经静脉注射随血流到达全身骨骼,与骨中的羟基磷灰石 晶体通过离子交换或化学吸附作用而分布于骨骼组织。成骨过程活跃 的部位, 显像剂的摄取增多。
18F-氟化钠(18F-sodium fluoride , 18F-NaF) 与OH-化学性质类似而与骨骼中羟基磷灰石晶体中的OH-进行离
子交换而具有很强的亲骨性。
骨显像的临床应用:关节疾病
•类风湿关节炎: 双侧腕关节、掌指及指间关节放射性浓聚。
•骨关节炎: 负重关节(如髋、膝、骶髂、下部胸椎和腰椎等)和经常处于 肌肉负荷的部位(如第一指、趾关节、第一腕掌关节、颈椎的关节等)呈 放射性浓聚改变。
•强直性脊柱炎 :骶髂关节放射性增高明显,脊柱放射性弥漫性增高,椎 后两侧小关节相连形成线条样放射性浓聚带。
• 放射性浓聚不是肿瘤特异性表现。如果对于异常征象部位不能明 确判断,则进行进一步的局部检查:SPECT/CT,CT,MR。
南京临床核医学中心
骨显像的临床应用:转移性骨肿瘤
南京临床核医学中心
男,鼻咽癌,右下肢疼痛一周。X片阴性, 骨扫描示右股骨上端 骨转移。
骨显像的临床应用:转移性骨肿瘤
肺癌多发骨转移 南京临床核医学中心
南京临床核医学中心
显像方法
全身骨显像 局部骨、关节平面与断层显像 局部骨、关节SPECT/CT显像 三相骨显像(three-phase bone scan)
血流相、血池相、延迟相 18F-氟化钠PET骨显像
南京临床核医学中心
正常图像:儿童正常全身骨显像
4岁
9岁
南京临床核医学中心
14岁
Hale Waihona Puke 正常图像:18F-NaF PET骨显像
骨显像的临床应用:原发性骨肿瘤
•及早检出病变 •显示原发肿瘤浸润的实际范围 •检出远离部位的转移灶 •有助于术后复发与转移的复查
南京临床核医学中心
骨显像的临床应用:原发性骨肿瘤
南京临床核医学中心
男,14岁,左股骨下端骨肉瘤
骨显像的临床应用:原发性骨肿瘤
南京临床核医学中心
男,20岁,左胫骨上端骨软骨瘤。
PET图像 南京临床核医学中心
PET/CT融合图像
CT图像
功能测定仪器
甲状腺功能测定仪 肾功能测定仪 多功能测定仪 探针
南京临床核医学中心
甲状腺功能测定仪
第一章 骨骼系统
南京临床核医学中心
第一节 骨显像
显像原理
99mTc标记显像剂: 99mTc标记膦酸盐:具有P-C-P有机键,亚甲基二膦酸盐(99mTc-MDP) 99mTc标记的磷酸盐:具有无机的P-O-P键, 焦磷酸盐(99mTc- PYP)
乳腺癌广泛骨转移
骨显像的临床应用:转移性骨肿瘤
南京临床核医学中心
恶性肿瘤广泛骨转移“超 级骨显像”(“super scan”)
骨显像的临床应用:转移性骨肿瘤
前列腺癌多发骨转移治疗前
南京临床核医学中心
89Sr治疗两个疗程后复查,转移病灶改善
骨显像的临床应用:转移性骨肿瘤 SPECT/CT 增加鉴别效能
女,49岁,乳腺癌 术后半年。骨扫描 L4可疑浓聚灶, SPECT/CT提示L4 双侧椎小关节增生 性病变。
南京临床核医学中心
骨显像的临床应用:转移性骨肿瘤 SPECT/CT 增加鉴别效能
女,51岁,宫颈癌术后 3月。骨扫描T11可疑浓 聚灶,SPECT/CT提示 T11肿瘤转移。
南京临床核医学中心
南京临床核医学中心
PET/CT是一个全新的系统
不是简单的“PET+CT”
PET影像(功能) 南京临床核医学中心
•一体化的机架系统 •一体化的检查床 •一体化的操作工作站系统
CT影像(形态)
PET/CT图
南京临床核医学中心
图像融合技术
将解剖形态图像和功能代谢图像融合为一体
图像融合是将不同的医学影像或同一类型的医学影像 采用不同方法获得的图像进行空间匹配或迭合 使两个或多个图像数据集融合到一幅图像上
•颞颌关节综合征(temporomandibular joint syndrome, TMJ),应用 断层骨显像,可非常灵敏地诊断表现为颞颌关节放射性增高,而病变早期 一般X线检查无阳性发现。
•肥大性肺性骨关节病(hypertrophic pulmonary osteoarthropathy, HPO): 四肢骨干和干骺端的骨皮质呈对称性、弥漫性放射性增高,四肢长骨骨干 皮质显影增强形成所谓“轨道征”或“双条征”较具特征性。
恶性肿瘤广泛骨转移 南京临床核医学中心
甲状旁腺功能亢进
适应证
• 骨痛的过筛检查。 • 恶性肿瘤患者探查有否骨转移;转移灶的治疗随访。 • 原发性骨肿瘤患者,评价病灶侵犯范围,转移及复发情况。 • 早期诊断骨髓炎。 • 股骨头缺血性坏死的早期诊断。 • 移植骨的血供和存活情况评价。 • 各种代谢性骨病的诊断。 • X线检查未能确定的隐匿性骨折。 • 关节炎的诊断。 • 人工关节置换后随访。 • 骨折愈合评价。 • 骨活检定位。
相关文档
最新文档