第三次梯度法和共轭梯度法

合集下载

共轭梯度法步骤

共轭梯度法步骤

共轭梯度法步骤共轭梯度法是一种求解线性方程组的迭代算法,它以高效稳定的特点而广受欢迎。

以下是共轭梯度法的步骤:步骤1:初始化首先,我们需要有一个初始向量x0和一个初始残量r0=b-Ax0。

其中,A为系数矩阵,b为常数向量。

步骤2:计算方向向量令d0=r0,表示第一次迭代的方向向量。

步骤3:计算步进长度令α0=(r0·r0)/(d0·Ad0),其中·表示向量的点积。

α0表示迭代过程中每个方向向量的步进长度。

步骤4:更新解向量令x1=x0+α0d0,表示迭代后的解向量。

步骤5:计算新残量令r1=r0-α0Ad0。

步骤6:判断终止条件如果r1的范数小于预设阈值,或者迭代次数达到预设次数,终止迭代。

否则,进入下一次迭代。

步骤7:更新方向向量令β1=(r1·r1)/(r0·r0),表示更新方向向量的轴线。

步骤8:计算新方向向量令d1=r1+β1d0,表示新的迭代方向向量。

步骤9:计算新的步进长度令α1=(r1·r1)/(d1·Ad1)。

步骤10:更新解向量令x2=x1+α1d1。

步骤11:更新残量令r2=r1-α1Ad1。

步骤12:重复步骤6至11,直至满足终止条件。

总结起来,共轭梯度法的步骤主要包括初始化、计算方向向量、计算步进长度、更新解向量、计算新残量、判断终止条件、更新方向向量、计算新的步进长度、更新解向量和更新残量等。

该算法迭代次数较少,收敛速度快,适用于大规模线性方程组的求解。

共轭梯度法的几何解释

共轭梯度法的几何解释

共轭梯度法的几何解释
嘿,你知道共轭梯度法不?这玩意儿可神奇啦!就好像在一个复杂的迷宫里找路一样。

想象一下,你在一个超级大的迷宫里,你要找到一条最快走出迷宫的路。

共轭梯度法就像是你手里的指南针,帮你指引方向。

比如说,你一开始在迷宫的某个角落,你不知道该往哪儿走。

这时候,共轭梯度法就会给你一个大致的方向。

你沿着这个方向走一段,然后它又会根据你现在的位置,给你一个新的更准确的方向。

这不就跟我们在生活中遇到困难,一点点摸索着前进一样嘛!
再打个比方,它就像是一个聪明的导航。

你在陌生的地方开车,导航会告诉你该往哪儿转,什么时候该变道。

共轭梯度法也是这样,带着我们在那复杂的数学世界里找到最优解。

你看,它不是那种死板的方法,而是会根据具体情况不断调整。

哎呀,这多厉害呀!
在解决实际问题的时候,共轭梯度法可太有用了。

比如说在工程领域,设计一个东西的时候,要让它既好用又节省材料,这时候共轭梯度法就能帮我们找到那个最佳的设计方案。

还有在科学研究中,要找到一个最合理的模型,共轭梯度法也能发挥大作用。

我觉得共轭梯度法就像是一把神奇的钥匙,能打开很多难题的大门。

它让我们在面对复杂的数学问题时,不再那么迷茫和无助。

难道你不
这么认为吗?
总之,共轭梯度法的几何解释让我们更直观地理解了它的作用和意义。

它真的是数学世界里的一个宝贝呀!。

共轭梯度法

共轭梯度法

共轭梯度法:共轭梯度法是把共轭性与最速下降法相结合,利用已知点处的梯度构造一组供各方向,并沿这组方向进行搜索,求出目标函数的极小点,根据共轭方向的基本性质,这种方法具有二次终止性。

具体求解方法:首先,任意给定一个初始点(1)
x ,计算出目标函数()f x 在这点的梯度,若
10g =,则停止计算;否则,令(1)(1)1()d f x g =-∇=-,沿方向(1)
d 搜索,得到点(2)x 。

计算在(2)x 处的梯度,若
20g ≠,则利用2g -和(1)d 构造第二个搜索方向(2)d ,再沿
(2)d 搜索;若已知点()k x 的搜索方向()k d ,得到(1)()()k k k k x x d λ+=+,再从(1)k x +出发,沿方向(1)k d +搜索。

结论:由共轭梯度法产生的方向(1)d ,(2)d ,…,()m d 是A 共轭
的,经有限步必达到极小值。

注:初始方向比为(1)d =-(1)()f x ∇。

梯度法

梯度法

A1=A0+△A0 推广到一般的k+1次构造矩阵
Ak+1=Ak+△Ak
矩阵序列的 基本迭代式
△Ak称为校正矩阵
拟牛顿条件
设F(x)为一般形式n阶的目标函数,并具有连续的一、二 阶偏导。在点 处的二次泰勒近似展开
该近似二次函数的梯度是
沿g(k)方向一维搜索,
求最优步长(k)。
x(k+1)= x(k)- (k) g(k)
出口
例 8-4 用最速下降法求解下列问题
min f (x) 2x12 x22 ,
给 定 初 始 点 x(1) (1, 1)T , 1 .
10
解 目 标 函 数 f (x) 的 梯 度 及 x(1) 处 的 最 速 下 降 方 向 为
f(xk+1)
>
阻尼牛顿法
对原始牛顿法的改进
为解决原始牛顿法的不足,加入搜索步长(k)
因此,迭代公式变为:
x (k+1) = x (k) - (k) Hk-1gk 这就是阻尼牛顿法的迭代公式,最优步长(k)也称
为阻尼因子,是沿牛顿方向一维搜索得到的最优步 长。
牛顿法算法步骤
⑴任选初始点 ,给定精度ε,置k←0 ⑵计算 点的梯度矢量及其模
(x)=
x (k)
gk+
Hkx=0
得 x (k+1) = x (k) - Hk-1gk
即牛顿法迭代公式,方向- Hk-1gk称为牛顿方向
三、原始牛顿法的特点
若用原始牛顿法求某二次目标函数的最优解,则 构造的逼近函数与原目标函数是完全相同的二次式, 其等值线完全重合,故从任一点出发,一定可以一次 达到目标函数的极小点。
二、 确k定的方确法定自学,不作要求。记住

共轭梯度法

共轭梯度法

最速下降法1.最速下降方向函数f(x)在点x处沿方向d的变化率可用方向导数来表示。

对于可微函数,方向导数等于梯度与方向的内积,即:Df(x;d) = ▽f(x)T d,因此,求函数f(x)在点x处的下降最快的方向,可归结为求解下列非线性规划:min ▽f(x)T ds.t. ||d|| ≤ 1当 d = -▽f(x) / ||▽f(x)||时等号成立。

因此,在点x处沿上式所定义的方向变化率最小,即负梯度方向为最速下降方向。

2.最速下降算法最速下降法的迭代公式是x(k+1) = x(k) + λk d(k) ,其中d(k)是从x(k)出发的搜索方向,这里取在x(k)处的最速下降方向,即d = -▽f(x(k)).λk是从x(k)出发沿方向d(k)进行一维搜索的步长,即λk满足f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).计算步骤如下:(1)给定初点x(1) ∈ R n,允许误差ε> 0,置k = 1。

(2)计算搜索方向d = -▽f(x(k))。

(3)若||d(k)|| ≤ε,则停止计算;否则,从x(k)出发,沿d(k)进行一维搜索,求λk,使f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).(4)令x(k+1) = x(k) + λk d(k),置k = k + 1,转步骤(2)。

共轭梯度法1.共轭方向无约束问题最优化方法的核心问题是选择搜索方向。

以正定二次函数为例,来观察两个方向关于矩阵A共轭的几何意义。

设有二次函数:f(x) = 1/2 (x - x*)T A(x - x*) ,其中A是n×n对称正定矩阵,x*是一个定点,函数f(x)的等值面1/2 (x - x*)T A(x - x*) = c是以x*为中心的椭球面,由于▽f(x*) = A(x - x*) = 0,A正定,因此x*是f(x)的极小点。

基于梯度的优化算法

基于梯度的优化算法

基于梯度的优化算法梯度是指函数在某一点上的变化率或者斜率,它在优化算法中起到了重要作用。

基于梯度的优化算法通过不断迭代来寻找函数的最小值或最大值。

本文将介绍几种常见的基于梯度的优化算法,并探讨其特点和应用领域。

一、梯度下降法梯度下降法是最常见的基于梯度的优化算法之一。

它的基本思想是从初始点开始,沿着负梯度的方向迭代更新,直到达到函数的最小值。

梯度下降法适用于凸函数的优化问题,但对于非凸函数可能会陷入局部最优解。

为了解决这个问题,可以使用随机梯度下降法或者批量梯度下降法。

随机梯度下降法每次迭代只使用一个样本来更新参数,这样可以加快收敛速度,但会引入一定的噪声。

批量梯度下降法每次迭代使用所有样本来更新参数,这样可以得到更准确的梯度信息,但计算开销较大。

二、牛顿法牛顿法是一种基于梯度的优化算法,它利用函数的二阶导数信息来进行迭代更新。

牛顿法的基本思想是通过泰勒展开将函数近似为二次函数,然后求解二次函数的最小值。

相比于梯度下降法,牛顿法的收敛速度更快。

但牛顿法需要计算二阶导数,计算量较大,而且对于非凸函数可能会陷入鞍点。

为了解决这个问题,可以使用拟牛顿法。

拟牛顿法通过近似求解牛顿法中的矩阵逆,从而减少了计算量。

其中最著名的算法是BFGS 算法和L-BFGS算法。

三、共轭梯度法共轭梯度法是一种用于求解线性方程组的优化算法,也可以用于解决非线性优化问题。

共轭梯度法的基本思想是通过迭代求解一系列共轭的方向,从而加快收敛速度。

共轭梯度法适用于大规模线性方程组的求解,例如在图像处理和机器学习中的应用。

四、Adam优化算法Adam优化算法是一种基于梯度的优化算法,结合了动量法和自适应学习率的特点。

Adam算法通过计算梯度的一阶矩和二阶矩来自适应地调整学习率。

相比于传统的梯度下降法,Adam算法具有更快的收敛速度和更好的性能。

总结:基于梯度的优化算法在机器学习、深度学习和优化问题中都有广泛的应用。

不同的优化算法适用于不同的问题和场景。

共轭梯度法

共轭梯度法
例 3.1 用共轭梯度法求解无约束非线性规划问题
2 2 min f ( x ) = x1 + 2x2 x
⎛1⎞ 给定初始点 x (0) = ⎜ ⎜1⎟ ⎟。 ⎝ ⎠
13
⎛ 2 x1 ⎞ ⎛ 2 0⎞ 2 首先, ∇f ( x ) = ⎜ ⎜ 0 4⎟ ⎟ ,以下利用(4.14)确定 β k 。 ⎜ 4x ⎟ ⎟ ,H= ∇ f ( x ) = ⎜ ⎝ ⎠ ⎝ 2⎠ k=0:
0
k +1
) 与搜索方向 s 0 ," , s k 均正交。同时,利用引理 4.1 马上
设 H ∈ R n×n 是对称正定阵,s ," , s
0
n −1
0
n −1
是非零 G—共轭方向组,x ∈ R 。 若对问题(UQP),
0
n
从 x 出发,依次沿 s ," , s
0
进行最优一维搜索,最终得到 x ,则 x 是(UQP)的最优解。
为保证 H-共轭性,在 x 处必须取 s 为搜索方向,而不能取 α s (α > 0) 为搜索方向。
k k
k
利用定理 4.3,马上得到上述算法的有限终止性。 定理 4.4 设 H ∈ R n×n 是对称正定阵。若用凸二次规划的共轭梯度法求解 (UQP) 时产生迭代点
x1 ," , x K ,则 x K 是(UQP)的最优解,并且 K ≤ n 。
首先由(4.7)知, g = ∇f ( x ) ( j = 0, " , k -1)是 s ," , s 的线性组合,因此根据定理 4.2,
j j 0 j
( g k )T g j =0, j = 0, " , k -1
由于

共轭梯度方法

共轭梯度方法

共轭梯度方法(Conjugate Gradient Method)是求解线性方程组的一种迭代算法。

该方法适用于求解大型稀疏的对称正定线性方程组,可以显著减少计算量和存储空间。

该方法的主要思想是利用共轭方向(Conjugate Directions)的性质,在有限次迭代中求解方程组的解。

共轭梯度方法的基本步骤如下:
选取一个初值$x_0$,并令$r_0=b-Ax_0$,其中$b$ 为方程组的右端向量,$A$ 为系数矩阵。

计算一个共轭方向$p_0=r_0$,即$p_0$ 与$r_0$ 正交,并满足$Ap_0 \neq 0$。

对于$k=0,1,2,\ldots$,执行以下操作:
a. 计算$\alpha_k=\frac{r_k^Tr_k}{p_k^TAp_k}$。

b. 更新解向量$x_{k+1}=x_k+\alpha_kp_k$。

c. 计算残差向量$r_{k+1}=r_k-\alpha_kAp_k$。

d. 计算$\beta_k=\frac{r_{k+1}^Tr_{k+1}}{r_k^Tr_k}$。

e. 更新共轭方向$p_{k+1}=r_{k+1}+\beta_kp_k$,即$p_{k+1}$ 与$p_k$ 具有共轭性。

如果残差向量$r_k$ 较小,则停止迭代,输出解向量$x_k$。

共轭梯度方法具有收敛速度快、存储空间小等优点,但对于非对称和非正定的线性方程组,该方法可能不收敛。

同时,该方法也有一些变体,如预处理共轭梯度法、共轭残差法等,可以更好地解决不同类型的线性方程组求解问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则下一个搜索方向 d ( k 1)按如下方式确定:
令 d ( k 1) g k 1 k d ( k )
(1)
如何确定 k?
要求 d ( k 1) 和 d ( k ) 关于 A共轭。
则在( 1)式两边同时左乘 d ( k ) A ,得
T
0 d ( k ) Ad ( k 1) d ( k ) Agk 1 k d ( k ) A d ( k )
一. 无约束最优化问题
无约束最优化问题 min
f ( x) x Rn
s.t .
其中f ( x ) 有一阶连续偏导数。
解析方法:利用函数的解析性质构造迭代公式使之收敛到最优解。
二. 梯度法(最速下降法) 迭代公式:
x k 1 x k k d k
如何选择下降最快的方向?
f ( x k ) 函数值增加最快的方向

( k ) f ( x k k d k )T d k 0 .
注: 因为梯度法的搜索方向 d k 1 f ( x k k d k ), 所以
(d k 1 )T d k 0 d k 1 d k 。
锯齿现象
在极小点附近,目标函数可以用二次函数近似,其等值面近似
以任意的 x (1) R n为初始点,依次沿 d (1) , d ( 2 ) ,, d ( k ) 进行搜索,
得到点 x ( 2) , x ( 3) ,, x ( k 1) , 则 x ( k 1) 是函数 f ( x )在 x (1) Bk 上的
极小点,其中
Bk { x | x i d ( i ) , i R }
xk
函数值下降的方向
f ( x k ) 函数值下降最快的方向
梯度法(最速下降法):
1. 搜索方向: d k f ( x k ) , 也称为最速下降方向;

2. 搜索步长 : k 取最优步长, 即满足 f ( x k k d k ) min f ( x k d k ) 。
1T
d2 0
d1 d 2
共轭是正交的推广。
d 1 , d 2 ,, d k 是 k 个 A 共轭的非零 定理 1. 设 A是 n阶对称正定矩阵,
向量,则这个向量组线性无关。
证明
设存在实数 1 , 2 ,, k ,使得
i 1
id 0,
T
k
i
上式两边同时左乘 d j A ,则有
i 1 k

k
id
jT
jT
Ad i 0 ,
因为 d 1 , d 2 ,, d 是 k 个 A 共轭的向量,所以上式可化简为
jd
j
Ad j 0 .
jT
因为d 0 , 而 A是正定矩阵,所以 d
所以
Ad j 0,
j 0 , j 1 , 2 , , k 。
因此 d 1 , d 2 , , d k 线性无关。
T
Ad
(i )

g i 1T A d ( i ) d
( i )T
Ad ( i )
g i 1T A[ ( x ( i 1) x ( i ) ) / i ] d
( i )T
A [ ( x ( i 1) x ( i ) ) / i ]
g i f ( x ( i ) ) A x ( i ) b .
( ) f ( x ( k ) d ( k ) )T d ( k ) 0,
[ A ( x ( k ) d ( k ) ) b ]T d ( k ) 0,

g k f ( x ( k ) ) Ax ( k ) b,则有 [ g k Ad ( k ) ]T d ( k ) 0,
几何意义
设有二次函数
1 f ( x ) ( x x )T A( x x ) 2 其中 A 是 n n 对称正定矩阵,x 是一个定点。 1 ( x x )T A( x x ) c 则函数 f ( x ) 的等值面 2
是以 x 为中心的椭球面。
由于 f ( x ) A( x x ) 0 , 而
共轭方向法
对于极小化问题
1 T x Ax bT x c , 2 其中A是正定矩阵,称下述算 法为共轭方向法 : min f ( x)
(1) 取定一组 A 共轭方向d (1) , d ( 2 ) , , d ( n ) ; ( 2) 任取初始点 x (1) , 依次按照下式由 x ( k )确定点 x ( k 1) ,
解得 k
T (k ) gk d
d
( k )T
Ad
(k )
( 3)
定理 3 对于正定二次函数 f ( x )
( i )T
1 T x Ax bT x c , FR算法在 m n次 2 一维搜索后即终止,并 且对所有的( i 1 i m),下列关系成立
(1) d
Ad ( j ) 0 , j 1 , 2 ,, i 1;
( k 1) (k ) (k ) x x d k f ( x ( k ) d ( k ) ) min f ( x ( k ) d ( k ) ) k
直到某个 x ( k ) 满足 f ( x ( k ) ) 0。
注 由定理2可知,利用共轭方向法 求解上述极小化问题, 至多经过
i
g i 1T ( g i 1 g i ) d
( i )T
( g i 1 g i )
2

|| g i 1 || 2 d
( i )T
gi

|| g i 1 || 2 || gi ||
( 4)
FR算法步骤:
1. 任取初始点 x (1) , 精度要求 ,令 k 1。
2. 令g1 f ( x (1) ) , 若 || g1 || , 停止, x (1)为所求极小点; 否则,令d (1) g1 , 利用公式(3)计算1 , 令x ( 2) x (1) 1 d (1)。 3. 令g k 1 f ( x ( k 1) ) , 若 || g k 1 || , 停止, x ( k 1)为所求极小点; 否则,令d ( k 1) g k 1 k d ( k ) , 其中 k 用公式(4)计算。

4. 令 x k 1 x k k d k , 令 k : k 1 , 转2。
2 2 例. 用最速下降法求解 : min f ( x ) x1 3 x2 , 设初始点为 x 1 ( 2 , 1 )T ,
求迭代一次后的迭代点 x 2 。
解: f ( x ) ( 2 x1 , 6 x 2 )T ,
(2) gi T g j 0 , j 1 , 2 ,, i 1;
( 3) g iT d ( i ) g iT g i 。
注 (1)由定理3 可知搜索方向d (1) , d ( 2 ) ,, d ( m ) 是 A 共轭的。
(2) 算法中第一个搜索方向 必须取负梯度方向,否 则构造的搜索 方向不能保证共轭性。
n 次迭代必可得到最优解 。
如何选取一组共轭方向?
2. 共轭梯度法
Fletcher R eeves 共轭梯度法:
1 T x Ax bT x c 2 其中 x R n , A是对称正定矩阵, b R n, c 是常数。 min f ( x)
基本思想: 将共轭性和最速下降方 向相结合,利用已知迭 代点
设 d 1 , d 2 ,, d k 是 Rn 中一组非零向量,如果 它们两两关于A
共轭,即 d i Ad j 0 , i j , i , j 1 , 2 ,, k 。
T
则称这组方向是关于 A共轭的,也称它们是一 组A共轭方向。
注:如果A是单位矩阵,则
d
1T
I d 0d
2
处的梯度方向构造一组共轭方向,并沿此方向进行搜索,求出
函数的极小点。
以下分析算法的具体步骤。
(1) 任取初始点 x (1),第一个搜索方向取为 d (1) f ( x (1) ) ;
( 2) 设已求得点 x ( k 1) , 若f ( x ( k 1) ) 0 , 令 g k 1 f ( x ( k 1) ) ,
2 f ( x ) A,
因为A 正定,所以 2 f ( x ) A 0 ,
x
因此 x 是 f ( x ) 的极小点。
设 x ( 0 ) 是在某个等值面上的一点,d (1) 是 R n中的一个方向, x ( 0)沿着 d (1) 以最优步长搜索得到点 x (1) 。 则 d (1)是点 x (1)所在等值面的切向量。
d 1 f ( x 1 ) ( 4 , 6 )T . x 1 d 1 ( 2 4 , 1 6 )T . 令 ( ) f ( x 1 d 1 ) ( 2 4 ) 2 3 ( 1 6 ) 2 ,
求解
min ( )
椭球面。
x2 x3

x*
x1

最速下降方向反映了目 标函数的一种局部性质 。 它只是
局部目标函数值下降最快的方向。 最速下降法是线性收敛的算法。
三. 共轭梯度法
1. 共轭方向和共轭方向法
Rn中的两个非零向量d 1 和 d 2, 定义 设 A 是 n n 的对称正定矩阵,对于
若有 d
1T
Ad 2 0 ,则称 d 1和d 2关于A共轭。
i 1
k
是由 d (1) , d ( 2 ) ,, d ( k ) 生成的子空间。特别地, 当 k n时, x ( n 1 )是 f ( x )在R n 上的唯一极小点。
相关文档
最新文档