计算流体力学教案

计算流体力学教案
计算流体力学教案

计算流体力学教案

Teaching plan of computational fluid mechanics

计算流体力学教案

前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。

一、流体地基本特征

1.物质地三态

在地球上,物质存在地主要形式有:固体、液体和气体。

流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。

固体:既能承受压力,也能承受拉力与抵抗拉伸变形。

流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。

液体和气体地区别:气体易于压缩;而液体难于压缩;

液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。

液体和气体地共同点:两者均具有易流动性,即在任何

微小切应力作用下都会发生变形或流动,故二者统称为流体。

2.流体地连续介质模型

微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。

宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。

(1)概念

连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。

连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。

(2)优点

排除了分子运动地复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。

3.流体地分类

(1)按照流体受压体积缩小地性质,流体可分为:

可压缩流体(compressible flow):流体密度随压强变化不能忽略地流体。

不可压缩流体(incompressible flow):流体密度随压强变化很小,流体地密度可视为常数地流体。

注:

(a)严格地说,不存在完全不可压缩地流体。

(b)一般情况下地液体都可视为不可压缩流体(发生水击时除外)。

(c)对于气体,当所受压强变化相对较小时,可视为不可压缩流体。

(d)管路中压降较大时,应作为可压缩流体。

(2)按照流体是不是具有粘性,可分为:

实际流体:指具有粘度地流体,在运动时具有抵抗剪切变形地能力。

理想流体:是指既无粘性又完全不可压缩流体,在运动时也不能抵抗剪切变形。

二、惯性

一切物质都具有质量,流体也不例外。质量是物质地基

本属性之一,是物体惯性大小地量度,质量越大,惯性也越大。单位体积流体地质量称为密度(density),单位:kg/m3。

三、压缩性

1.压缩性

流体地可压缩性(compressibility):作用在流体上地

压力变化可引起流体地体积变化或密度变化,这一现象称为流体地可压缩性。压缩性可用体积压缩率k来量度。

2.体积压缩率k

体积压缩率k(coefficient of volume compressibility):流体体积地相对缩小值与压强增值之比,即当压强增大一个单位值时,流体体积地相对减小值。

3.体积模量K

流体地压缩性在工程上往往用体积模量来表示。体积模

量K(bulk modulus of elasticity)是体积压缩率地倒数。

k与K随温度和压强而变化,但变化甚微。

说明:a. K越大,越不易被压缩,当K时,表示该流体绝对不可压缩。

b. 流体地种类不同,其k和K值不同。

c. 同一种流体地k和K值随温度、压强地变化而变化。

d. 在一定温度和中等压强下,水地体积模量变化不大

一般工程设计中,水地K=2×109 Pa ,说明Dp =1个大气压时,。Dp不大地条件下,水地压缩性可忽略,相应地水地密度可视为常数。

四、粘度

1.粘性

粘性:即在运动地状态下,流体所产生地抵抗剪切变形地性质。

2.粘度

(1)定义

流体地粘度:粘性大小由粘度来量度。流体地粘度是由流动流体地内聚力和分子地动量交换所引起地。

(2)分类

动力粘度:又称绝对粘度、动力粘性系数、粘度,是反映流体粘滞性大小地系数,单位:N"s/m2。

运动粘度ν:又称相对粘度、运动粘性系数。

(3)粘度地影响因素

流体粘度地数值随流体种类不同而不同,并随压强、温度变化而变化。

1)流体种类。一般地,相同条件下,液体地粘度大于气体地粘度。

2)压强。对常见地流体,如水、气体等,m值随压强地变化不大,一般可忽略不计。

3)温度。是影响粘度地主要因素。当温度升高时,液体地粘度减小,气体地粘度增加。

a.液体:内聚力是产生粘度地主要因素,当温度升高,分子间距离增大,吸引力减小,因而使剪切变形速度所产生地切应力减小,所以m值减小。

b.气体:气体分子间距离大,内聚力很小,所以粘度主要是由气体分子运动动量交换地

结果所引起地。温度升高,分子运动加快,动量交换频繁,所以粘度增加。

3.牛顿内摩擦定律

a. 牛顿内摩擦定律:液体运动时,相邻液层间所产生地切应力与剪切变形地速率成正比。

说明:

1)流体地切应力与剪切变形速率,或角变形率成正比。——区别于固体地重要特性:固体地切应力与角变形地大小成正比。

2)流体地切应力与动力粘度m成正比。

3)对于平衡流体du /dy =0,对于理想流体m=0,所以均不产生切应力,即t =0。

b.牛顿平板实验与内摩擦定律

2.牛顿流体、非牛顿流体

牛顿流体(newtonian fluids):是指任一点上地剪应力都同剪切变形速率呈线性函数关系地流体,即遵循牛顿内摩擦定律地流体称为牛顿流体。

非牛顿流体:不符合上述条件地均称为非牛顿流体

-------- Designed By JinTai College ---------

高等流体力学重点

1.流体的连续介质模型:研究流体的宏观运动,在远远大于分子运动尺度的范围里考察流体运动,而不考虑个别分子的行为,因此我们可以把流体视为连续介质。 它有如下性质: (1)流体是连续分布的物质,它可以无限分割为具有均布质量的宏观微元体。 (2)不发生化学反应和离解等非平衡热力学过程的运动流体中,微元体内流体状态服 从热力学关系 (3)除了特殊面外,流体的力学和热力学状态参数在时空中是连续分布的,并且通常 认为是无限可微的 2.应力:有限体的微元面积上单位面积的表面力称为表面力的局部强度,又称为应力,定义如下:=n T A F A δδδlim 0→ 3.流体的界面性质:微元界面两侧的流体的速度和温度相等,应力向量的大小相等.方向相反或应力分量相等。 4.流体具有易流行和压缩性。 5.应力张量具有对称性。 6.欧拉描述法:在任意指定的时间逐点描绘当地的运动特征量(如速度、加速度)及其它的物理量的分布(如压力、密度等)。 7.拉格朗日描述法:从某个时刻开始跟踪质点的位置、速度、加速度和物理参数的变化,这种方法是离散质点的运动描述法称为拉格朗日描述法。 8.流线:速度场的向量线,该曲线上的任意一点的切向量与当地的的速度向量重合。 迹线:流体质点点的运动迹象。 差别:迹线是同一质点在不同时刻的位移曲线。 流线是同一时刻、不同质点连接起来的速度场向量线。 流线微分方程:ω dz v dy u dx == 迹线微分方程:t x U i i ??= 9.质点加速度:质点速度向量随时间的变化率。 U U t U a )(??+??= 质点加速度=速度的局部导数+速度的迁移导数。 物理量的质点导数=物理量的局部导数+物理量的对流导数。

流体力学期末考试计算

水 水银 题1图 1 2 3 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3/850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力:RB R H g A h P z c x ?-==)2 (ργ…….(3分) N 1.14668.02.0)22 .02.1(8.9850=??- ??=,方向向右(2分)。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.15428.04 2.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分) 。 2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。

解题思路:(1)水平分力: l H H p p p x )(2 1222121-=-=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?='=右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的 压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

结构力学个人总结

结构力学个人总结 本页是精品最新发布的《结构力学个人总结》的详细文章,。篇一:结构力学心得体会 结构力学心得体会 本学期结构力学的课程已经接近尾声。主要是三部分内容,即渐近法、矩阵位移法和平面刚架静力分析的程序设计。通过为期八周的理论课学习和六次的上机课程设计,我收获颇丰。 而对结构力学半年的学习,也让我对这门学科有了很大的认识。结构力学是力学的分支,它主要研究工程结构受力和传力的规律以及如何进行结构优化的学科。工程力学是机械类工种的一门重要的技术基础课,许多工程实践都离不开工程力学,工程力学又和其它一些后绪课程及实习课有紧密的联系。所以,工程力学是掌握专业知识和技能不可缺少的一门重要课程。 首先,渐近法的核心是力矩分配法。计算超静定刚架,不论采用力法或位移法,都要组成和验算典型方程,当未知量较多时,解算联立方程比较复杂,力矩分配法就是为了计算简洁而得到的捷径,它是位移法演变而来的一种结构计算方法。其物理概念生动形象,每轮计算又是按同一步骤重复进行,进而易于掌握,适合手算,并可不经过计算节点位移而直接求得杆端弯矩,在结构设计中被广泛应用,是我们应该掌握的基本技能。本章要

求我们能够熟练得运用力矩分配法对钢架结构进行力矩分配和传递,然后计算出杆端最后的弯矩,画出钢架弯矩图。 其次,与上一学期所学的力法和位移法那些传统的结构力学基本方法相比,本学期所学的矩阵位移法是通过与计算机相结合,解决力法和位移法不能解决的结构分析题。其核心是杆系结构的矩阵分析,主要包括两部分内容,即单元分析和整体分析。矩阵位移法的程序简单并且通用性强,所以应用最广,范文 TOP100也是我们本学期学习的重点和难点。本章要求我们掌握单位的刚度方程并且明白单位矩阵中每一个元素的物理意义,可以熟练的进行坐标转换,最为重要的是能够利用矩阵位移法进行计算。 最后,是平面钢架静力分析的程序设计。其核心是如何把矩阵分析的过程变成计算机的计算程序,实现计算机的自动计算。我们所学的是一种新的程序设计方法—PAD软件设计方法,它的程序设计包括四步:1、把计算过程模块化,给出总体程序结构的PAD设计;2、主程序的PAD设计;3、子程序的PAD设计;4、根据主程序和子程序的PAD设计,用程序语言编写计算程序。要求我们具备结构力学、算法语言,即VB、矩阵代数等方面的基础知识。在上机利用VB 进行程序设计解答实际问题的过程中,我们遇到了各种各样的难题,每一道题得出最后的结果都不会那么容易轻松。第一,需要重视细节,在抄写程序代码时,需要同组人的分工合作,然后再把每一部分的代码合成一个整体然后运行,这

流体力学试题 答案及评分标准

流体力学试卷 一、名词解释(共10小题,每小题4分,共40分) 1、流体力学 2、连续介质基本假设 3、理想流体 4、牛顿内摩擦定律 5、动量定律 6、流线和迹线 7、恒定流 8、层流和紊流 9、水击(锤)现象 10、明渠底坡 二、简答题(共5小题,每小题5分,共30分) 1、简述毕托管测流速的原理 2、雷诺数及其物理意义 3、简述水在土壤中的状态 4、试简述理想液体恒定元流的能量方程z+常数γ=+g v p 22 各项的物理意义 5、简述曲面边界层的分离现象 6、堰流的类型 五、计算题(共3小题,每小题10分,共30分) 1、闸门AB 曲面为一圆柱形的四分之一,半径r=2.0m ,垂直纸面的宽度b=1.0m ,水深H=4.0m ,闸门曲面左侧受到水压力。求作用在闸门AB 曲面上的水平分力和铅直分力。 2、某矩形断面排水沟,采用浆砌块石衬砌,粗糙系数n=0.025,底宽1.5m ,全长1000m ,进出口底板高差为0.4m ,计算水深为1.0m 时输送的明渠均 匀流流量。 3、如图闭合并联管路,用旧铸铁管从A 向B 输水,已知d1=150mm ,l 1=800m ; d2=150mm ,l 2=500m ;d3=200mm ,l 3=1000mm ;总流量Q=100L/s ,求分支路上的流量Q1、Q2、Q3及AB 间损失水头。 一、名词解释(本大题共10小题,每小题4分,共40分)

1、流体力学:是力学的分支(1分),主要研究流体在各种力的作用下,流体本身的运动规律(1分),以及流体与固体壁面、流体与流体间由于存在相对运动时的相互作用(2分)。也即研究流体的机械运动规律。 2、连续介质基本假设:流体力学研究流体的宏观运动规律,对流体的宏观运动(1分),假设流体是由无数质点组成的、没有空隙的连续体(1分),并认为流体的各物理量的变化随时间和空间也是连续的(1分),可应用高等数学中的连续函数来表达流体中各种物理量随空间、时间的变化关系(1分)。 3、理想流体:是流体力学中一个重要假设模型(或流体物理性质的简化)(1分),即流体分子间不存在内聚力(3分)。 4、牛顿内摩擦定律:流体的内摩擦力T(切向力)与流层间的接触面面积A和流层的速度梯度du/dy或变形率成正比(2分),即T=μAdu/dy,μ称为流体动力粘性系数(2分)。 5、动量定律 作用于物体的外力∑F等于该物体在力作用方向上的动量变化率。 6、迹线和流线:迹线:某一流体质点的运动轨迹,是运动的流体质点在不同时刻所占据的空间位置的连线(2分)。流线:是描述流场中各质点瞬态流动方向即速度方向的的曲线(2分)。 7、恒定流:描述流体质点运动的所有参数仅仅是空间坐标(x、y、z)的函数,而与时间 t无关。(或流场中任意空间位置上运动参数或物理量都不随时间而改变,即对时间的偏导数等于零。) 8、层流和紊流:层流:流体质点无横向脉动,质点互不混杂,层次分明,稳定安详的流 动状态(2分)。 紊流:流体质点不仅在轴(纵)向而且在横向均有不规则脉动速度,流体质点杂乱交错的混沌流动状 态(2分)。 9、水击(锤)现象:在有压管道流中(1分),由于某种原因(如阀门突然启闭、换向阀 突然变换工位等),使流体速度突然发生变化(动量发生变化)(1分),从而引起流体压强的突然变化、升压和降压交替进行的水力现象(1分),对于管壁和阀门的作用如锤击一样,也称为水锤(1分)。 10、明渠底坡:明渠渠底与水平线的夹角的正弦值,即流体质点的落差与相应渠长(质点 路径)的比值,i=sinθ=Δz/l。(或单位渠长上的渠底高差。) 11、流体质点:是研究流体宏观运动规律的最小基本单元,具有宏观足够小、微观足够大的性质。一方面,流体质点的尺度比起所研究问题的宏观尺度足够的小,从宏观上可以认为是一个几何上没有体积的点;另一方面,从微观上看,该特征体积远远大于流体分子间的间距,可容纳足够多的流体分子,个别分子运动参数的变化不影响这群分子运动参数的平均值,而不表现其随机性。 二、简答题(本大题共4小题,每小题5分,共20分) 1、简述毕托管测流量的原理(P39) 2、雷诺数及其物理意义。

计算流体力学课程总结

计算流体力学课程总结 计算流体动力学(computational Fluid Dynamics,简称CFD)是通过计算机数值 计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。 流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。很早就已有理论流体力学和实验流体力学两大分支。理论分析是用数学方法求出问题的定量结果。但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的。计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、HAVC&R 等诸多工程领域。 计算流体力学的任务是流体力学的数值模拟。数值模拟是“在计算机上实现的一 个特定的计算,通过数值计算和图像显示履行一个虚拟的物理实验——数值实验“。 数值模拟包括以下几个部分。首先,要建立反映问题(工程问题、物理问题等)本质数 学模型。其次,数学模型建立以后需要解决的问题是寻求高效率、高准确度的计算方法。再次,在确定了计算方法和坐标系统后,编制程序和进行计算式整个工作的主体。最后,当计算工作完成后,流畅的图像显示是不可缺少的部分。 还有一个就是CFD的基本思想问题,它就是把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通 过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求 解代数方程组获得场变量的近似值。 经过四十多年的发展,CFD出现了多种数值解法。这些方法之间的主要区别在于 对控制方程的离散方式。根据离散的原理不同,CFD大体上可分为三个分支: ?有限差分法(Finite Different Method,FDM) ?有限元法(Finite EIement Method,FEM) ?有限体积法(Finite Volume Method,FVM) 有限差分法是应用最早、最经典的CFD方法,也是最成熟、最常用的方法。它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的 导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分万程组 的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题 的近似数值解法。

结构力学培训心得体会(精)

结构力学培训心得体会 浅谈结构变形图在定性结构力学教学中的应用 许凯 (武汉科技大学城市建设学院) 2008年7月25日至27日,我参加了《结构力学骨干教师高级研修班》培训。三天的培训使我受益良多,感谢两位主讲老师带给我们的新观点、新方法,这些新的理念引发了我对今后结构力学教学工作的诸多思考。 结构力学是结构工程师的看家本领,正因为如此,结构力学教学中能力和素质的培养应为教学工作的主导,应将能力培养贯穿教学活动的始终和各个环节,袁老师认为结构力学中有三个方面的能力要重点训练培养,它们是:经典方法分析能力,计算机分析能力和定性分析能力。也就是“一个基础、两座大厦”。这个比喻非常的形象,点出了结构力学教学的重点以及结构力学今后的发展方向。 “定性结构力学”培养的是学生定性的分析和判断能力。定性分析是结构力学以及其它所有力学进行分析和计算的概念性基础。工程中的概念设计、估算判断、计算模型建立、计算结果分析等都要用到定性分析。因此,对于没有条件开设这门课的高校,应该把该课程的内容融入到经典结构力学的教学中去,对此,我在教学工作中也做过一些尝试,今后考虑如何系统化,并以提高学生的综合素质与能力为着眼点。 一、由变形图确定弯矩图 正确绘制梁与刚架在荷载作用下的变形图,有助于确定结构内力图的大致形状,校核原结构的弯矩图是否正确,在定性结构力学中,具有十分重要的意义。 例如,对于各种形式的拱(见图1,a、b、c),如果让学生死记弯矩图的形状,一是不容易记住,二是不能理解其力学本质。通过绘制变形图(图中虚线部分,将杆件受拉一侧标记为+),很容易地得到弯矩图的大致形状。至于变形图的绘制,其实并不复杂,只要注意满足约束条件,注意荷载方向与变形趋势之间的关系,以及注意结点的特性等基本要素,再辅以适当的练习,就可以掌握其方法,并在结构的定性分析中灵活应用了。 更深一层地,可以用变形图对结构做进一步的分析和判断,例:用变形图判断混凝土拱结构的开裂部位。根据变形图(见图1,c),判断构件可能出现裂缝的部位(见图1,d)。

计算流体力学教案

计算流体力学教案 Teaching plan of computational fluid mechanics

计算流体力学教案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 一、流体地基本特征 1.物质地三态 在地球上,物质存在地主要形式有:固体、液体和气体。 流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。 固体:既能承受压力,也能承受拉力与抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。 液体和气体地区别:气体易于压缩;而液体难于压缩; 液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。 液体和气体地共同点:两者均具有易流动性,即在任何 微小切应力作用下都会发生变形或流动,故二者统称为流体。 2.流体地连续介质模型

微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。 (1)概念 连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。 连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。 (2)优点 排除了分子运动地复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。 3.流体地分类

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

浅析问题教学法在结构力学课程中的应用

浅析问题教学法在结构力学课程中的应用 发表时间:2019-09-10T16:15:02.860Z 来源:《建筑学研究前沿》2019年10期作者:戴烽滔[导读] 我国经济的快速发展带动我国其它行业发展迅速。问题教学法在我国古代早有论述,如朱熹的“读书无疑者,须教有疑,小疑则小进,大疑则大进”。 西南科技大学四川绵阳 621000摘要:我国经济的快速发展带动我国其它行业发展迅速。问题教学法在我国古代早有论述,如朱熹的“读书无疑者,须教有疑,小疑则小进,大疑则大进”。问题教学法的核心是问题设置,通过问题诱发学生自主学习的欲望,培养主动学习的习惯,通过循环往复不断优化自主学习方法,提高学生学习能力的教学方法。 关键词:问题教学法;结构力学课程;应用引言 我国教育事业的快速发展离不开国家经济的大力支持。在所有专业课中课时量最多,且占学分最高。它以高等数学、线性代数和微分方程等数学课程,以及材料力学、理论力学等力学课程为基础,在各门专业课程的学习中起着承上启下的作用,在土木工程系列的结构、房建、桥梁、水利、道路以及地下工程等各专业的学习中都占有重要地位。 1结构力学课程教学的特点(1)知识点多,前后内容环环相扣。既有平面几何组成规律的内容,也有静力荷载作用下五种基本类型结构(梁、拱、桁架、刚架和组合结构)的内力与位移计算问题,还有影响线问题,结构的动力计算、弹性稳定、塑性分析与极限荷载等内容。平面几何组成分析的学习有助于了解结构中杆件组成的相互关系,便于选择对应的计算方法;静定结构中平衡方程与截面法是内力计算的基础,其掌握的程度直接影响后续静定结构的位移计算;而静定结构的位移计算又是超静定结构内力计算的基础;静力荷载下的内力与位移计算是动力荷载结构响应分析的基础;结构的弹性设计又是结构塑性设计与极限荷载计算的基础。(2)实践性强,与工程实际联系紧密。结构力学中很多计算都是以计算简图作为分析的对象,计算简图的简化是联系实际与计算模型的桥梁,计算简图的合理选择是结构分析的一个重要环节,也是必须解决的首要问题。计算简图的简化要把握“存本去末”与“计算简化”两个基本原则,其简化要点有结构体系的简化、杆件的简化、结点的简化、支座的简化、荷载的简化和材料性质的简化。这就要求教师要重点讲解计算简图知识点,选取不同的工程实例进行讲解,以五种基本结构为原型,不仅讲清楚题目的工程背景,而且要指出哪些是主要因素必须考虑,哪些是次要因素可以忽略。(3)方法灵活,概念与原理的掌握成为根本。结构力学中几何组成分析中三个规则的灵活应用,静定结构内力计算截面法的选取,超静定结构内力计算不同方法的优化选择,影响线的快速绘制等问题,针对这些不同的问题,有着不一样的解法,这就要求教师重点介绍每一种方法的基本原理,挖掘概念、原理及方法的本质,通过讲解典型例题,让学生体会每一种方法的具体应用,不断地变换约束前提条件,分析计算结果的异同,让学生印象更加深刻,避免单纯地做题而缺乏对题目的深刻分析与延伸。 2问题教学法在结构力学课程中的应用 2.1注重问题设计的针对性 针对性一方面指问题应遵循教与学的实际需要而定,围绕教学的重点和难点,同时,还要针对学生的学习心理特征,问题要能够启动学生心理上的新需求,能够触发学生潜在水平到现实水平的最近发展区。如静定刚架的内力计算问题,重点是要求学生掌握内力的具体计算和刚结点的性质,刚架是由多根杆件通过部分或全部刚结点连接而成,那么,求解的思路就是,能否把刚架离散成一个个单跨梁来进行分析呢?在离散过程中,从哪里断开比较合适呢?合适与否由什么来决定?事实上在刚结点处断开和打断梁式杆是等同的。随着问题的深入,刚结点的特性也就总结出来了。同时还可追问什么样的外力会在杆件中引起弯矩?什么样的外力会在杆件中引起剪力?什么样的外力会在杆件中引起轴力?通过对结构内力特性的定性分析,使得学生对单跨梁的理解进一步加强。 2.2理论与实践相结合的教学形式 目前,大多数高校仅开设结构力学理论课程,且课时量都进行了一定缩减,使得学生在学习过程中感到非常枯燥乏味,难学难懂,本应是在实际工程当中应用非常广泛的课程,却在教学过程中严重脱离实际,这是当下这门课程的教学水平处于瓶颈状态的关键所在。对于目前各高校普遍存在的此类问题,可通过增设结构力学实践课程及结构力学课程设计来达到改善教学质量的目的。实际上,本课程对实验室场地,实验设施,实验材料等方面的要求并不高,无需大型设备,只需一定空间的场所,并采购一些制作模型所需的实验材料和工具即可,所需费用不大,对场所要求较低,相对来说属于易实施,花费低的教学改革方案。通过增设相关实验课程,可以使得学生有机会通过亲自动手制作模型,进行相关受力分析及位移计算,从而更加熟练的掌握结构的力学计算方法,增强学生创新实践能力,也可为在校期间参与结构大赛等大型竞赛活动打下非常坚实的基础,培养出更加符合新形势新要求的新型综合性人才。 2.3注重问题的启发性 问题设置水平的高低,一个重要的衡量因素就是问题是否具有启发性。具有启发性的问题不是非此即彼的问题,而是具有开放性,这样才能使学生放飞思绪,调动思维的积极性。如在力法求解超静定结构中,基本未知量的确定是通过去除多余约束来确定的,因为多余约束不是唯一确定的,显然,基本结构的选取也不唯一,如何优选基本结构呢?好与不好的区别就在于是否方便计算。由于个人习惯不同,不同的同学可能会选择不同的基本结构,授课教师通过对不同形式基本结构的求解过程进行对比,可以初步帮助同学们树立优化设计的思想,即使条条大路通罗马,便捷的道路总是让人青睐的。 2.4课程内容根据不同专业方向来设置现阶段 土木工程专业主要包含三大方向,岩土工程、交通土建以及建筑工程,对于传统的结构力学教材而言,基本上过半的工程实例都是建筑工程方向的,为了使交通土木工程方向的学生能够结合实际情况学习本课程,除了现有教材的工程实例外,还需要根据专业重点适当调节每章的比例,工程实例和学时。如,交通土木工程中“道路”和“桥梁”的应力分析是一个移动荷载,对结构有很大影响。所以,应该增加交通土木工程方向结构力学课程中“影响线”一章的比例,并增加相应的工程实例。此外,在解释相应内容时,应根据不同方向调整实例。 2.5注重问题的效果导向

计算流体力学过渡到编程的傻瓜入门教程

借宝地写几个小短文,介绍CFD的一些实际的入门知识。主要是因为这里支持Latex,写起来比较方便。 CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。尤其是有关偏微分方程数值分析的东西,不是那么容易入门。大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。后来网上淘到一些代码研读,结合书籍论文才慢慢入门。可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。 回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

言归正传,第一部分,我打算介绍一个最基本的算例,一维激波管问题。说白了就是一根两端封闭的管子,中间有个隔板,隔板左边和右边的气体状态(密度、速度、压力)不一样,突然把隔板抽去,管子内面的气体怎么运动。这是个一维问题,被称作黎曼间断问题,好像是黎曼最初研究双曲微分方程的时候提出的一个问题,用一维无粘可压缩Euler方程就可以描述了。 这里 这个方程就是描述的气体密度、动量和能量随时间的变化()与它们各自的流量(密度流量,动量流量,能量流量 )随空间变化()的关系。 在CFD中通常把这个方程写成矢量形式 这里 进一步可以写成散度形式

计算流体力学习题-期中考试题题库2

1)把有量纲二维Euler方程组转换成无量纲形式。 解:二维Euler方程组如下所示: 引入参考量:自由来流密度,自由来流x方向速度,流场中物体特征长度,则有 将上面式子代入二维Euler方程组,则 2)求出定常不可压缩粘性流动方程组特征根,并分析它的数学性质和类型。 解:定常不可压缩粘性流动方程组为 设流函数为ψ,则有 定常不可压缩粘性流动方程组化简为 ☆ 根据☆方程组有 λ=±i 所以该方程组的数学性质和类型是确定的,它是椭圆形的。 3)对流方程的两步迎风差分格式为: 分析它的精度和稳定性。 解:设,则有 ☆ 根据Taylor展开公式有 据此有 代入☆式 下面分析稳定性 ☆ 代入☆式 放大因子 要使,则有 时两步迎风差分格式是稳定的。 4)的Lax-Wendroff一步差分格式的精度和稳定性。 解:根据Taylor展开公式有 据此有 下面分析稳定性 ☆ 代入☆式 放大因子

当时,,Lax-Wendroff一步差分格式是稳定的。 5)分析Burgers方程的Lax差分格式的精度和稳定性。 解:Lax差分格式为 下面分析稳定性 ☆ 代入☆式 放大因子 ☆☆ 令,求的极值 端点值时令, 综上所述有Lax差分格式稳定的条件是 6)分析的紧致格式的精度和稳定性 解:根据泰勒展开有 下面分析稳定性 放大因子 根据,求得 此时,紧致格式是稳定的。 7)分析差分格式的精度和稳定性。 解:根据泰勒展开有 分析稳定性 8)推导的蛙跳差分格式的修正方程。 解:根据泰勒展开 其修正方程为 9)对流方程的一阶迎风差分格式为: 用Taylor分析方法求出差分格式耗散项和色散项表达式。 解:根据泰勒展开有 10)数值计算实习 采用二阶迎风差分格式或Warming-Beam差分格式数值求解一位激波管问题,并和二阶MacCor mack差分格式计算结果进行比较。 解:

计算流体力学课程大作业

《计算流体力学》课程大作业 ——基于涡量-流函数法的不可压缩方腔驱动流问题数值模拟 张伊哲 航博101 1、 引言和综述 2、 问题的提出,怎样使用涡量-流函数方法建立差分格式 3、 程序说明 4、 计算结果和讨论 5、 结论 1引言 虽然不可压缩流动的控制方程从形式上看更为简单,但实际上,目前不可压缩流动的数值方法远远不如可压缩流动的数值方法成熟。 考虑不可压缩流动的N-S 方程: 01()P t νρ??=? ? ??+??=-?+???? U U UU f U (1.1) 其中ν是运动粘性系数,认为是常数。将方程组写成无量纲的形式: 01()Re P t ??=?? ??+??=-?+????U U UU f U (1.2) 其中Re 是雷诺数。 从数学角度看,不可压缩流动的控制方程中不含有密度对时间的偏导数项,方程表现出椭圆-抛物组合型的特点;从物理意义上看,在不可压缩流动中,压力这一物理量的波动具有无穷大的传播速度,它瞬间传遍全场,以使不可压缩条件在任何时间、任何位置满足,这就是椭圆型方程的物理意义。这就造成不可压缩的N-S 方程不能使用比较成熟的发展型...偏微分方程的数值求解理论和方法。 如果将动量方程和连续性方程完全耦合求解,即使使用显示的离散格式,也将会得到一个刚性很强的、庞大的稀疏线性方程组,计算量巨大,更重要的问题是不易收敛。因此,实际应用中,通常都必须将连续方程和动量方程在一定程度上解耦。 目前,求解不可压缩流动的方法主要有涡量-流函数法,SIMPLE 法及其衍生的改进方法,有限元法,谱方法等,这些方法各有优缺点。其中涡量-流函数法是解决二维不可压缩流动的有效方法。作者本学期学习了研究生计算流体课程,为了熟悉计算流体的基本方法,选择使用涡量-流函数法计算不可压缩方腔驱动流问题,并且对于不同雷诺数下的解进行比较和分析,得出一些结论。 本文接下来的内容安排为:第2节提出不可压缩方腔驱动流问题,并分析该问题怎样使用涡量-流函数方法建立差分格式、选择边界条件。第3节介绍程序的结构。第4节对于不同雷诺数下的计算结果进行分析,并且与U.GHIA 等人【1】的经典结论进行对比,评述本

定性结构力学课程总结

定性结构力学课程总结 结13,吴文献,2001010169 这学期选修了袁老师的定性结构力学这门课,觉得很有收获。 首先,对定性结构力学有了一定的了解,建立的定性分析的概念。我认为所谓的定性结构力学,就是结构力学中的计算部分相对而言的,是从分析的角度出发,根据已有的知识和结论,把握一个问题的关键所在,有时可以做到不用任何计算就可以给出问题正确而简便的解答。无论是从结构力学的产生和发展过程还是从解决问题的角度来看,定性分析都是不可或缺的一个环节,甚至可以说它比具体的计算重要的多。每当遇见一个问题,我们不应该急着去用一些公式去计算、求解,而是应该先对其进行定性分析,充分的把握问题的本质,可以达到事半功倍的效果。 其次,对结构力学的一些内容和重要原理有了更加深入的认识。结构力学中的很多东西原来认识的不够到位或者太肤浅,听了袁教授的课后,这些方面得到了加强。如平衡的概念,在学习结构力学的过程中,理解的深度不够,仅限于列出X、Y方向上力的和弯矩的方程,根据方程判断是否平衡。上了袁老师的课,经袁老师的一再强调,知道了还可以有动平衡的概念,给结构一定的虚位移,若各个力(弯矩)在虚位移上做的功相等即可得出原结构是平衡的。如在课上曾举过的下面的例子就是很好的用虚位移判别平衡的例子。其他还有很多概念,如约束、对称、极限等都是一再强调其重要性。 再次,对结构力学求解器的原理和功能有了更多的了解。“把繁琐交给求解器,我们留下创造力”这是编制结构力学求解器的目的,而结构力学求解器也确确实实的达到了原来的目的。袁老师用了相当多的时间介绍求解器的求解功能,并初步介绍了程序结构力学的基本原理和实现办法。这学期在课后作业中也多次的应用求解器求解一些问题,包括框架结构的位移内力分析和结构的动力特性分析,而在课程设计等其他相关课程中,也一再应用求解器帮助我们解决计算问题。总的感觉求解器的功能是相当强大的,一定有广阔的前景,同时也使自己对程序结构力学有了一定的兴趣。 最后,对定性分析有一些感想。从一定角度上看,定性分析可以提升到别的高度。无论是生活,还是学习、工作,有很多可以运用“定性分析”原理的地方。无论进行什么样的工作,都应该在冷静、全面、正确的“定性分析”,充分的了解事情的本质后才采取行动,进行“求解”,可以避免不必要的错误,提高效率。

高等流体力学试题

1.简述流体力学有哪些研究方法和优缺点? 实验方法就是运用模型实验理论设计试验装置和流程,直接观察流动现象,测量流体的流动参数并加以分析和处理,然后从中得到流动规律。实验研究方法的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。实验研究方法的缺点主要是对于不同的流动需要进行不同的实验,实验结果的普遍性稍差。 理论方法就是根据流动的物理模型和物理定律建立描写流体运动规律的封闭方程组以及相应初始条件和边界条件,运 用数学方法准确或近似地求解流场,揭示流动规律。理论方法的优点是:所得到的流动方程的解是精确解,可以明确地给出各个流动参数之间的函数关系。解析方法的缺点是:数学上的困难比较大,只能对少数比较简单的流动给出解析解,所能得到的解析解的数目是非常有限的。 数值方法要将流场按照一定的规则离散成若干个计算点,即网格节点;然后,将流动方程转化为关于各个节点上流动 参数的代数方程;最后,求解出各个节点上的流动参数。数值方法的优点是:可以求解解析方法无能为力的复杂流动。数值方法的缺点是:对于复杂而又缺乏完整数学模型的流动仍然无能为力,其结果仍然需要与实验研究结果进行对比和验证。 2.写出静止流体中的应力张量,解释其中非0项的意义. 无粘流体或静止流场中,由于不存在切向应力,即p ij =0(i ≠j ),此时有 P =00000 0xx yy zz p p p ??????????=000000p p p -????-????-??=-p 00000011????1?????? = -p I 式中I 为单位张量,p 为流体静压力。 流体力学中,常将应力张量表示为 p =-+P I T (2-9) 式中p 为静压力或平均压力,由于其作用方向与应力定义的方向相反,所以取负值;T 称为偏应力张量,即 T =xx xy xz yx yy yz zx zy zz τττττττττ?????????? (2-10) 偏应力张量的分量与应力张量各分量的关系为:i =j 时,p ij 为法向应力,τii = p ij - p ;当i ≠j 时p ij 为粘性剪切应力,τij =p ij 。τii =0的流体称为非弹性流体或纯粘流体,τii ≠0的流体称为粘弹性流体。 3.分析可压缩(不可压缩)流体和可压缩(不可压缩)流动的关系. 当气体速度流动较小(马赫数小于0.3)时,其密度变化不大,或者说对气流速度的变化不十分敏感,气体的压缩性没有表现出来。因此,在处理工程实际问题时,可以把低速气流看成是不可压缩流动,把气体可以看作是不可压缩流体。而当气体以较大的速度流动时,其密度要发生明显的变化,则此时气体的流动必须看成是可压缩流动。 流场任一点处的流速v 与该点(当地)气体的声速c 的比值,叫做该点处气流的马赫数,用符号Ma 表示: Ma /v c v == (4-20) 当气流速度小于当地声速时,即Ma<1时,这种气流叫做亚声速气流;当气流速度大于当地声速时,即Ma>l 时,这种气流称为超声速气流;当气流速度等于当地声速时,即Ma=l 时,这种气流称为声速气流。以后将会看到,超声速气流和亚声速气流所遵循的规律有着本质的不同。 马赫数与气流的压缩性有着直接的联系。由式(4-11)可得 所以有 222Ma d ρv dv dv ρc v v =-=-。 (4-21) 当Ma≤0.3时,dρ/ρ≤0.09dv /v 。由此可见,当速度变化一倍时,气体的密度仅仅改变9%以下,一般可以不考虑密度的变化,即认为气流是不可压缩的。反之,当Ma>0.3时,气流必须看成是可压缩的。 4.试解释为什么有时候飞机飞过我们头顶之后才能听见飞机的声音. 5.试分析绝能等熵条件下截面积变化对气流参数(v ,p ,ρ,T )的影响.

计算流体力学复习题

设流经某多孔介质的一维流动的控制方程为:0=+ dx dp c μμ;()0=dx F d μ其中,系C 与空间位置有关,F 为流道的有效截面积。对于下图所示的均匀网格,已知:2,38,200,4,5,2.0,25.031=?======x p p F F C C C B C B 。 以上各量的单位都是调的,试采用SIMPLE 算法确定C B u u p 和,2的值。 解:在一项无源的流动中药是连续性方程得到满足,不同几何位置上的流速必是同向的,故 u u 实际上是2u 项。在作数值计算时,变量的平方项要作线性化处理。为加速迭代收敛过 程,采用如下线性化方法:设0u 为上一次计算值或(初始假定值),u 为本次计算值,则: () 2 02022u u u u -? 此式的导出过程与导出Newton 迭代法求根公式相似。于是,对于B 、 C 界面有: x C u p p u u B B B B ?--=0120 * 22 (a ) x C u p p u u C C C C ?--=0 23 0* 22(b ) 而压力修正值2p 相应的速度修正值则为: x C u p u B B B ?'-= '02 2 (c ) x C u p u C C C ?'='0 22 (d ) 利用这些公式,即可进行关于2,p u u C B 以及的迭代计算。设,,120 p 15020 0===C B u u 则由式(a )与(b )得: 12.8335.3337.52150.580 --215u *B =+=??= 14.3336.8337.515 40.282215u *C =+=??+= 这两个速度值不满足连续方程。计算修正后的速度: 2 2 B *B B 06666.0833.1215 40.25p - 12.833u u u p '-=??'='+= 22 C *C C 08333.0333.141542.0p 14.333u u u p '+=??'+='+= 代入连续方程,得: ()()22 08333.03333.14406666.0833.125p p '+='- 833.66666.02 ='p 251.102='p C

高等流体力学

高等流体力学 第一章 流体力学的基本概念 连续介质:流体是由一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所 谓的连续介质。 流体质点:是指微小体积内所有流体分子的总和。 欧拉法质点加速度:时变加速度与位变加速度和 z u u y u u x u u t u dt du a x z x y x x x x x ??+??+??+??== 质点的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数,用dt d 表示。在欧拉法描述中的任意物理量Q 的质点随体导数表述如下: x k k Q u t Q dt dQ ??+??= 式中Q 可以是标量、矢量、张量。质点的随体导数公式对任意物理量都成立,故将质点的 随体导数的运算符号表示如下: x k k u t dt d ??+??= 其中 t ?? 称为局部随体导数,x k k u ??称为对流随体导数,即在欧拉法描述的流动中,物理 量的质点随体导数等于局部随体导数与对流随体导数之和。 体积分的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数。则在由流体质点组成的流动体积V 中标量函数Φ(x, t )随时间的变化率就是体积分的随导函数。 由两部分组成①函数Φ 对时间的偏导数沿体积V 的积分,是由标量场的非恒定性引起的。②函数Φ通过表面S 的通量。由体积V 的改变引起的。 ()dV divv dt d dV v div t dS u dV t dV dt d v v n s v v ?? ? ???Φ+Φ=??????Φ+?Φ?=Φ+?Φ?=Φ??????????????()dV adivv dt da dV av div t a dS au dV t a adV dt d v v n s v v ?? ????+=??????+??=+??=?????????????? 变形率张量: 11ε 12ε13ε D ij = 21ε 22ε 23ε 31ε 32ε 33ε

相关文档
最新文档