《相交线与平行线》的单元测试题(含答案)(可编辑修改word版)

合集下载

相交线与平行线单元测试题总集完整含答案

相交线与平行线单元测试题总集完整含答案

B E DA CF87654321DCBA第五章 相交线与平行线测试题一、选择题(每题3分,共30分)1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°图1 图2 图3 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图65、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )A . 42138、;B . 都是10;C . 42138、或4210、;D . 以上都不对8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题;B .②、③是正确命题;C .①、③是正确命题 ;D .以上结论皆错DB A C1ab1 2OABCD EF 2 1Oa b M P N 1 2 3A B C a b1 23 B E9、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( )A .180B .270C .360D .540二、填空题(每题3分,共18分)11、如图8,直线a b ∥,直线c 与a b ,相交.若170∠=,则2_____∠=.图7 图8 图9 图1012、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______14、如图11,已知a b ∥,170∠=,240∠=,则3∠ 图11 1315、如图12的一个条件 .16、如图13,已知AB CD //,∠α=____________ 三、解答题(共52分)17、推理填空:(每空1分,共12分)如图: ① 若∠1=∠2,则 ∥ ( ) 若∠DAB+∠ABC=1800,则∥ ()②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C ( )18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数. (8分)12 bac b ac d1 2 3 4 A BCDE 321DCBAABCDO123EF19、已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8分)20、(10分(1)如图a ,图中共有___对对顶角;(2)如图b ,图中共有___对对顶角; (3)如图c ,图中共有___对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成多少对对顶角?(5)若有2008条直线相交于一点,则可形成 多少对对顶角?21、(6分)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30º,求∠EAD ,∠DAC ,∠C 的度数。

相交线与平行线单元测试题(含答案)

相交线与平行线单元测试题(含答案)

相交线与平行线一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,共24分)1.在下面各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°3.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40°B.50°C.60°D.140°4.如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l的距离可能是()A.2 B.4 C.7 D.85.如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是()A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短8.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°二、填空题(本大题共6小题,每小题3分,共18分)9.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.10.如图,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2=.11.如图,直线AB、CD相交于点O,EO⊥AB,∠AOC=25°。

(完整版)新人教版七年级下《相交线与平行线》单元测试题及答案

(完整版)新人教版七年级下《相交线与平行线》单元测试题及答案

订交线与平行线单元测试题班级姓名一、选择题(选择填空 2 分一题)1、假如一个角的补角是150°,那么这个角的度数是()A.30 °B. 60°C.90°D.120 °2、如图,已知直线a、 b 被直线 c 所截, a∥ b,∠ 1= 130°,则∠2=()A. 130 °B. 50°C.40°D.60°3、以下说法错误的选项是( )A . 内错角相等,两直线平行.B.两直线平行,同旁内角互补.C. 相等的角是对顶角.D.等角的补角相等.4、以下图中∠ 1 和∠ 2 是同位角的是()A. ⑴、⑵、⑶,B.⑵、⑶、⑷,C.⑶、⑷、⑸,D.⑴、⑵、⑸5、已知 :如图,∠1=∠2,则有()A.AB∥ CDB.AE∥DFC. AB∥ CD且AE∥ DFD.以上都不对6、如图 , 直线 AB与 CD交于点 O,OE⊥ AB于 O,图∠ 1 与∠ 2 的关系是 ( )A. 对顶角B.互余C.互补D相等7、如图, DH∥ EG∥ BC,且 DC∥ EF,那么图中和∠ 1 相等的角的个数是()A.2,B.4,C.5,D.68、如图, AB//CD, BC//DE,则∠ B+∠ D的值为()A.90 °B.150°C.180°D.以上都不对9、如图,直线AB与 CD订交于点 O, OB均分∠ DOE.若∠ DOE= 60 o,则∠ AOE的度数是() A.90° B.150° C.180° D.不可以确立10、一束光芒垂直照耀在水平川面,在地面上放一个平面镜,欲使这束光芒经过平面镜反射后成水平光芒,则平面镜与地面所成锐角的度数为()A.45 oB.60 oC.75 oD.80 o11、以下图形中,由 AB ∥ CD ,能获得 12 的是()A1 B A1BA 1 2BA B12C 2DCDCDD CA .B .2C .D .12、如图 , 已知∠ 1=∠ 2,∠ 3=80O ,则∠ 4=()OB. 70 OOD. 50 OA.80 C. 6013、如图,已知 AC ∥ ED ,∠ C =26°,∠ CBE =37°,则∠ BED 的度数是 ( ) A . 63°B . 83°C . 73°D . 53°21 AB34DCE15 题14 题13 题14、如图,在所表记的角中,同位角是( ).A . 1和2 B .1和3C . 1和4 D . 2 和 3ACD 55°15、如图, Rt △ ABC中,ACB90°DE ∥AB,若,DE 过点 C ,且,则∠ B 的度数( )A .35° B .45 C .55° D .65° AEF16、如图,把矩形 ABCD 沿 EF 对折后使两部分重合, 若 1 50°=(),则 A . 110°B. 115°C. 120°D. 130°A EDBF 1C二、填空1、黎老师家在小星家的北偏东 68 度,则小星家在黎老师家的南偏西 度 。

八年级第五章相交线与平行线单元测试卷练习(Word版 含答案)

八年级第五章相交线与平行线单元测试卷练习(Word版 含答案)

八年级第五章相交线与平行线单元测试卷练习(Word 版 含答案)一、选择题1.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º2.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若,//a b b c ⊥,则a c ⊥; ③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有( )A .1个B .2个C .3个D .4个3.如图,AD ∥CE ,∠ABC =95°,则∠2﹣∠1的度数是( )A .105°B .95°C .85°D .75° 4.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠ D .12180B ∠+∠+∠=︒5.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°6.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°7.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++- 8.如图,AB ∥CD ,BF ,DF 分别平分∠ABE 和∠CDE ,BF ∥DE ,∠F 与∠ABE 互补,则∠F 的度数为A .30°B .35°C .36°D .45°9.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100° 10.如图,直线a ∥b ,AC ⊥AB 于A ,AC 交直线b 于点C ,∠1=50°,则∠2的度数是( )A .50°B .40°C .25°D .20°11.下列命题中,其逆命题为真命题的是( )A .若a =b ,则a 2=b 2B .同位角相等C .两边和一角对应相等的两个三角形全等D .等腰三角形两底角不相等12.如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠4二、填空题13.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .14.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.15.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________16.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.17.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.18.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.19.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.20.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.三、解答题21.(感知)如图①,AB ∥CD ,点E 在直线AB 与CD 之间,连结AE 、BE ,试说明∠BAE+∠DCE=∠AEC ;(探究)当点E 在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE=360°; (应用)点E 、F 、G 在直线AB 与CD 之间,连结AE 、EF 、FG 和CG ,其他条件不变,如图③,若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=______°.22.(1)问题发现如图①,直线AB ∥CD ,E 是AB 与AD 之间的一点,连接BE ,CE ,可以发现∠B +∠C =∠BEC .请把下面的证明过程补充完整:证明:过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC ( )∴∠C =∠CEF .( )∵EF ∥AB ,∴∠B =∠BEF (同理),∴∠B +∠C = (等量代换)即∠B +∠C =∠BEC .(2)拓展探究如果点E 运动到图②所示的位置,其他条件不变,求证:∠B +∠C =360°﹣∠BEC . (3)解决问题如图③,AB ∥DC ,∠C =120°,∠AEC =80°,则∠A = .(之间写出结论,不用写计算过程)23.已知,90AOB ︒∠=,点C 在射线OA 上,//CD OE .(1)如图 1,若120OCD ︒∠=,求∠BOE 的度数;(2)把“90AOB ︒∠=°”改为“120AOB ︒∠=”,射线OE 沿射线OB 平移,得到O E ',其它条件不变(如 图 2 所示),探究,OCD BO E '∠∠ 的数量关系;(3)在(2)的条件下,作PO OB '⊥,垂足为O ' ,与OCD ∠ 的角平分线CP 交于点P ,若BO E α'∠= , 用含 α 的式子表示CPO '∠(直接写出答案).24.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)25.[感知发现]:如图,是一个“猪手”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE ,我们发现:∠E=∠B+∠D证明如下:过E 点作EF ∥AB .∴∠B=∠1(两直线平行,内错角相等.) 又AB ∥CD(已知)∴CD ∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.) ∴∠2=∠D(两直线平行,内错角相等.)∴∠1+∠2=∠B+∠D(等式的性质1.)即:∠E=∠B+∠D[类比探究]:如图是一个“子弹头”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE .试探究∠E+∠B+∠D=360°.写出证明过程.[创新应用]:(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.(2).如图二,将一个长方形ABCD 按如图的虚线剪下,使∠1=120o ,∠FEQ=90°. 请直接写出∠2的度数.26.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”)(2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。

第五章相交线与平行线单元试卷练习(Word版 含答案)

第五章相交线与平行线单元试卷练习(Word版 含答案)

第五章相交线与平行线单元试卷练习(Word 版 含答案)一、选择题1.如图,O 是直线AB 上一点,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,添加一个条件,仍不能判定AB ∥CD ,添加的条件可能是( )A .∠BOE =55°B .∠DOF =35°C .∠BOE +∠AOF =90°D .∠AOF =35° 2.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°3.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有( )A .4个B .3个C .2个D .1个4.如图,已知直线a ∥b ,∠1=100°,则∠2等于( )A .80°B .60°C .100°D .70°5.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒6.下列说法中,错误的有( )①若a 与c 相交,b 与c 相交,则a 与b 相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A .3个B .2个C .1个D .0个7.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .1558.下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是( )A .1个B .2个C .3个D .4个9.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个10.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3 11.能说明命题“若a >b ,则3a >2b “为假命题的反例为( )A .a =3,b =2B .a =﹣2,b =﹣3C .a =2,b =3D .a =﹣3,b =﹣2 12.下列选项中,不是运用“垂线段最短”这一性质的是( )A .立定跳远时测量落点后端到起跳线的距离B .从一个村庄向一条河引一条最短的水渠C .把弯曲的公路改成直道可以缩短路程D .直角三角形中任意一条直角边的长度都比斜边短 二、填空题13.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.14.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.15.如图,直线MN∥PQ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .∠ABM 的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD⊥PQ 交PQ 于点D ,作AF⊥AB 交PQ 于点F ,AE 平分∠DAF 交PQ 于点E ,若∠CAE=45°,∠ACB=∠DAE,则∠ACD 的度数是_____.16.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.17.如图,将一张长方形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点C′、D′处,C′E 交AF 于点G ,若∠CEF=64°,则∠GFD′=_____________.18.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.19.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA的度数为_____时,可以使∠OEB=∠OCA.20.如图,∠AOB=60°,在∠AOB的内部有一点P,以P为顶点,作∠CPD,使∠CPD的两边与∠AOB的两边分别平行,∠CPD的度数为_______度.三、解答题21.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.彤彤是这样做的:过点E作EF//AB,则有∠BEF=∠B.∵AB//CD,∴EF//CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).22.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.(1)求出∠BEF 的度数;(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)23.已知,90AOB ︒∠=,点C 在射线OA 上,//CD OE .(1)如图 1,若120OCD ︒∠=,求∠BOE 的度数;(2)把“90AOB ︒∠=°”改为“120AOB ︒∠=”,射线OE 沿射线OB 平移,得到O E ',其它条件不变(如 图 2 所示),探究,OCD BO E '∠∠ 的数量关系;(3)在(2)的条件下,作PO OB '⊥,垂足为O ' ,与OCD ∠ 的角平分线CP 交于点P ,若BO E α'∠= , 用含 α 的式子表示CPO '∠(直接写出答案).24.如图1,AB//CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠∠∠+=.(2)如图2,已知BEP ∠的平分线与DFP ∠的平分线相交于点Q ,试探索EPF ∠与EQF ∠之间的关系;(3)如图3,已知BEQ ∠=1BEP 3∠,1DFQ DFP 3∠∠=,则P ∠与Q ∠有什么关系,请说明理由.25.如图1,//PQ MN ,点A ,B 分别在MN ,QP 上,2BAM BAN ∠=∠射线AM 绕A 点顺时针旋转至AN 便立即逆时针回转,射线BP 绕B 点顺时针旋转至BQ 便立即逆时针回转.射线AM 转动的速度是每秒2度,射线BQ 转动的速度是每秒1度.(1)直接写出QBA ∠的大小为_______;(2)射线AM 、BP 转动后对应的射线分别为AE 、BF ,射线BF 交直线MN 于点F ,若射线BP 比射线AM 先转动30秒,设射线AM 转动的时间为t ()0180t <<秒,求t 为多少时,直线//BF 直线AE ?(3)如图2,若射线BP 、AM 同时转动m ()090m <<秒,转动的两条射线交于点C ,作120ACD ∠=︒,点D 在BP 上,请探究BAC ∠与BCD ∠的数量关系.26.问题情境(1)如图①,已知360B E D ∠+∠+∠=︒,试探究直线AB 与CD 有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB 与CD 的位置关系是//AB CD .理由如下:过点E 作//EF AB (如图②所示)所以180B BEF ∠+∠=︒(依据1)因为360B BED D ∠+∠+∠=︒(已知)所以360B BEF FED D ∠+∠+∠+∠=︒所以180FED D ∠+∠=︒所以//EF CD (依据2)因为//EF AB所以//AB CD (依据3)交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:________________________________;“依据2”:________________________________;“依据3”:________________________________.类比探究(2)如图,当B 、E ∠、F ∠、D ∠满足条件________时,有//AB CD . 拓展延伸(3)如图,当B 、E ∠、F ∠、D ∠满足条件_________时,有//AB CD .27.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.28.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定定理判断即可.【详解】解:∵OE平分∠BOD,∠BOE=55°,∴∠BOD=2∠BOE=110°,∵∠D=110°,∴∠BOD=∠D,∴CD∥AB,故A不符合题意;∵OF⊥OE,∴∠FOE=90°,∠DOF=35°,∴∠DOE=55°,∵OE平分∠BOD,∴∠DOB=2∠DOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故B不符合题意;∵∠BOE+∠AOF=90°,∴∠EOF=90°,但不能判断AB ∥CD ,故C 符合题意;∵OF ⊥OE ,∴∠FOE=90°,∠AOF=35°,∴∠BOE=55°,∵OE 平分∠BOD ,∴∠DOB=2∠BOE=110°,∵∠D=110°,∴∠DOB=∠D ,∴AB ∥CD ,故D 不符合题意;故选:C .【点睛】本题考查了角平分线的性质和平行线的判定定理,熟练掌握平行线的判定定理即可得到结论.2.D解析:D【解析】分析:由折叠可得:∠DGH=12∠DGE=74°,再根据AD ∥BC ,即可得到∠GHC=180°﹣∠DGH=106°.详解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=12∠DGE=74°. ∵AD ∥BC ,∴∠GHC=180°﹣∠DGH=106°.故选D .点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补. 3.B解析:B【详解】解:34∠∠=//AB CD ∴,①正确;12∠=∠//AD BC ∴,②不正确;5B ∠=∠//AB CD ∴,③正确;//AD BE5D ∴∠=∠B D ∠=∠5∴∠=∠B∴,④正确;//AB CD综上所述,①、③、④正确,故选B.4.A解析:A【解析】试题分析:根据对顶角相等可得∠3=∠1=100°,再根据两直线平行,同旁内角互补可得∠2=180°﹣∠3=180°﹣100°=80°.故答案选A.考点:平行线的性质.5.B解析:B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在△AEF中,在△AEF中,80°+2α+180-2β=180°故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B.【点睛】此题考查平行线的性质,解题关键是落脚于△AEF内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.6.B解析:B【解析】①若a与b相交,b与c相交,则a与c相交或平行,故本小题错误;②若a∥b,b∥c,则a∥c;根据平行公理的推论:如果两条直线都和第三条直线平行,那么两条直线也互相平行,上面说法正确;③过直线外一点有且只有一条直线与已知直线平行,故正确;④在平面内,两条直线的位置关系有平行和相交两种,故不正确.因此只有②③正确.故选:B.7.C解析:C【分析】先求出∠BOC,再由邻补角关系求出∠COD的度数.【详解】∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C.【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键.8.B解析:B【分析】根据全等三角形的判断定理逐项判断即可.【详解】解:①两边及其夹角对应相等的两个三角形全等,故该项错误;②两角及其中一角的对边对应相等的两个三角形全等,符合AAS定理,故该项正确;③有两条边和第三条边上的高对应相等的两个三角形不一定全等,有可能是锐角三角形,也有可能是钝角三角形,故该项错误;④面积相等的两个三角形不一定全等,因为形状可能不相同,故该项错误;⑤有两条直角边对应相等的两个直角三角形全等,符合ASA定理,故该项正确.故选:B.【点睛】此题主要考查对全等三角形的判定定理的掌握,正确理解判定定理是解题关键.9.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.10.C解析:C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.B解析:B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a =﹣2,b =﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a >b 时,3a =2b ,∴命题“若a >b ,则3a >2b ”为假命题,故选:B .【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.二、填空题13.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF的度数.14.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 15.27°.【解析】【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°解析:27°.【解析】【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-∠FAD=45°-(90°-∠AFD)=∠AFD,因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,所以∠ACD=∠AFD=(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-∠BCA=45°-18°=27°.故∠ACD的度数是:27°.【点睛】本题利用平行线、垂直、角平分线综合考查了角度的求解.16.130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情解析:130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;综上可知:∠β=50°或130°,故正确答案为:【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.17.520【解析】因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠解析:520【解析】因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠EFD′-∠AFE=116°-64°=52°,故答案为52°.18.40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴∠ACB=12∠BCD=40°,∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.19.60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答. 【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.20.60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:(1)如图1,,(两直线平行,同位角相等),(两直线平行,内错解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:PC OB PD OA,(1)如图1,//,//60AOBPDB∴=∠=∠︒(两直线平行,同位角相等),60PDBCPD∴=∠=∠︒(两直线平行,内错角相等);(2)如图2,//,//PC OB PD OA,60AOBPDB∴=∠=∠︒(两直线平行,同位角相等),180120C P BP DD∠=︒-∴∠=︒(两直线平行,同旁内角互补);综上,CPD∠的度数为60︒或120︒,故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.三、解答题21.(1)65°;(2)11 18022αβ︒-+【分析】(1)如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考彤彤思考问题的方法即可求∠BED的度数;(2)如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考彤彤思考问题的方法即可求出∠BED的度数.【详解】(1)如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;(2)如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣12α +12β. 答:∠BED 的度数为180°﹣12α +12β. 【点睛】 本题考查了平行线的判定与性质以及角平分线的定义,解决本题的关键是熟练掌握平行线的判定与性质.22.(1)145︒;(2)55︒;(3)2125PGN SNP NPG ∠+∠-︒=∠【分析】(1)过点F 作//FN AB ,根据AB ∥CD ,EF 垂直于FG ,∠FGD =125°可计算NFG ∠,EFN ∠,从而求算BEF ∠;(2)作//FN AB ,//HK AB 交MQ 于点K ,由(1)知55,=35NFG EFN ∠=︒∠︒,从而求算35AEF EHL ∠=∠=︒,再根据90EHM M ∠=∠+︒,设M x ∠=︒,利用外角求出MHL ∠,从而求算MQA ∠;(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,设SNP x ∠=︒ ,则NPI x ∠=︒ 设IPG y ∠=︒ ,则PGT y ∠=︒,从而表示PGN ∠,进而寻找数量关系.【详解】(1)过点F 作//FN AB ,如图:∵AB ∥CD ,EF 垂直于FG ,∠FGD =125°∴55,905535NFG EFN ∠=︒∠=︒-︒=︒∴180145BEF EFN ∠=︒-∠=︒(2)作//FN AB ,//HK AB 交MQ 于点K ,如图:由(1)知:55,905535NFG EFN ∠=︒∠=︒-︒=︒∴35AEF EHL ∠=∠=︒又∵90EHM M ∠=∠+︒,设M x ∠=︒∴90EHM x ∠=︒+︒∴903555MHL x x ∠=︒+︒-︒=︒+︒∴5555MKH MQA MHL M x x ∠=∠=∠-∠=︒+︒-︒=︒(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,如图:设SNP x ∠=︒ ,则NPI x ∠=︒设IPG y ∠=︒ ,则PGT y ∠=︒又∵125FGD ∠=︒∴125PGN y ∠=︒-︒∴2125PGN SNP NPG ∠+∠-︒=∠【点睛】本题考查平行线的性质综合,转化相关的角度是解题关键.23.(1) 150°;(2) ∠OCD+∠BO'E=240°;(3) 30°+12α.【分析】(1)先求出到∠AOE 的度数,再根据直角、周角的定义即可求解;(2)过O 点作OF//CD ,根据平行线的判定和性质可得∠OCD 、∠BO'E 的数量关系; (3)根据四边形内角和为360°,再结合(2)的结论以及角平分线的定义即可解答.【详解】解:(1)∵CD//OE ,∴∠AOE=∠OCD=120°,∴∠BOE=360°-90°-120°=150°;(2)如图2,过O 点作OF//CD ,∴CD//OE ,∴OF ∥OE ,∴∠AOF=180°-∠OCD ,∠BOF=∠EO'O=180°-∠BO'E ,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO'E=360°-(∠OCD+∠BO'E )=120°, ∴∠OCD+∠BO'E=240°;(3)∵CP 是∠OCD 的平分线,∴∠OCP=12∠OCD , ∴∠CPO'=360°-90°-120°-∠OCP=150°-12∠OCD =150°-12(240°-∠BO'E ) =30°+12α【点睛】本题考查了平行线的判定和性质、周角的定义、角平分线的定义,确定∠OCD、∠B0'E的数量关系是解答本题的关键.24.(1)见解析;(2)∠EPF+2∠EQF=360°;(3)∠P+3∠Q=360°.【分析】(1)首先过点P作PG∥AB,然后根据AB∥CD,PG∥CD,可得∠AEP=∠1,∠CFP=∠2,据此判断出∠AEP+∠CFP=∠EPF即可.(2)首先由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ;然后根据∠BEP的平分线与∠DFP的平分线相交于点Q,推得∠EQF=1(360)2EPF⨯︒-∠,即可判断出∠EPF+2∠EQF=360°.(3)首先由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ;然后根据∠BEQ=1 3∠BEP,∠DFQ=13∠DFP,推得∠Q=13×(360°﹣∠P),即可判断出∠P+3∠Q=360°.【详解】(1)证明:如图1,过点P作PG∥AB,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=12(∠BEP+∠DFP)=1[360()] 2AEP CFP︒-∠+∠=1(360)2EPF⨯︒-∠,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=13∠BEP,∠DFQ=13∠DFP,∴∠Q=∠BEQ+∠DFQ=13(∠BEP+∠DFP)=13[360°﹣(∠AEP+∠CFP)]=13×(360°﹣∠P),∴∠P+3∠Q=360°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.25.(1)60°;(2)当30t =秒或110秒时//BF 直线AE ;(3)BAC ∠和BCD ∠关系不会变化,2BAC BCD ∠=∠.【分析】(1)根据2BAM BAN ∠=∠得到60BAN ∠=︒,再根据直线平行的性质即可得到答案;(2)设灯转动t 秒,直线//BF 直线AE ,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出BAC ∠,再根据三角形内角和即可表示出BCD ∠,即可得到答案;【详解】解:(1)∵2BAM BAN ∠=∠180BAM BAN ∠+∠=︒,∴60BAN ∠=︒,∴QBA ∠60BAN =∠=︒(两直线平行,内错角相等)故结果为:60︒;(2)设灯转动t 秒,直线//BF 直线AE ,①当090t <<时,如图,//PQ MN ,PBF BFA ∴∠=∠,//AE BF ,EAM BFA ∴∠=∠,EAM PBF ∴∠=∠,21(30)t t ∴=⋅+,解得30t =;②当90180t <<时,如图,//PQ MN ,180PBF BFA ∴∠+∠=︒,//AE BF ,EAN BFA ∴∠=∠180PBF EAN ∴∠+∠=︒,1(30)(2180)180t t ∴⋅++-=,解得110t =,综上所述,当30t =秒或110秒时//BF 直线AE ;(3)BAC ∠和BCD ∠关系不会变化,理由:设射线AM 转动时间为m 秒,作//CH PQ ,//PQ MN ,////CH PQ MN ∴,2180QBC ∴∠+∠=︒,1180MAC ∠+∠=︒,21360QBC MAC ∴∠+∠+∠+∠=︒,180QBC m ∠=︒-,2MAC m ∠=,()123601802180BCA m m m ∴∠=∠+∠=---=︒︒-︒,而120ACD ∠=︒,()12012018060BCD BCA m m ︒︒∴∠=-∠=--=-︒︒,1802CAN m ∠=︒-,()18022120BAC QBA m m ︒︒∴∠=∠--=-,:2:1BAC BCD ∴∠∠=,即2BAC BCD ∠=∠,BAC ∴∠和BCD ∠关系不变.【点睛】本题主要考查了补角、角的运算、直线平行的性质和判定以及三角形的内角和定理,结合图形添加辅助线、分类讨论是解题的关键.26.(1)两直线平行,同旁内角互补;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)∠B +∠E +∠F +∠D =540°;(3)∠B +∠E +∠D -∠F =180°.【分析】(1)根据平行线的性质和判定,平行公理的推论回答即可;(2)过点E 、F 分别作GE ∥HF ∥CD ,根据两直线平行,同旁内角互补及已知条件求得同旁内角∠ABE +∠BEG =180°,得到AB ∥GE ,再根据平行线的传递性来证得AB ∥CD ; (3)过点E 、F 分别作ME ∥FN ∥CD ,根据两直线平行,内错角相等及已知条件求得同旁内角∠B +∠BEM =180°,得到AB ∥ME ,再根据平行线的传递性来证得AB ∥CD .【详解】解:(1)由题意可知:“依据1”:两直线平行,同旁内角互补;“依据2”: 同旁内角互补,两直线平行;“依据3”: 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)当∠B 、∠E 、∠F 、∠D 满足条件∠B +∠E +∠F +∠D =540°时,有AB ∥CD . 理由:如图,过点E 、F 分别作GE ∥HF ∥CD ,则∠GEF +∠EFH =180°,∠HFD +∠CDF =180°,∴∠GEF +∠EFD +∠FDC =360°;又∵∠B +∠BEF +∠EFD +∠D =540°,∴∠ABE +∠BEG =180°,∴AB ∥GE ,∴AB ∥CD ;(3)当∠B 、∠E 、∠F 、∠D 满足条件∠B +∠E +∠D -∠F =180°时,有AB ∥CD . 如图,过点E 、F 分别作ME ∥FN ∥CD ,则∠MEF =EFN ,∠D =∠DFN ,∵∠B +∠BEF +∠D -∠EFD =180°,∴∠B +∠BEM +∠MEF +∠D -∠EFN -∠DFN =180°,∴∠B +∠BEM =180°,∴AB ∥ME ,∴AB ∥CD .【点睛】本题考查平行线的判定和性质的综合应用,作出合适的辅助线,灵活运用平行线的性质定理和判定定理是解题的关键.27.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去); 综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.28.(1)C 的坐标为(0,4),点D 的坐标为(1,2);(2)①点E 的坐标为(1,3),F 的坐标为(0,3)或点E 的坐标为(0,1),F 的坐标为(1,1);②存在△PEF 的面积为2,点E 、F 两点的坐标为E (﹣,0)、F (,0),或E (,4)、F (﹣,4).【解析】【分析】(1)由点A和点C在y轴上确定出向右平移3个单位,再根据△ACD的面积求出向上平移的单位,然后写出点C、D的坐标即可.(2)①根据线段EF平行于线段OM且等于线段OM,得出2a+1=﹣2b+3,|a﹣b|=1,解答即可;②首先根据题意求出点P的坐标为(,2),设点E在F的左边,由EF∥x轴得出a+b=1,求出△PEF的面积=(b﹣a)×|2a+1﹣2|=2,得出(b﹣a)|2a﹣1|=4,当EF在点P 的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+b=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)即可.【详解】解:(1)∵A(﹣3,0),点C在y轴的正半轴上,∴向右平移3个单位,设向上平移x个单位,∵S△ACO=OA×OC=6,∴×3x=6,解得:x=4,∴点C的坐标为(0,4),﹣2+3=1,﹣2+4=2,故点D的坐标为(1,2).(2)①存在;理由如下:∵线段EF平行于线段OM且等于线段OM,∴2a+1=﹣2b+3,|a﹣b|=1,解得:a=1,b=0或a=0,b=1,即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在,理由如下:如图2所示:当点E、F重合时,,解得:,∴2a+1=2,∴点P的坐标为(,2),设点E在F的左边,∵EF∥x轴,∴2a+1=﹣2b+3,∴a+b=1,∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,即(b﹣a)|2a﹣1|=4,当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)得:E(﹣,0)、F(,0),或E(,4)、F(﹣,4);综上所述,存在△PEF的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E (,4)、F(﹣,4).【点睛】本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.。

(完整版)《相交线与平行线》单元测试卷含答案

(完整版)《相交线与平行线》单元测试卷含答案

第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°1 2 33.如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC. ∠B+∠ECB=180°D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为()A.向右平移1格再向下B.向右平移3格再向下C.向右平移2格再向下D.以上答案均可5.如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D.垂直于同一直线的两直线平行6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°7.同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是()A.a∥dB.a⊥cC.a⊥dD.b⊥d8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120 °B.130°C.140°D.150°9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°10.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()6 8 9 10二、填空题(每题3分,共21分)11.如图所示,某地一条小河的两岸都是直的,小明和小亮分别在河的两岸,他们拉紧了一根细绳,当测出∠1和∠2满足关系________时,河岸的两边才是平行的.12.同一个平面内的三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=________.13.在测量跳远成绩时,从落地点到起跳线所拉的皮尺应当与起跳线________.14.如图,在三角形ABC中,BC=5 cm,将三角形ABC沿BC方向平移至三角形A'B'C'的位置时,B'C=3 cm,则三角形ABC平移的距离为cm.11 14 1515.如图是我们常用的折叠式小刀,刀柄外形是一个长方形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图所示的∠1与∠2,则∠1与∠2的度数和是度.16.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=°.17.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2015个图案中有白色六边形地面砖块.三、解答题(22~24题每题9分,其余每题8分,共59分)18.如图,在一条公路l的两侧有A,B两个村庄.(1)现在镇政府为民服务,沿公路开通公共汽车,同时修建A,B两个村庄到公路的道路,要使两个村庄村民乘车最为方便,请你设计道路路线,在图中画出(标明①),并标出公共汽车停靠点的位置,说出你这样设计的理由;(2)为方便两村物流互通,A,B两村计划合资修建一条由A村到达B村的道路,要使两个村庄物流、通行最为方便,请你设计道路路线,在图中画出(标明②),说出你这样设计的理由.19.如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.20.如图,CD⊥AB,EF⊥AB,∠E=∠EMC,说明:CD是∠ACB的平分线.21.如图,已知点A,O,B在同一直线上,OC是从点O出发的任意一条射线,OD是∠AOC的平分线,OE是∠COB的平分线,试确定OD和OE的位置关系,并说明理由.22.如图,∠E=∠3,∠1=∠2,试说明:∠4+∠BAP =180°.23.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射时,入射光线与平面镜的夹角等于反射光线与平面镜的夹角(∠1=∠2,∠3=∠4).请说明为什么进入潜望镜的光线和离开潜望镜的光线是平行的.24.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(1)当动点P落在第①部分时,如图①,试说明:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,如图②,∠APB=∠PAC+∠PBD是否成立?若不成立,请说明理由.参考答案一、1.【答案】B 2.【答案】C3.【答案】B解:根据两直线平行,同位角相等,得出A正确;根据两直线平行,同旁内角互补,得出C正确;根据两直线平行,内错角相等,得出∠A=∠ACE,而∠ACE+∠B+∠ACB=180°,则∠A+∠B+∠ACB=180°.得出D正确.故选B.4.【答案】C5.【答案】C6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B二、11.【答案】∠1=∠212.【答案】4解:a=3,b=1.13.【答案】垂直14.【答案】215.【答案】9016.【答案】14017.【答案】8062三、18.解:(1)画图如图,P,Q即为公共汽车停靠点的位置垂线段最短;(2)画图如图,两点之间,线段最短.19.解:因为AB∥CD,所以∠ECD=∠A=37°,又因为DE⊥AE,所以∠CED=90°,所以∠D=180°-90°-37°=53°.20.解:因为CD⊥AB,EF⊥AB,所以CD∥EF(垂直于同一直线的两直线平行).相等),又因为∠E=∠EMC,所以∠BCD=∠ACD(等量代换).所以CD是∠ACB的平分线(角平分线定义).21.解:OD和OE互相垂直,即OD⊥OE.理由如下:因为点A,O,B在同一直线上,所以∠AOB=180°.又因为OD是∠AOC的平分线,OE是∠COB的平分线,所以∠DOC=∠AOC,∠COE=∠COB.所以∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB=×180°=90°,所以OD⊥OE.22.解:因为∠ENM=∠3(对顶角相等),∠E=∠3(已知),所以∠ENM=∠E(等量代换),所以AE∥HM(内错角相等,两直线平行).所以∠EAM=∠AMH(两直线平行,内错角相等).又因为∠1=∠2,所以∠EAM+∠1=∠AMH+∠2(等式性质),即∠BAM=∠AMC.所以AB∥CD(内错角相等,两直线平行).所以∠AMD+∠BAP=180°(两直线平行,同旁内角互补).因为∠4=∠AMD(对顶角相等),所以∠4+∠BAP=180°(等量代换).23.解:根据题意,作出如图所示的几何图形,已知:AB∥CD,∠1=∠2,∠3=∠4.试说明:EF∥GH.说明过程:因为AB∥CD(已知),所以∠2=∠3(两直线平行,内错角相等).又因为∠1=∠2,∠3=∠4,所以∠1=∠2=∠3=∠4.因为∠5=180°-(∠1+∠2),∠6=180°-(∠3+∠4),所以∠5=∠6,所以EF∥GH(内错角相等,两直线平行).即进入潜望镜的光线和离开潜望镜的光线是平行的.24.解:(1)如图①:过点P作MP∥AC,则MP∥BD,因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,①②(2)不成立.理由如下:如图②,过点P作MP∥AC,则MP∥BD, 因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,即:360°-∠APB=∠PAC+∠PBD.所以∠APB=∠PAC+∠PBD不成立.。

《相交线与平行线》单元测试题及答案

《相交线与平行线》单元测试题及答案

第二章相交线与平行线单元测试卷(含答案)(时间:45 分钟总分 100 分)一、选择题:(四个选项中只有一个是正确的,每题3 分,共30 分)1.下面各图中∠1 和∠2 是对顶角的是()2.下列说法正确的是()A.相等的角是对顶角B.两条直线的位置关系有相交和平行C.两直线平行,同旁内角相等D.同角的补角相等3.如图,CD⊥AB,垂足为D,则点A 到直线CD 的距离是()A.线段CA 的长B.线段CD 的长C.线段AD 的长D.线段AB 的长4.如图,下列说法正确的是()A.∠1 和∠B 是同旁内角B.∠1 和∠C 是内错角C.∠2 和∠B 是同位角D.∠3 和∠C 同旁内角5.如图,下列条件中不能判断直线a∥b 的是()A.∠1=∠2 B.∠3=∠4 C.∠2=∠3 D.∠5+∠6=180°6.如图,AB∥CD,CE⊥BD,则图中与∠1 互余的角有()A.1个B.2 个C.3 个D.4 个7.如图,下列判断错误的是()A.∵∠1=∠2,∴AE∥BD B.∵∠3=∠4,∴AB∥CDC.∵∠1=∠2,∴AB∥DE D.∵∠5=∠BDC,∴AE∥BD8.如图,AB∥CD∥EF,BC∥DE,则∠B 与∠E 的关系是()A.相等B.互余C.互补D.不能确定9.如图,AB∥CD,∠1=58°,FG 平分∠EFD,则∠FGB 的度数等于()A.122°B.151°C.116°D.97°10.如图,直线a∥b,直角三角形ABC 的顶点B 在直线a 上,∠C=90°,∠β=55°,则∠α的度数为()A.15°B.25°C.35°D.55°二.填空题:(将答案填在题目的横线上,每空3 分,共18 分)11.如图,∠1=∠2,∠4=58°,则∠3= 度;12.如图,AB∥CD,EF⊥CD 于点F,射线FN 交AB 于点M,∠NMB=57°,则∠EFN=;13.若一个角的余角是它的3 倍,则这个角的度数为;14.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD= ;15.如图,把矩形(长方形)ABCD 沿EF 对折,若∠1=40°,则∠AEF= ;16.老师在黑板上随便画了两条直线AB,CD 相交于点0,还作了∠BOC 的平分线OE 和CD 的垂线OF(如图),若∠DOE 被OB 分成2:3 两部分,则∠AOF 等于度;三、解答题:(写出必要的说明过程、解答步骤,共52 分)17.尺规作图:已知∠ABC,求作一个角等于∠ABC;(保留作图痕迹)(6 分)18.已知:如图,BE∥DF,∠B=∠D;试说明AD∥BC;(8 分)19.如图,直线EF,CD 相交于点O,OA⊥OB,且OC 平分∠AOF;若∠AOE=40°,求∠BOD 的度数;(9 分)20.推理填空:(9 分)如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD 与AB 的位置关系;解:∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠=90°()∴DG∥,∴∠2=∠,∵∠1=∠2(已知)∴∠1=∠()∴EF∥,∴∠AEF=∠()∵EF⊥AB,∴∠AEF=90°∴∠ADC=90°即:CD⊥AB.21.如图,BE 平分∠ABD,DE 平分∠BDC,DG 平分∠CDF,且∠1+∠2=90°,试说明BE∥DG;(9 分)22.已知一个角的两边与另一个角的两边分别平行,请结合图①②探索这两个角之间的关系;(11 分)(1)如图①,AB∥CD,BE∥DF,则∠1 与∠2 的关系是;(2)如图②,AB∥CD,BE∥DF,则∠1 与∠2 的关系是;并说明理由;(3)由此得出结论,如果两个角的两边分别平行,那么这两个角;(4)若两个角的两边分别平行,且一个角比另一个角的3 倍少60°,则这两个角分别为多少度?参考答案:1~10 CDCDB ACBBA 11.58;12.33°;13.22.5°;14.40°;15.110°;16.45°或90度;717.略;(参考课本P56 步骤5 的图)18.方法一:(利用同旁内角互补,两直线平行)∵BE∥DF(已知),∴∠B+∠BCD=180°(两直线平行,同旁内角互补)∵∠B=∠D(已知)∴∠D+∠BCD=180°(等量代换)∴AD∥BC (同旁内角互补,两直线平行)方法二:(利用三角形内角和等于180°)(略)19.∵OA⊥OB(已知)∴∠AOB=90°(垂直的定义)∵∠AOE=40°(已知)∴∠BOE=∠AOB-∠AOE=90°-40°=50°∵OC 平分∠AOF(已知)∴∠AOC = 1 ∠AOF =1 (∠EOF -∠AOE) =1 (1800- 400 ) = 7002 2 2∴∠BOD = ∠COD -∠AOC -∠AOB = 1800- 700- 900= 200∴∠BOD=20°20.按顺序分别填:BCA,垂直的定义,AC,ACD,ACD,等量代换,CD,ADC,两直线平行,同位角相等;21.方法一:通过证明∠E=∠EDG 得到;∵∠1+∠2=90°(已知)∴△BDE 中,∠E=180°-(∠1+∠2)=90°∵DE 平分∠BDC,DG 平分∠CDF(已知)∴∠EDG=∠EDC+∠CDG= 1 ∠BDC+ 1 ∠CDF =1 ∠BDF =1 ⨯1800= 9002 2 2 2∴∠E=∠EDG(等量代换)∴BE∥DG (内错角相等,两直线平行)方法二:通过证明∠1=∠3 得到;(略)22.(1)相等;(2)互补;∵AB∥CD(已知)∴∠1=∠3(两直线平行,内错角相等)∵BE∥DF(已知)∴∠2+∠3=180°(两直线平行,同旁内角互补)∴∠1+∠2=180°(等量代换)(3)相等或互补;(4)30°,30°;或60°,120°;解:设一个角为x,则另一个角为3x-60°,①由x=3x-60°得:x=30°,3x-60°=30°②由x+3x-60°=180°得:x=60°,3x-60°=120°∴这两个角分别30°,30°或60°,120°;。

七年级数学下册《相交线与平行线》单元测试卷(附答案)

七年级数学下册《相交线与平行线》单元测试卷(附答案)

七年级数学下册《相交线与平行线》单元测试卷(附答案)一、选择题(每题3分,共30分)1.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行2.如图,将一个含有30°角的直角三角尺放置在两条平行线a,b上.若∠1=135°,则∠2的度数为()A.95°B.110°C.105°D.115°3.如图,将△ABC沿BC方向平移1个单位得△DEF,若△ABC的周长等于10,则四边形ABFD 的周长为()A.12 B.10 C.9 D.84.下面四个图案中,能由如图经过平移得到的是()A.B. C. D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.平面内两两相交的3条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.4 B.5 C.6 D.以上都不对9.甲、乙、丙3人从图书馆各借了一本书(如下表所示),他们相约在每个星期天相互交换读完的书,经过数次交换后,他们都读完了这3本书.已知甲读的第三本书是乙读的第二本书,则丙读的第二本书是()甲乙丙书A书B书C A.书A B.书B C.书C D.无法确定10.下列各项正确的是()A.直线外一点到已知直线的垂线段叫做这点到直线的距离B.过一点有且只有一条直线与已知直线垂直C.同一平面内,两条直线的位置关系只有相交和平行两种D.有公共顶点且相等的两个角是对顶角二、填空题(每题3分,共24分)11.如图,已知∠1+∠2=180°,则图中与∠1相等的角共有_____个.12.如图,在图中标注的∠1、∠3、∠4、∠5中,当∠2 =∠_______时,AE∥BF.13.如图,已知a∥b,∠1=45°,则∠2=_________.14.“互补的两个角一定是同旁内角”是命题(填“真”或“假”).15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;5条直线两两相交,最多有10个交点;8条直线两两相交,最多有个交点.17.如图所示,l1∥l2,点A,E,D在直线l1上,点B,C在直线l2上,满足BD平分∠ABC,BD⊥CD,CE平分∠DCB,若∠BAD=128°,那么∠AEC=.18.如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E 交AF于点G,若∠CEF=70°,则∠GFD′=°.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,直线AB与CD相交于点O,OE平分∠BOC,∠AOD=110°,求∠AOE的度数.20.已知,如图a∥b,c∥d,∠1=73°,求∠2和∠3的度数.21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.完成下列画图(1)如图,将△ABC向右平移4个单位,再向上平移2个单位长度,得到△A′B′C′,线段AB 与A′B′位置及数量关系是.(2)如图,一辆汽车在笔直的公路AB上由A向B行驶,M、是位于公路AB一侧的村庄.设汽车行驶到点P时,离村庄M的距离最小,请在图中公路AB上画出点P的位置,并说明数学原理.24.在ABC 中,D 是BC 边上一点,且CDA CAB ∠=∠,MN 是经过点D 的一条直线.(1)若直线MN AC ⊥,垂足为点E . ①依题意补全图1.②若70,CAB ︒∠=20DAB ︒∠=,则CAD ∠=________,CDE ∠=________. (2)如图2,若直线MN 交AC 边于点F ,且CDF CAD ∠=∠,求证:FD AB ∥.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CCABCDAAAC二、填空题:11.312.413.45°. 解析:∵a∥b,∠1=45°,∴∠2=∠1=45°.14.解:如图,∠1=∠2=90°,∵∠1+∠2=180°,∴∠1与∠2互补,但它们是一对内错角,不是同旁内角,∴“互补的两个角一定是同旁内角”是假命题,故答案为:假.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:∵由已知总结出在同一平面内,n条直线两两相交,则最多有个交点,∴8条直线两两相交,交点的个数最多为=28.故答案为:28.17.【分析】根据平行线的性质和角平分线的性质,可以得到∠AEC的度数,本题得以解决.【解答】解:∵l1∥l2,∴∠BAD+∠ABC=180°,∵∠BAD=128°,∴∠ABC=52°,∵BD平分∠ABC,∴∠DBC=26°,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=64°,∵CE平分∠DCB,∴∠ECB=32°,∵l1∥l2,∴∠AEC+∠ECB=180°,∴∠AEC=148°,故答案为:148°.【点评】本题考查平行线的性质、角平分线的性质、垂线,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】由AD∥BC可得∠AFE=∠CEF,∠CEF+∠DFE=180°,由翻折可得∠D'FE=∠DFE,进而求解.【解答】解:∵AD∥BC,∴∠AFE=∠CEF=70°,∵∠CEF+∠DFE=180°,∴∠DFE=180°﹣∠CEF=110°,由翻折可得∠D'FE=∠DFE=110°,∴∠GFD'=∠D'FE﹣∠AFE=110°﹣70°=40°,故答案为:40.【点评】本题考查角的相关计算,解题关键是掌握平行线的性质.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.【答案】解:∵∠AOD=110°,∴∠COB=110°,∠AOC=70°,∵OE平分∠BOC,∴∠COE=55°,∴∠AOE=70°+55°=125°.故答案为:∠AOE=125°.20.【答案】解:∵a∥b,∴∠1=∠2=73°,∵c∥d,∴∠3=180°-73°=107°.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B ,∴∠2+∠5+∠6=3∠B +∠B +∠B =180°, ∴∠B =36°, ∴∠2=108°, ∵∠1+∠2=180°, ∴∠1=72°.23.(1)解:如图,△A ′B ′C ′即为所求作;线段AB 与A ′B ′位置及数量关系分别是平行且相等, 故答案为:平行且相等. (2)解:如图,点P 即为所求.数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短, 24.(1)①如图所示.②70,CAB ︒∠=20DAB ︒∠=,50CAD ︒∴∠=.70CDA CAB ︒∠=∠=,18060C CAD CDA ︒︒∴∠=-∠-∠=.DE AC ⊥,第 11 页 共 11 页 9030CDE C ︒︒∴∠=-∠=. 故答案为50,︒30︒.(2)CDA CAB ∠=∠, 且,CDA CDF ADF ∠=∠+∠CAB CAD BAD ∠=∠+∠, CDF ADF CAD BAD ∴∠+∠=∠+∠. ,CDF CAD ∠=∠,ADF BAD ∴∠=∠FD AB ∴∥.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FDO 1M2N一、填空题相交线与平行线 单元测试1. a 、b 、c 是直线,且 a ∥b ,b ⊥c ,则 a 与 c 的位置关系是.2. 如图 5-1,MN ⊥AB ,垂足为 M 点,MN 交 CD 于 N ,过 M 点作 MG ⊥CD ,垂足为 G ,EF 过点 N 点,且 EF ∥AB ,交 MG 于 H 点,其中线段 GM 的长度是 到 的距离, 线段 MN的长度是到 的距离,又是 的距离,点 N 到直线 MG 的距离是.AC E图 5-1FDC图 5-23. 如图 5-2,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有个,分别是.4. 因为 AB ∥CD ,EF ∥AB ,根据,所以 .5. 命题“等角的补角相等”的题设,结论是.6. 如图 5-3,给出下列论断:①AD ∥BC :②AB ∥CD ;③∠A =∠C .以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是 .aABb C ECcl图 5-3图 5-4图 5-52 17. 如图 5-4,直线 AB 、CD 、EF 相交于同一点 O ,而且∠B O C= ∠AOC ,∠DOF = ∠AOD ,那么∠FOC =33_度.8.如图 5-5,直线 a 、b 被 c 所截,a ⊥l 于 M ,b ⊥l 于 N ,∠1=66°,则∠2=.9. 如图 5-6,∠ACB =90°,CD ⊥AB ,则图中与∠A 互余的角有个,它们分别是.∠A =∠,根据是 .10. 如图 5-7,一棵小树生长时与地面所成的角为 80°,它的根深入泥土,如果根和小树在同一条直线上,那么∠2 等于°.11. 如 图 5-8, 量 得 ∠ 1=80° , ∠ 2=80° , 由 此 可 以 判 定 ∥, 它 的 根 据是.BMG NH图1图3CA180°EADBG 1 3 C F 42 H 2B 图 5-6图 5-7D图 5-8量得∠3=100°,∠4=100°,由此可以判定∥ ,它的根据是 .12. 猜谜语:(打本章两个几何名称)剩下十分钱: ;斗牛.13. a 、b 、c 是直线,且 a ∥b , b ∥c , 则 ac ; a 、b 、c 是直线,且 a ⊥b , b ⊥c , 则 ac ;14.如图 5-9,直线 AD 、BC 交于 O 点, ∠AOB + ∠COD = 110︒ ,则∠COD 的度数为.CEADAOBCFDD图 5-9图 5-10 图 5-1115. 如图 5-10,直线 AB 与 CD 交于 O 点, ∠3 - ∠1 = 80︒,则∠2 =.16. 如图 5-11,直线 AB 、EF 相交于 O 点, CD ⊥AB 于 O 点, ∠EOD = 128︒19' ,则∠BOF , ∠AOF 的度数分别为 .二、选择题17. 若 a ⊥b ,c ⊥d 则 a 与 c 的关系是( )A .平行B .垂直C .相交D .以上都不对18.如图 5-12,∠ADE 和∠CED 是( )A .同位角B .内错角C .同旁内角D . 互 为 补 角19.如图 5-13, l 1 / /l 2 ,∠1 = 105 ,∠2 = 140 ,则∠= () A . 55B . 60C . 65D . 70B OCA42O31BCBD21O Cl 1El 2BC图 5-12图 5-13图 5-1420. 如图 5-14,能与∠构成同旁内角的角有( )A . 5 个B .4 个C . 3 个D . 2 个21.如图 5-15,已知 AB / /CD , ∠等于( )A . 75B . 80C . 85D . 95A B 120°α25° CDBMCA N P D图 5-15图 5-1622. 如图 5-16, AB / /CD ,MP / / AB ,MN 平分 ∠AMD ,∠A = 40 ,∠D = 30 , 则 ∠NMP 等于( )A . 10B . 15C . 5D . 7.523.如果两个角的两边分别平行,而其中一个角比另一个角的 4 倍少30 ,那么这两个角是()A . 42 、138B . 都是10C . 42 、138 或42 、10D . 以上都不对24.如图 5-17,a ∥b ,∠1 与∠2 互余,∠3=1150,则∠4 等于()A .1150B . 1550C . 1350D .1250cda 21 43bAADB图 5-17图 5-18图 5-1925.如图 5-18,∠1=150 , ∠AOC =900,点 B 、O 、D 在同一直线上,则∠2 的度数为()A .750B .150C .1050D . 1650A D1 α2α26.如图5-19,能表示点到直线(或线段)距离的线段有()A.2 条B.3 条C.4 条D.5 条27.下列语句错误的是()A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等28.如图5-20,如果AB∥CD,那么图中相等的内错角是()A.∠1 与∠5,∠2 与∠6;B.∠3 与∠7,∠4 与∠8;C.∠5 与∠1,∠4 与∠8;D.∠2 与∠6,∠7 与∠3图5-2029.下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A.①、②是正确的命题B.②、③是正确命题C.①、③是正确命题D.以上结论皆错30.下列与垂直相交的洗法:①平面内,垂直于同一条直线的两条直线互相平行;②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内,一条直线不可能与两条相交直线都垂直,其中说法错误个数有()A.3 个B.2 个C.1 个D.0 个三、解答题31.如图5-21,过P 点,画出OA、OB 的垂线.2.图5-2132.如图5-22,过P 点,画出AB、CD 的垂线.3. BA P A BC D图5-22图5-2333.如图5-23,是一条河,C 河边AB 外一点:(1)过点C 要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C 处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)FC E AF D2AB134. 如图 5-24,AB ⊥BD ,CD ⊥MN ,垂足分别是 B 、D 点,∠FDC =∠EBA .(1) 判断 CD 与 AB 的位置关系; (2) BE 与 DE 平行吗?为什么?35.如图 5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF .(1) AE 与 FC 会平行吗?说明理由. (2) AD 与 BC 的位置关系如何?为什么? (3) BC 平分∠DBE 吗?为什么.MBN图 5-24C图 5-2536.如图 5-26,已知:CE =DF ,AC =BD , ∠ 1= ∠ 2.求证: ∠ A = ∠ B .EFA37. 如图 5-27,已知:AB //CD ,AB =CD ,求证:AC 与 BD 互相平分. 1 2CD B图 5-26ADOB C图 5-2638. 如图 5-27,已知:E 、F 分别是 AB 和 CD 上的点,DE 、AF 分别交 BC 于 G 、H , ∠ A = ∠ D , ∠ 1= ∠ 2,求证: ∠ B = ∠ C .ED E F图5-2739.如图5-28,已知:在∆ABC 中,∠C = 90︒,AC=BC,BD 平分∠CBA,DE⊥AB 于E,求证:AD+DE=BE.CA B图5-2840.如图5-29,已知:AB//CD,求证:∠B+ ∠D+ ∠BED= 360︒(至少用三种方法)图5-29⎩ ⎩参考答案一、填空题 1. 互相垂直 2. 点 M ,直线 CD 点 M ,直线 EF 平行线 AB 、EF 间 线段 GN 的长度 3.4 个 ∠EOB 、 ∠DOF 、 ∠ABD 、 ∠CBD 4.两条直线都与第三条直线平行,这两条直线也互相平行 CD ∥EF 5.两个角是相等两角的补角 这两个角相等6.如果一个四边形的两组对边平行,那么它的对角相等;或若一个四边形的一组对边平行,一组对角相等, 那么它的另一组对边也互相平行7.156 8.114°9.两;∠ACD 和∠B;∠BCD;同角的余角相等 10.10°11. AB ∥CD;同位角相等,两直线平行;EF ∥GH;内错角相等,两直线平行 12. 余角;对顶角 13.∥;∥14. 55︒ (点拨: ∠AOB = ∠COD ∴ ∠AOB = ∠COD = 55︒ )⎧∠3 + ∠1 = 180︒ 15. 50︒ (点拨: ⎨∠3 - ∠1 = 80︒ ⎧∠1 = 50︒,∴ ⎨∠3 = 130︒ ,又 ∠1 = ∠2 ∴∠2 = 50︒ )16. 38︒19' ;141︒41'(点拨: ∠AOD = 90︒∴ ∠AOE = ∠EOD - ∠AOD = 128︒19' - 90︒ = 38︒19',∴∠BOF = ∠AOE = 38︒19' ,又 ∠BOF + ∠AOF = 180︒ , ∴∠AOF = 180︒ - 38︒19' = 141︒41' )二、选择题 17.C 18.B 19.C 20.A 21.C 22.C 23.D 24.B 25.C 26.D 27.C 28.D 29.A 30.D三、解答题 31.如图 5-12. A答图5-132.如图5-233.略.34.(1)CD∥AB因为CD⊥MN,AB⊥MN,所以CDN=∠ABM=90°所以CD∥AB(2)平行因为∠CDN=∠ABN=90°,∠FDC=EBA所以∠FDN=∠EBN所以FD∥EB35.(1)平行因为∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义)所以∠1=∠CDB所以AE∥FC(同位角相等两直线平行)(2)平行,因为AE∥CF,所以∠C=∠CBE(两直线平行,内错角相等)又∠A=∠C 所以∠A=∠CBE所以AF∥BC(两直线平行,内错角相等)(3)平分因为DA 平分∠BDF,所以∠FDA=∠ADB因为AE∥CF,AD∥BC所以∠FDA=∠A=∠CBE,∠ADB=∠CBD所以∠EBC=∠CBD36.证明:O P B1. APO B3. BA PC答图5-2⎨∠1 = ∠2(已知)∴ ∠ECB = ∠FDA (等角的补角相等) AC = BD (已知) ∴ AC + CD = BD + CD 即AD = BC在∆ADF 和∆BCE 中,⎧DF = CE (已知) ⎪∠FDA = ∠ECB (已证) ⎪⎩AD = BC (已证) ∴ ∆ADF ≅ ∆BCE (SAS )∴ ∠A = ∠B (全等三角形的对应角相等) 37. 证明: AB / /CD (已知)∴ ∠BAO = ∠DCO ,∠ABO = ∠CDO (两直线平行,内错角相等) 在∆ABO 和∆CDO 中⎧∠BAO = ∠DCO (已证) ⎪⎨ AB = CD (已知)⎪⎩∠ABO = ∠CDO (已证) ∴ ∆ABO ≅ ∆CDO (ASA )∴ AO = CO ,BO = DO (全等三角形对应边相等)即 AC 与 BD 互相平分. 38. 证明: ∠1 = ∠2(已知)∠1 = ∠AHB (对顶角相等) ∴ ∠2 = ∠AHB (等量代换)∴ AF / / ED (同位角相等,两直线平行) ∴ ∠D = ∠AFC (两直线平行,同位角相等) 又 ∠A = ∠D (已知) ∴ ∠A = ∠AFC (等量代换)∴ AB / /CD (内错角相等,两直线平行) ∴ ∠B = ∠C (两直线平行,内错角相等) 39. 证明: BD 平分∠CBA (已知)∴ ∠EBD = ∠CBD (角平分线的定义) DE ⊥AB (已知)∴ ∠DEB = 90︒ (垂直的定义) ∠C = 90︒ (已知) ∴ ∠DEB = ∠C (等量代换) 在∆DEB 和∆DCB 中⎨ ⎧∠DEB = ∠C (已证) ⎪∠EBD = ∠CBD (已证) ⎪⎩DB = DB (公共边) ∴ ∆DEB ≅ ∆DCB (AAS )∴ DE = DC ,BE = BC (全等三角形的对应边相等) AD + DC = AC = BC (已知) ∴ AD + DE = BE (等量代换) 40. 证明:(1)连结 BD ,如图 5-3AB / /CD (已知)∴ ∠ABD + ∠CDB = 180︒ (两直线平行,同旁内角互补) ∠1 + ∠2 + ∠BED = 180︒ (三角形内角和为180︒ ) ∴ ∠ABD + ∠1 + ∠CDB + ∠2 + ∠BED = 360︒ 即∠ABE + ∠CDE + ∠BED = 360︒(2) 延长 DE 交 AB 延长线于 F ,如图 5-4AB / /CD (已知)∴ ∠F + ∠D = 180︒ (两直线平行,同旁内角互补) ∠ABE = ∠FEB + ∠F ,∠BED = ∠FBE + ∠F (三角形一个外角等于和它不相邻的两个内角的和) ∴ ∠ABE + ∠CDE + ∠BED= ∠FEB + ∠F + ∠CDE + ∠FBE + ∠F= 180︒+180︒= 360︒ (3) 过点 E 作 EF//AB ,如图 5-5AB / /CD∴AB / / EF / /CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∴∠B +∠BEF = 180︒∠D +∠DEF = 180︒(两直线平行,同旁内角互补)∴∠B +∠BEF +∠D +∠DEF = 180︒+180︒= 360︒∴∠B +∠D +∠BED = 360︒- 11 -。

相关文档
最新文档