无标度网络及MATLAB建模

合集下载

无标度网络模型构造

无标度网络模型构造

课题:无标度网络模型构造姓名赵训学号201026811130班级实验班1001一、源起无标度网络(或称无尺度网络)的概念是随着对复杂网络的研究而出现的。

“网络”其实就是数学中图论研究的图,由一群顶点以及它们之间所连的边构成。

在网络理论中则换一套说法,用“节点”代替“顶点”,用“连结”代替“边”。

复杂网络的概念,是用来描述由大量节点以及这些节点之间错综复杂的联系所构成的网络。

这样的网络会出现在简单网络中没有的特殊拓扑特性。

自二十世纪60年代开始,对复杂网络的研究主要集中在随机网络上。

随机网络,又称随机图,是指通过随机过程制造出的复杂网络。

最典型的随机网络是保罗·埃尔德什和阿尔弗雷德·雷尼提出的ER模型。

ER模型是基于一种“自然”的构造方法:假设有个节点,并假设每对节点之间相连的可能性都是常数。

这样构造出的网络就是ER模型网络。

科学家们最初使用这种模型来解释现实生活中的网络。

ER模型随机网络有一个重要特性,就是虽然节点之间的连接是随机形成的,但最后产生的网络的度分布是高度平等的。

度分布是指节点的度的分布情况。

在网络中,每个节点都与另外某些节点相连,这种连接的数目叫做这个节点的度。

在网络中随机抽取一个节点,它的度是多少呢?这个概率分布就称为节点的度分布。

在一般的随机网络(如ER模型)中,大部分的节点的度都集中在某个特殊值附近,成钟形的泊松分布规律(见下图)。

偏离这个特定值的概率呈指数性下降,远大于或远小于这个值的可能都是微乎其微的,就如一座城市中成年居民的身高大致的分布一样。

然而在1998年,Albert-László Barab ási、Réka Albert等人合作进行一项描绘万维网的研究时,发现通过超链接与网页、文件所构成的万维网网络并不是如一般的随机网络一样,有着均匀的度分布。

他们发现,万维网是由少数高连接性的页面串联起来的。

绝大多数(超过80%)的网页只有不超过4个超链接,但极少数页面(不到总页面数的万分之一)却拥有极多的链接,超过1000个,有一份文件甚至与超过200万个其他页面相连。

如何使用MATLAB进行网络分析与建模

如何使用MATLAB进行网络分析与建模

如何使用MATLAB进行网络分析与建模网络分析与建模是数据科学领域中的重要研究方法之一,它涉及到了计算机科学、数学、统计学等多个学科领域。

而在现代信息爆炸的时代,网络数据的规模和复杂性不断增加,对于分析和建模工具的要求也越来越高。

MATLAB作为一个强大的数学计算软件,提供了丰富的功能和工具,可以帮助我们进行网络分析与建模。

本文将介绍如何使用MATLAB进行网络分析与建模。

第一部分:网络分析基础网络分析是研究网络结构、功能和演化规律的一种方法。

在网络分析中,我们通常需要描述网络的拓扑结构、节点与边的关系、节点的属性等信息。

而MATLAB提供了一些常用的工具和函数,可以方便地进行网络分析。

首先,我们需要将网络数据导入到MATLAB中。

MATLAB支持导入各种格式的网络数据,如邻接矩阵、边列表、节点属性等。

使用MATLAB的数据导入和读取函数,我们可以将网络数据转换成MATLAB中的矩阵或表格,方便后续的分析和建模。

其次,我们可以使用MATLAB提供的函数和工具来计算网络的基本属性,如网络的度分布、聚类系数、平均路径长度等。

这些属性可以帮助我们了解网络的结构和功能,并进行比较和分类。

MATLAB还提供了可视化工具,可以直观地展示网络的拓扑结构和属性分布。

第二部分:网络建模与预测网络建模是研究网络演化和行为规律的关键内容。

借助MATLAB的数学建模和机器学习工具,我们可以构建各种网络模型,并使用这些模型来预测网络的演化和行为。

常用的网络建模方法包括随机网络模型、小世界网络模型、无标度网络模型等。

我们可以使用MATLAB的随机数生成函数和图论工具,生成各种类型的网络模型,并进行参数调节和性能评估。

此外,MATLAB还提供了机器学习和深度学习工具箱,可以用于网络模型的训练和预测。

网络预测是网络分析与建模的重要应用之一。

通过分析网络的演化规律和行为模式,我们可以预测网络的未来走向和趋势。

MATLAB提供了一些预测模型和函数,如时间序列分析、回归分析、神经网络等。

无标度网络matlab建模

无标度网络matlab建模

复杂系统无标度网络研究与建模XXX南京信息工程大学XXXX系,南京 210044摘要:21世纪是复杂性的世界,基于还原论的世界观与方法论已经无法满足当前人们对作为一个整体系统的自然界和人类社会的认识和研究,利用系统科学的方法对科学重新审视已近变为迫切的需要。

现实生活中众多复杂网络都具有无标度性,这种无标度网络的增长性和择优连接性很好的解释了富者越富的“马太效应”。

对无标度网络的深入研究,让人们深刻的认识到其在Internet、地震网、病毒传播和社会财富分布网中的理论与现实意义。

本文通过对复杂网络中的无标度网络的分析与研究,介绍了无标度网络区别于一般随机网络的特性与现实意义,并利用了Matlab生成了一个无标度网络。

关键词:无标度网络,幂律特性,模型建立1 引言任何一种网络都可以看作是由一些节点按某种方式连接在一起而构成的一个系统,曾经关于网络结构的研究常常着眼于包含几十个到几百个节点的网络,而近几年关于复杂网络的研究中则常常可以见上万个节点的网络,网络规模尺度上的改变也促使网络分析方法做相应的改变,而复杂网络是近年来随着网络规模、理论和计算机技术的飞速发展而出现的一个新的研究方向。

它的出现不仅顺应了现代科技的发展趋势,而且反映了在以信息科学为支柱的新世纪中,各学科理论及应用交叉、渗透和融合的发展趋势[1]。

复杂系统主要研究其个体之间相互作用所产生的系统的整体性质与行为“复杂系统的复杂性体现在系统的整体性质与行为往往不是系统各个个体的状态的简单综合”因此,复杂系统的研究不能采用还原论的方法,而要从整体上进行研究。

在对复杂系统的研究中,美国物理学家Barabasi和Albert通过对万维网的研究,发现万维网中网页连接的度分布服从幂律分布,而万维网中少数网页(Hub点)具有非常大的连接,大多数网页的连接数甚小Barabasi等把度分布为幂律分布(Power law)的复杂网络称为无标度网络(scale-free net)[2]。

matlab数学建模100例

matlab数学建模100例

matlab数学建模100例Matlab是一种强大的数学建模工具,广泛应用于科学研究、工程设计和数据分析等领域。

在这篇文章中,我们将介绍100个使用Matlab进行数学建模的例子,帮助读者更好地理解和应用这个工具。

1. 线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合直线。

2. 多项式拟合:使用Matlab拟合一组数据点,得到最佳拟合多项式。

3. 非线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合曲线。

4. 插值模型:使用Matlab根据已知数据点,估计未知数据点的值。

5. 数值积分:使用Matlab计算函数的定积分。

6. 微分方程求解:使用Matlab求解常微分方程。

7. 矩阵运算:使用Matlab进行矩阵的加减乘除运算。

8. 线性规划:使用Matlab求解线性规划问题。

9. 非线性规划:使用Matlab求解非线性规划问题。

10. 整数规划:使用Matlab求解整数规划问题。

11. 图论问题:使用Matlab解决图论问题,如最短路径、最小生成树等。

12. 网络流问题:使用Matlab解决网络流问题,如最大流、最小费用流等。

13. 动态规划:使用Matlab解决动态规划问题。

14. 遗传算法:使用Matlab实现遗传算法,求解优化问题。

15. 神经网络:使用Matlab实现神经网络,进行模式识别和预测等任务。

16. 支持向量机:使用Matlab实现支持向量机,进行分类和回归等任务。

17. 聚类分析:使用Matlab进行聚类分析,将数据点分成不同的类别。

18. 主成分分析:使用Matlab进行主成分分析,降低数据的维度。

19. 时间序列分析:使用Matlab进行时间序列分析,预测未来的趋势。

20. 图像处理:使用Matlab对图像进行处理,如滤波、边缘检测等。

21. 信号处理:使用Matlab对信号进行处理,如滤波、频谱分析等。

22. 控制系统设计:使用Matlab设计控制系统,如PID控制器等。

Matlab中的网络分析与复杂系统建模

Matlab中的网络分析与复杂系统建模

Matlab中的网络分析与复杂系统建模随着科技的进步和数据的爆炸性增长,网络分析和复杂系统建模成为了解决现实世界问题的有力工具。

Matlab作为一种强大的数值计算软件,提供了丰富的工具和函数,可以应用于网络分析和复杂系统建模领域。

本文将探讨Matlab在这两个领域的应用。

一、网络分析网络分析是研究网络结构和节点之间关系的领域。

在现实生活中,许多复杂的系统可以被抽象成网络,如社交网络、互联网、蛋白质相互作用网络等。

Matlab为网络分析提供了丰富的函数库,可以进行网络的建模、分析和可视化。

首先,Matlab提供了一些常用的网络模型生成函数,如随机图模型、小世界网络模型和无标度网络模型。

这些函数可以根据用户的需求生成具有特定结构的网络,从而帮助用户更好地理解和研究网络的特性和行为。

其次,Matlab提供了一些网络分析的基本函数,如节点度分布、网络直径、平均最短路径等。

这些函数可以帮助用户对网络进行定量分析,了解网络的全局特征和局部特征,比如网络的连通性、紧密度和集聚系数等。

此外,Matlab还支持网络的可视化,用户可以通过绘制网络图来展示网络的结构和关系。

除了基本的网络分析函数,Matlab还提供了一些高级的网络分析工具,如社区检测、节点重要性度量和网络动力学模拟。

社区检测可以将网络分割成不同的子图,每个子图代表一个社区,帮助用户理解网络中的组织结构和功能模块;节点重要性度量可以评估网络中节点的重要程度,从而帮助用户找到关键节点和中心节点;网络动力学模拟可以模拟网络的演化和传播过程,帮助用户研究网络的时序性和动态性。

二、复杂系统建模复杂系统建模是研究复杂系统行为和性质的领域。

复杂系统往往由大量的相互作用的组件组成,如天气系统、金融市场和生态系统等。

Matlab作为一种数值计算软件,提供了丰富的工具和函数,可以用于构建和分析复杂系统的数学模型。

在复杂系统建模中,Matlab可以用于构建系统的数学模型,包括微分方程、差分方程和代数方程等。

Matlab与复杂网络理论的交叉研究与应用

Matlab与复杂网络理论的交叉研究与应用

Matlab与复杂网络理论的交叉研究与应用引言近年来,随着互联网的迅猛发展和数据科学的兴起,复杂网络理论作为解析网络结构与功能的一种新兴方法得到了广泛关注。

而Matlab作为一种强大的数值计算和可视化分析工具,正逐渐被应用于复杂网络理论的研究与实践中。

本文将探讨Matlab与复杂网络理论的交叉研究与应用,并通过几个具体的案例来展示其在不同领域中的广泛应用。

复杂网络理论简介复杂网络理论研究的是由大量节点和边构成的复杂网络的结构和性质。

复杂网络可以用于描述各种复杂系统,如社交网络、蛋白质相互作用网络、脑神经网络等。

通过复杂网络理论的研究,我们可以揭示网络的拓扑结构、节点之间的相互关系以及网络的功能等重要信息。

Matlab在复杂网络理论研究中的应用1. 复杂网络模型的构建与分析Matlab提供了丰富的工具箱和函数,可以方便地构建各种复杂网络模型,并对网络的拓扑结构进行分析。

例如,通过使用Matlab中的Graph对象和相关函数,我们可以构建随机网络模型、无标度网络模型、小世界网络模型等,并计算网络的度分布、聚集系数、平均最短路径长度等网络指标。

这些指标可以帮助我们理解网络的特性和行为。

2. 复杂网络的动力学模拟与分析复杂网络的动力学模拟是复杂网络理论中的重要问题之一。

Matlab提供了优秀的数值求解和模拟工具,可以方便地对复杂网络的动力学进行模拟与分析。

例如,我们可以使用Matlab中的差分方程求解器和常微分方程求解器,对复杂网络的节点动态行为进行模拟,从而研究网络的同步、稳定性和干扰传播等动力学行为。

3. 复杂网络的可视化与图形分析Matlab具有强大的数据可视化和图形分析功能,可以帮助我们直观地理解和分析复杂网络。

通过Matlab的图形绘制函数和工具箱,我们可以将网络的拓扑结构和节点属性以图形的形式展示出来,从而帮助我们观察网络的模式、结构分布规律以及节点的重要性等。

同时,Matlab还提供了基于图的分析工具,如最大连通子图、最短路径查找等,便于我们对复杂网络进行进一步的分析。

MATLAB中的神经网络模型构建与训练

MATLAB中的神经网络模型构建与训练

MATLAB中的神经网络模型构建与训练神经网络模型是一种模拟人脑神经元活动的数学模型,其可以用于进行各种复杂的数据分析和问题求解。

在MATLAB中,我们可以利用其强大的工具和函数来构建和训练神经网络模型。

本文将介绍MATLAB中神经网络模型的构建过程及其相关训练方法。

一、神经网络模型简介神经网络模型是由一系列相互连接的神经元组成的网络结构。

每个神经元都有多个输入和一个输出,输入通过权重被加权后,经过激活函数激活输出。

神经网络可以分为三层:输入层、隐藏层和输出层。

输入层接收原始数据,隐藏层进行信息处理和特征提取,而输出层给出最终结果。

二、神经网络构建在MATLAB中,可以通过Neural Network Toolbox来构建神经网络。

首先,我们需要确定网络结构,包括输入层神经元数、隐藏层神经元数和输出层神经元数。

接下来,我们调用network函数来创建一个空的神经网络对象。

```matlabnet = network;```然后,我们可以通过net的属性来设置神经网络的各个参数,如输入层的大小、隐藏层的大小、激活函数等。

```matlabnet.numInputs = 1; % 设置输入层神经元数net.numLayers = 2; % 设置网络层数net.biasConnect = [1; 1]; % 设置偏置net.inputConnect = [1; 0]; % 设置输入连接yerConnect = [0 0; 1 0]; % 设置层连接net.outputConnect = [0 1]; % 设置输出连接yers{1}.size = 10; % 设置隐藏层神经元数yers{1}.transferFcn = 'tansig'; % 设置激活函数yers{2}.transferFcn = 'purelin'; % 设置激活函数```上述代码中,我们设置了一个具有10个隐藏层神经元的神经网络,其输入和输出分别为1个。

利用Matlab进行神经科学研究和大脑连接分析

利用Matlab进行神经科学研究和大脑连接分析

利用Matlab进行神经科学研究和大脑连接分析引言:神经科学是一门研究大脑和神经系统的学科,它试图理解神经元如何工作以及它们之间的连接方式。

近年来,随着计算机和数据分析技术的快速发展,研究人员开始借助计算机编程和数据处理工具进行神经科学研究,并获得了许多重要的发现。

在这篇文章中,我们将重点讨论利用Matlab进行神经科学研究和大脑连接分析的方法和技术。

一、Matlab在神经科学中的应用Matlab是一种流行的科学计算和数据分析软件,它提供了丰富的工具和函数,方便研究人员进行各种科学实验和数据分析。

在神经科学研究中,Matlab被广泛应用于数据处理、模型建立和可视化等方面。

1. 数据处理神经科学研究中经常需要处理大量的数据,包括脑电图(EEG)、功能磁共振成像(fMRI)和神经元活动记录等。

Matlab提供了丰富的数据处理函数和工具箱,方便研究人员处理和分析这些数据。

例如,可以使用Matlab对脑电图数据进行预处理,包括信号滤波、通道去噪和伪迹去除等,以提取有用的信息。

2. 模型建立神经科学研究中常常需要建立数学模型来描述和解释神经系统的工作原理。

Matlab提供了强大的数学建模和仿真功能,可以方便地构建和调整神经网络模型、神经元活动模型等。

研究人员可以使用Matlab进行模型参数估计、模拟实验和模型验证,以帮助理解大脑的工作机制。

3. 可视化Matlab提供了丰富的绘图和可视化函数,可以用于展示和呈现神经科学研究的结果。

研究人员可以使用Matlab绘制脑电图图谱、大脑活动热力图、神经网络拓扑图等,以便更直观地展示研究结果。

二、大脑连接分析大脑是一个复杂的网络系统,其中包含数以亿计的神经元和神经元之间的连接。

大脑连接分析旨在揭示不同脑区之间的连接方式,以及这些连接对大脑功能和疾病的影响。

利用Matlab进行大脑连接分析主要包括以下几个方面。

1. 脑电图和功能磁共振成像数据的预处理脑电图和功能磁共振成像是常用的大脑连接分析技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无标度网络1.简介传统的随机网络(如ER模型),尽管连接是随机设置的,但大部分节点的连接数目会大致相同,即节点的分布方式遵循钟形的泊松分布,有一个特征性的“平均数”。

连接数目比平均数高许多或低许多的节点都极少,随着连接数的增大,其概率呈指数式迅速递减。

故随机网络亦称指数网络。

现实世界的网络大部分都不是随机网络,少数的节点往往拥有大量的连接,而大部分节点却很少,一般而言他们符合zipf定律,(也就是80/20马太定律)。

人们给具有这种性质的网络起了一个特别的名字——无标度网络。

这里的无标度是指网络缺乏一个特征度值(或平均度值),即节点度值的波动范围相当大。

现实中的交通网,电话网和Internet都是无标度网络,在这种网络中,存在拥有大量连接的集散节点。

分布满足幂律的无标度网络还具有一个奇特的性质—“小世界”特性。

虽然万维网中的页面数已超过80亿,但平均来说,在万维网上只需点击19次超链接,就可从一个网页到达任一其它页面。

无标度网络具有严重的异质性,其各节点之间的连接状况(度数)具有严重的不均匀分布性:网络中少数称之为Hub点的节点拥有极其多的连接,而大多数节点只有很少量的连接。

少数Hub点对无标度网络的运行起着主导的作用。

从广义上说,无标度网络的无标度性是描述大量复杂系统整体上严重不均匀分布的一种内在性质。

1999 年, Albert、Jeong和Barabs发现万维网网页的度分布不是通常认为的Poisson 分布,而是重尾特征的幂律分布,而且万维网基本上是由少数具有大量超链接的网页串连起来的, 绝大部分网页的链接很少,他们把网络的这个特性称为无标度性(Scale-free nature, SF)。

1999 年Barabs和Albert考察了实际网络的生成机制, 发现增长和择优连接是实际网络演化过程的两个基本要素, 他们创造性地构建了能够产生无标度特性的第一个网络模型——BA 模型。

BA 网络主要具有以下特性: 具有幂律度分布, 是一个无标度网络; 具有小世界特征。

幂律度分布的重尾特征导致无标度网络中有少数具有大量连接边的中枢点, 择优连接必然产生“富者愈富”的现象。

BA 网络同时具有鲁棒性和脆弱性,面对结点的随机失效, 网络具有鲁棒性;但面对蓄意攻击时, 由于中枢点的存在, 网络变得十分脆弱, 很容易陷于瘫痪。

特别地, 网络传染性疾病在无标度网络中不存在传播阈值, 疾病一旦产生就在网络上迅速传播并达到稳定状态。

如果没有人为干预, 疾病将在网络中永远存在, 不会自动灭绝。

这对制定无标度网络上的网络疾病防控策略提出了重大挑战。

2.BA无标度网络构成原则( 1) 增长: 网络开始于少数几个结点(初始设定为m0个) , 每个相等时间间隔增加一个新点, 新点与m个(m小于等于m0)不同的已经存在于网络中的旧点相连产生m条新边。

(2)择优连接:新点与旧点i相连的概率P取决于结点i的度数ki。

P =ij i kK经过t步时间步后,BA模型演化成一个具有N=t+m0个结点mt条边的网络。

3.MATLAB建模function matrix = FreeScale(X)%By 201121250314N= X; m0= 3; m= 3;%初始化网络数据adjacent_matrix = sparse( m0, m0);%初始化邻接矩阵for i = 1: m0for j = 1:m0if j ~= i %去除每个点自身形成的环adjacent_matrix(i,j) = 1;%建立初始邻接矩阵,3点同均同其他的点相连endendendadjacent_matrix =sparse(adjacent_matrix);%邻接矩阵稀疏化node_degree = zeros(1,m0+1); %初始化点的度node_degree(2: m0+1) = sum(adjacent_matrix);%对度维数进行扩展for iter= 4:Niter %加点total_degree = 2*m*(iter- 4)+6;%计算网络中此点的度之和cum_degree = cumsum(node_degree);%求出网络中点的度矩阵choose= zeros(1,m);%初始化选择矩阵% 选出第一个和新点相连接的顶点r1= rand(1)*total_degree;%算出与旧点相连的概率for i= 1:iter-1if (r1>=cum_degree(i))&( r1<cum_degree(i+1))%选取度大的点choose(1) = i;breakendend% 选出第二个和新点相连接的顶点r2= rand(1)*total_degree;for i= 1:iter-1if (r2>=cum_degree(i))&(r2<cum_degree(i+1))choose(2) = i;breakendendwhile choose(2) == choose(1)%第一个点和第二个点相同的话,重新择优r2= rand(1)*total_degree;for i= 1:iter-1if (r2>=cum_degree(i))&(r2<cum_degree(i+1))choose(2) = i;breakendendend% 选出第三个和新点相连接的顶点r3= rand(1)*total_degree;for i= 1:iter-1if (r3>=cum_degree(i))&(r3<cum_degree(i+1))choose(3) = i;breakendendwhile (choose(3)==choose(1))|(choose(3)==choose(2))r3= rand(1)*total_degree;for i=1:iter-1if (r3>=cum_degree(i))&(r3<cum_degree(i+1))choose(3) = i;breakendendend%新点加入网络后, 对邻接矩阵进行更新for k = 1:madjacent_matrix(iter,choose(k)) = 1;adjacent_matrix(choose(k),iter) = 1;endnode_degree=zeros(1,iter+1);node_degree(2:iter+1) = sum(adjacent_matrix);endmatrix = adjacent_matrix;输入FreeScale(50),可建立一个初始结点为3,最终结点为50的无标度网络,用tu_plot()画图可得到网络建模图形。

而初始结点为3,最终结点为60的无标度网络图形如下4.分析无标度特性的发现突破了随机网络模型的束缚,使我们认识到各种复杂系统的网络结构,都遵从某些基本的法则,使我们看到了研究系统网络结构的普适规律的可能。

它也使我们可能以复杂网络的拓扑特性研究为切入点,深入开展系统结构的研究。

在实验中我们发现,对于结点数目越大的网络,无标度的现象越明显。

附:tu_plot()的MATLAB程序function tu_plot(rel,control)%由邻接矩阵画连接图,输入为邻接矩阵rel,必须为方阵;%control为控制量,0表示画出的图为无向图,1表示有向图。

默认值为0r_size=size(rel);%a=size(x)返回的是一个行向量,该行向量第一个元素是%x的行数,第2个元素是x的列数if nargin<2 %nargin是用来判断输入变量个数的函数control=0; %输入变量小于2,即只有一个,就默认control为0endif r_size(1)~=r_size(2)%行数和列数不相等,不是方阵,不予处理disp('Wrong Input! The input must be a square matrix!');return;endlen=r_size(1);rho=10;%限制图尺寸的大小r=2/1.05^len;%点的半径theta=0:(2*pi/len):2*pi*(1-1/len);[pointx,pointy]=pol2cart(theta',rho);theta=0:pi/36:2*pi;[tempx,tempy]=pol2cart(theta',r);point=[pointx,pointy];hold onfor i=1:lentemp=[tempx,tempy]+[point(i,1)*ones(length(tempx),1),point(i,2)*ones( length(tempx),1)];plot(temp(:,1),temp(:,2),'r');text(point(i,1)-0.3,point(i,2),num2str(i));%画点endfor i=1:lenfor j=1:lenif rel(i,j)link_plot(point(i,:),point(j,:),r,control); %连接有关系的点endendendset(gca,'XLim',[-rho-r,rho+r],'YLim',[-rho-r,rho+r]);axis offfunction link_plot(point1,point2,r,control)%连接两点temp=point2-point1;if (~temp(1))&&(~temp(2))return;%不画子回路endtheta=cart2pol(temp(1),temp(2));[point1_x,point1_y]=pol2cart(theta,r);point_1=[point1_x,point1_y]+point1;[point2_x,point2_y]=pol2cart(theta+(2*(theta<pi)-1)*pi,r);point_2=[point2_x,point2_y]+point2;if controlarrow(point_1,point_2);elseplot([point_1(1),point_2(1)],[point_1(2),point_2(2)]); end电子科技大学空天科学研究院 112 B05。

相关文档
最新文档