解绝对值方程问题只要把绝对值符号去掉,而去掉绝对值符号之前要

合集下载

去绝对值符号的方法

去绝对值符号的方法

去绝对值符号的方法绝对值符号是我们在数学中经常会遇到的一个概念,它表示一个数距离零点的距离,无论这个数是正数还是负数,它的绝对值都是正数。

在一些数学问题中,我们需要去掉绝对值符号,将其转化为不含绝对值的表达式。

接下来,我将介绍一些常见的方法,帮助你去掉绝对值符号。

方法一,根据绝对值的定义。

我们知道,一个数x的绝对值可以表示为|x|,当x大于等于0时,|x|等于x;当x小于0时,|x|等于-x。

因此,我们可以根据这个定义来去掉绝对值符号。

举个例子,如果我们要去掉|3|,根据定义,它等于3;如果要去掉|-5|,根据定义,它等于-(-5),即5。

通过这种方法,我们可以很容易地去掉绝对值符号。

方法二,利用分段函数。

在一些复杂的函数中,我们可以利用分段函数的形式来去掉绝对值符号。

例如,对于函数f(x) = |x-2|,我们可以将其分为x-2和-(x-2)两部分,即:f(x) = x-2, (x>=2)。

f(x) = -(x-2), (x<2)。

这样,我们就成功地去掉了绝对值符号。

这种方法在处理复杂的函数时非常有效。

方法三,利用符号函数。

符号函数sgn(x)是一个常用的数学函数,它表示x的正负性。

当x大于0时,sgn(x)等于1;当x等于0时,sgn(x)等于0;当x小于0时,sgn(x)等于-1。

我们可以利用符号函数来去掉绝对值符号。

例如,对于表达式|x-3|,我们可以表示为:(x-3) sgn(x-3)。

这样,无论x-3是正数还是负数,都可以成功地去掉绝对值符号。

方法四,利用代数运算性质。

在一些代数运算中,我们也可以利用一些性质来去掉绝对值符号。

例如,对于表达式|2x-1|,我们可以利用2x-1的正负性来进行讨论。

当2x-1大于等于0时,|2x-1|等于2x-1;当2x-1小于0时,|2x-1|等于-(2x-1)。

通过这种方法,我们也可以成功地去掉绝对值符号。

总结:通过以上方法,我们可以很好地去掉绝对值符号,将其转化为不含绝对值的表达式。

解绝对值方程式

解绝对值方程式

解绝对值方程式绝对值方程式一直是初高中数学中的一个重要话题,解绝对值方程式是我们通过数学方法来求解含有绝对值符号的方程。

在本文中,我将介绍解绝对值方程式的基本方法和一些常见的例子。

希望通过阅读本文,您能更加清晰地理解和掌握解绝对值方程式的技巧。

一、绝对值的定义在开始讨论解绝对值方程式之前,先让我们回顾一下绝对值的定义。

绝对值是表示一个实数与零的距离的非负数。

对于任何实数 x ,其绝对值记作 |x| ,定义如下:当x ≥ 0 时,|x| = x当 x < 0 时,|x| = -x二、解绝对值方程式的基本原则解绝对值方程式的关键是找到使得方程式成立的变量的取值。

为此,我们可以采用以下的基本原则来解绝对值方程式:1. 分情况讨论由于绝对值的定义是基于 x 的正负情况的,所以我们需要根据方程中绝对值内的表达式的正负情况来进行讨论。

常见的情况包括:a. 绝对值内的表达式大于等于 0b. 绝对值内的表达式小于 0c. 绝对值内的表达式等于 02. 消去绝对值符号一旦我们根据绝对值内表达式的正负情况分成几种情况,我们可以分别对这些情况进行处理。

为了简化计算,我们可以将绝对值符号消去,将绝对值方程式转化为一个等价的非绝对值方程式。

三、解一元绝对值方程式的步骤现在,让我们来具体讨论一下解一元绝对值方程式的步骤。

步骤一:分情况讨论根据绝对值内的表达式的正负情况,将方程式分成多种情况。

步骤二:消去绝对值符号对于每种情况,将绝对值方程式转化为一个等价的非绝对值方程式。

消去绝对值符号后,我们得到了一元方程式。

步骤三:解方程解转化后的一元方程式,并得到最终的解集。

步骤四:验证解集将得到的解集带入原方程,验证解集的正确性。

接下来,我将用几个例子来说明解绝对值方程式的具体过程。

例子一:|x + 2| = 4步骤一:分情况讨论我们需要考虑两种情况:x + 2 ≥ 0 和 x + 2 < 0当x + 2 ≥ 0 时,方程可以简化为 x + 2 = 4当 x + 2 < 0 时,方程可以简化为 -(x + 2) = 4步骤二:消去绝对值符号针对第一种情况,将绝对值符号消除后,我们得到 x + 2 = 4针对第二种情况,将绝对值符号消除后,我们得到 -(x + 2) = 4步骤三:解方程解第一种情况的方程得到 x = 2解第二种情况的方程得到 x = -6步骤四:验证解集将得到的解集带入原方程进行验证,验证结果表明解集 {2, -6} 是原方程的解。

【鼎尖教案】人教版高中数学必修系列:1.4含绝对值不等式的解法(第二课时)

【鼎尖教案】人教版高中数学必修系列:1.4含绝对值不等式的解法(第二课时)

第二课时●课题§1.4.2 含绝对值的不等式解法(二)●教学目标(一)教学知识点1.熟练掌握|ax+b|>c与|ax+b|<c(c>O)型不等式的解法.2.掌握含两个或两个以上绝对值的不等式解法.(二)能力训练要求1.进一步加强学生的运算能力.2.进一步提高学生运用数学思想的能力.(三)德育渗透目标1.用联系的观点看问题.2.渗透由特殊到一般的思维,能准确寻求事物的一般规律.●教学重点含两个或两个以上绝对值的不等式解法.●教学难点分类讨论思想在解含有两个或两个以上绝对值的不等式问题中的应用.●教学方法师生共同讨论法通过师生共同对含有两个或两个以上绝对值的不等式解法的探讨,为进一步解决实际问题奠定基础.●教具准备幻灯片两张第一张:本课时教案例1(记作§1.4.2 A)第二张:本课时教案例2(记作§l.4.2 B)●教学过程I.复习回顾[师]请同学们回忆不等式|ax+b|>c与|ax+b|<c(c>O)的解法步骤.[生] |ax+b|>c(c>O)的解法是:先化不等式为ax+b>c或ax+b<-c,再由不等式的性质求出原不等式的解集,|ax+b|<c(c>O)的解法是:先化不等式为-c<ax+b<c,再由不等式的性质求出原不等式的解集.[师]回答得很好.在解以上类型不等式时.一定要注意先看a的正负符号.若n为负数.则应先将其化成正数,然后再进一步转化不等式求解.对于含两个或两个以上的绝对值不等式如何去求得其解集呢?这就是今天我们所要研究的问题.Ⅱ.讲授新课幻灯片:(§1.4.2 A)[例1]解不等式|x-1|+|x-2|>3+x.(学生分组讨论,教师提醒,绝对值符号的存在是解含有绝对值不等式的一大障碍,所以如何将绝对值符号去掉,使其转化为等价的、不含绝对值符号的不等式是解这一类型问题的关键)[师]将如何同时去掉两个绝对值符号?[生甲]找出使得x-1=0,x-2=0的x值,即x=1,x=2,这样,1,2就将数轴分成了三段.再分段讨论求解.[师]甲同学找出使得x-l=0,x-2=O 的x 值的依据是什么?[生乙]绝对值的定义,即|a|=⎩⎨⎧<->.0,,0,a a a a[师]请同学按照:找零点、划区间、分段讨论去掉绝对值符号的步骤整理解题过程. (生整理,师巡视,查看,及时找出存在的问题加以点拨)解:把原不等式变为|x-1|+|x-2|>3+x.若|x-1|=0,x=1;若|x-2|=0,x=2.至此,1,2把数轴分成了三部分.(1)当x≤1时,x-1≤O,x-2<O原不等式变为-(x-1)-(x-2)>3+x ,即x<O.此时,得{x|x ≤1}∩{x|x<O}={x|x<O}.(2)当l<x≤2时,x-1>0,x-2≤O,原不等式变为x-1-(x-2)>3+x ,即x<-2.此时,得{x|1<x ≤2}∩{x|x<-2}=∅.(3)当x>2时,x-1>O ,x-2>0.原不等式变为x-1+x-2>3+x ,即x>6.此时,得{x|x>2}∩{x|x>6}={x|x>6}.∴取(1)(2)(3)的并集得原不等式解集为{x|x<0或x>6}.[师]用绝对值定义去掉绝对值符号,在分段讨论时,一定要注意两点:一是分段要“不重不漏”,二是要对所分的段与该段的结果求交集,最后再将所求得的各个交集并起来. 幻灯片:(§1.4.2 B)[例2]解不等式|x+1|+|x-1|<1.[师]观察这个不等式具有怎样的特点?[生丙]与例1属于同一类型题目,因此解法与例1完全相同,即找出零点,划分区间,利用分段讨论去掉绝对值,求得其解集.[师]请同学们仔细观察,互相讨论,寻找例2与例1的不同之处,从而得到解决例2的不同方法.(生讨论,师提示:结合绝对值的几何意义思考)[生丁]发现例2不等式具有明显的几何意义:即设数轴上的点P 表示数x ,点A 表示1,点B 表示-l ,这样,|x+1|,|x-1|分别表示数轴上的线段PB 、PA 的长,而线段AB 的长为2,从图形中可直观地发现数轴上找不到这样的P 点,使得PB 、PA 的长度和小于l ,故可得解集为∅.[师]丁同学表述得很清楚,从中我们也看到解含有绝对值的不等式,对于有的问题,利用绝对值的几何意义处理起来,会使问题变得简便、直观、明了.Ⅲ.课堂练习解不等式|x+1|+|x-1|≤2.解法一:①当x ≥l 时,不等式化为⎩⎨⎧≤-++≥.211,1x x x即⎩⎨⎧≤≥,1,1x x 得x=1.②当-1<x<1时,不等式化为⎩⎨⎧≤-++<<-,211.11x x x 即⎩⎨⎧≤<<-,22,11x 得-1<x<1.③当x ≤1时,不等式化为⎩⎨⎧-≥-≤,1,1x x 得x=-1.综上,原不等式解集为{x|-1≤x ≤1}.解法二:不等式|x+1|+|x-1|≤2表示数轴上点x 与A 、B 两点的距离和小于或等于2,而A 、B 两点的距离为2,故x 对应的点只能在线段AB 上,故原不等式解集为{x|-1≤x ≤1}.Ⅳ.课时小结1.解含有两个或两个以上绝对值的不等式,常用零点分段讨论法求解,首先找到绝对值为零的点,然后划分区间,分段讨论,求得各段结果的并集.2.解含有绝对值的不等式,对于有的问题,利用绝对值的几何意义也是一种简便有效的方法.Ⅴ.课后作业(一)1.解不等式|x-1|+|x+2|>5.2.解不等式|x+3|+|x+2|+|x+1|>3.答案:1.{x|x>2或x<-3}.2.{x|x>-1或x<-3}.(二)1.预习内容:课本P 17~P 20.2.预习提纲:(1)“三个一次”,即一元一次方程。

绝对值的性质绝对值的化简方法口诀绝对值符号的去掉法则

绝对值的性质绝对值的化简方法口诀绝对值符号的去掉法则

绝对值化简步骤:(1)先根据数轴“从左到右数增大”的原则比较绝对值里面字母的大小关系;(2)再根据绝对值里面字母的大小关系计算“和”或“差”为正还是为负;(3)然后根据“一个整数的绝对值等于它本身”把绝对值里面的代数式直接去掉绝对值符号移出来,根据“一个负数的绝对值等于它的相反数”把绝对值里面的代数式去掉绝对值符号再变成它的相反数移出来;(4)最后,绝对值符号全都去掉了之后,再进行加减运算(有的可能需要先去括号再运算),得到最简结果。

绝对值的有关性质:①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;②绝对值等于0的数只有一个,就是0;③绝对值等于同一个正数的数有两个,这两个数互为相反数;④互为相反数的两个数的绝对值相等。

绝对值的化简:绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。

①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│=a (a为负值,即a≤0 时)②整数就找到这两个数的相同因数;③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。

绝对值用“||”来表示。

在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做ab 的绝对值,记作|ab|。

◎绝对值的知识扩展1、定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

2、绝对值的代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

3、绝对值的有关性质:(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;(2)绝对值等于0的数只有一个,就是0;(3)绝对值等于同一个正数的数有两个,这两个数互为相反数;(4)互为相反数的两个数的绝对值相等。

高中数学:绝对值不等式的解法

高中数学:绝对值不等式的解法

高中数学:绝对值不等式的解法
带绝对值符号的不等式叫绝对值不等式。

解绝对值不等式的关键是去绝对值符号,等价转化为不含绝对值符号的不等式,用已有方法求解。

去绝对值符号的方法就是解不等式的方法。

一、注意绝对值的定义,用公式法
即若,则;若,则或。

例1、解不等式
解:由题意知,原不等式转化为
二、注意绝对值的非负性,用平方法
题目中两边都是非负值才能用平方法,否则不能用平方法,在操作过程中用到。

例2、解不等式
两边都含绝对值符号,所以都是非负,故可用平方法。

解:原不等式
解得
故原不等式的解集为
三、注意分类讨论,用零点分段法
不等式的一侧是两个或两个以上的绝对值符号,常用零点法去绝对值并求解。

例3、解不等式
解:利用绝对值的定义,分段讨论去绝对值符号,令和得分界点
于是,可分区间
讨论原不等式
解得
综上不等式的解为
四、平方法+定义法
有些题目平方之后仍有一个绝对值号,需要用定义去绝对值符号求解,这种方法叫“平方法+定义法”。

例4、解关于x的不等式
解:化为后,通常分
,三种情况去绝对值符号,再分进行讨论,这样做过程冗长,极易出错。

改变一下操作程序,思路将十分清晰,过程也简洁得多,即原不等式两边平方得。

再由定义去绝对值号,有:
(1)

(2)。

综上知
故当时,解为;当时,解为。

绝对值的化简方法口诀

绝对值的化简方法口诀

绝对值的化简方法口诀
绝对值的化简方法口诀:同号得正,异号得负。

绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a(a为正值即a〉=0时);│a│=-a(a为负值即a 《=0时)。

绝对值是指一个数在数轴上所对应点到原点的距离,用“||”来表示。

|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。

绝对值化简步骤:
(1)先根据数轴“从左到右数增大”的原则比较绝对值里面字母的大小关系;
(2)再根据绝对值里面字母的大小关系计算“和”或“差”为正还是为负;
(3)然后根据“一个整数的绝对值等于它本身”把绝对值里面的代数式直接去掉绝对值符号移出来,根据“一个负数的绝对值等于它的相反数”把绝对值里面的代数式去掉绝对值符号再变成它的相反数移出来;
(4)最后,绝对值符号全都去掉了之后,再进行加减运算(有的可能需要先去括号再运算),得到最简结果。

不等式去绝对值符号的法则

不等式去绝对值符号的法则

不等式去绝对值符号的法则
如果绝对值里面的算式大于零或等于零,则去掉绝对值符号不变;如果绝对值里面的算式小于零,则去掉绝对值之后需要在算式前面加上负号。

对值不等式:
(2)证明绝对值不等式主要有两种方法:
A)去掉绝对值符号转化为一般的不等式证明:换元法、讨论法、平方法;
B)利用不等式:,用这个方法要对绝对值内的式子进行分拆组合、添项减项、使要证的式子与已知的式子联系起来。

扩展资料:
无符号数计算:
如果把三个女性记为-3,把四个男性记为+4,问有几个人,计算方法是两个数的绝对值相加,也就是7个人。

如果问男女差是多少,计算方法是相对数相加,是+1。

如果把向南走1公里记为+1,把向北走2公里记为-2,问走了多少公里,计算方法是两个数的绝对值相加,也就是3公里。

如果问相对走了多少公里,计算方法是相对数相加,是-1。

如果把向零上的10度记为+10,把零下5度记为-5,上下差多少度,计算方法是两个数的绝对值相加,也就是15度。

如果问温的和是多少度,计算方法就是相对数相加,是+5。

如果题中没有说什么是正,如:邮递员送信先向南10米,再向
北5米,做题前必须写:记什么为正,一般不用写另一个,因为不是正就是负,知道一个就行了。

绝对值符号的去掉法则

绝对值符号的去掉法则

绝对值符号的去掉法则绝对值是数学中常见的符号之一,它用来表示一个实数的非负值。

在绝对值符号的内部,我们可以将其视为一个数与零之间的距离。

绝对值常常出现在各种数学问题中,并且在解题过程中经常需要使用到绝对值的性质和运算法则。

本文将介绍绝对值符号的去掉法则,即如何通过一系列变换去掉绝对值符号,从而简化计算和求解。

1. 绝对值的定义首先我们来回顾一下绝对值的定义。

给定一个实数x,它的绝对值记作| x | ,表示x到原点0的距离。

根据距离的定义,我们可以得知:•当x大于等于0时,| x | = x•当x小于0时,| x | = -x这个定义告诉我们,在求解含有绝对值符号的问题时,需要考虑两种情况:当x为非负数时和当x为负数时。

2. 去掉法则接下来我们将介绍几个常见的去掉法则,它们可以帮助我们简化含有绝对值符号的表达式。

2.1 绝对值的基本性质绝对值符号有一些基本的性质,这些性质可以帮助我们进行一些简单的变换。

•非负性:对于任意实数x,| x | 大于等于0,即| x | ≥ 0•非零性:当且仅当x等于0时,| x | 等于0,即| x | = 0 当且仅当 x = 0•正负性:对于任意实数x,有两种情况:当x大于等于0时,| x | = x;当x小于0时,| x | = -x2.2 绝对值与加减乘除的运算法则在处理含有绝对值符号的表达式时,我们需要根据具体情况选择合适的运算法则。

2.2.1 绝对值与加法、减法的运算法则如果我们需要计算两个数之间的差的绝对值,可以使用以下公式:a -b | = | b - a |这个公式告诉我们,在计算两个数之间的差的绝对值时,交换两个数的位置不会改变结果。

2.2.2 绝对值与乘法、除法的运算法则在处理含有绝对值符号并涉及乘除运算的表达式时,我们需要根据x的正负情况进行分类讨论。

•当x大于等于0时,| x * a | = | x | * a•当x小于0时,| x * a | = -| x | * a这个规则告诉我们,在计算绝对值与乘法运算的结果时,需要根据x的正负情况来确定结果的正负号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档