18版高中数学第二章统计2.2.2用样本的数字特征估计总体的数字特征学案新人教A版必修3

合集下载

2.2.2 用样本的数字特征估计总体的数字特征(学案)王明

2.2.2 用样本的数字特征估计总体的数字特征(学案)王明

§2.2.2 用样本的数字特征估计总体的数字特征1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释;3. 会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。

教学重点用样本平均数和标准差估计总体的平均数与标准差。

教学难点能应用相关知识解决简单的实际问题。

1、知识回顾:作频率分布直方图分几个步骤?各步骤需要注意哪些问题?2、众数、中位数、平均数的概念众数:____________________________________________________________________中位数:___________________________________________________________________平均数:____________________________________________________________________3、求下列各组数据的众数、中位数、平均数(1)1 ,2,3,3,3,4,6,7,7,8,8,8(2)1 ,2,3,3,3,4,6,7,8,9,9二、新课导学自学教材71页—73页,完成下例内容新知一:众数、中位数、平均数1、众数、中位数、平均数与频率分布直方图的关系:众数在样本数据的频率分布直方图中,就是______________________________________中位数左边和右边的直方图的______ __应该相等,由此可估计中位数的值。

平均数是直方图的____ _______.2、完成课本P72页思考3、众数、中位数、平均数的优缺点分别是什么?练习一、(1)课本74页,练习(2)课本82页,习题2.2 第5题自学教材74页—78页,完成下例内容新知二:标准差1、.标准差、方差标准差 s=_________________________________________________________________ 方差s2=_________________________________________________________________ 2思考:标准差的大小和数据的离散程度有什么关系?3思考:标准差的取值范围是什么?标准差为0的样本数据有什么特点?典型例题学习课本76—77页例1 、例2练习二、(1)课本79页练习1、2、3(2)课本习题2.2 第4、6、7题三、课堂小结1、在频率分布直方图中,如何求出众数、中位数、平均数?2、标准差的公式;标准差的大小和数据的离散程度有什么关系?。

2017-2018版高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案 新人

2017-2018版高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案 新人

2.2.2 用样本的数字特征估计总体的数字特征[学习目标]1.会求样本的众数、中位数、平均数、标准差、方差. 2.理解用样本的数字特征来估计总体数字特征的方法. 3.会应用相关知识解决简单的统计实际问题. [知识链接]1.在数据2,2,3,4,4,5,5,6,7,8中众数为2,4,5.2.一组数据的和除以数据的个数所得到的数叫做这组数据的平均数.例如,数据1,2,3,3,4,5的平均数为3. [预习导引] 1.有关概念(1)众数:在一组数据中,出现次数最多的数据(即频率分布最大值所对应的样本数据)叫这组数据的众数.若有两个或两个以上的数据出现得最多,且出现的次数一样,则这些数据都叫众数;若一组数据中每个数据出现的次数一样多,则没有众数.(2)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或两个数据的平均数)叫这组数据的中位数. (3)平均数:指样本数据的算术平均数. 即x =1n(x 1+x 2+…+x n ).2.平均距离假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数.x i 到x 的距离是|x i -x |(i =1,2,…,n ).于是,样本数据x 1,x 2,…,x n 到x 的“平均距离”是 S =|x 1-x |+|x 2-x |+…+|x n -x |n.3.标准差由于平均距离中含有绝对值,运算不太方便,因此改用如下公式来计算标准差s =1nx 1-x2+x 2-x2+…+x n -x2].显然,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.所以标准差可以用来刻画数据的分散程度的大小.4.方差标准差s的平方s2,即s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]叫这组数据的方差.方差也是用来测量样本数据的分散程度的特征数.在刻画样本数据的分散程度上,方差与标准差是一样的.但在解决实际问题时,一般多采用标准差.要点一众数、中位数、平均数的简单运用例1 在上一节调查的100位居民的月均用水量的问题中,制作出了这些样本数据的频率分布直方图:从中可以看出,月均用水量的众数估计是________;中位数是________;平均数为________.答案 2.25 t 2.02 t 2.02 t解析众数大致的值就是样本数据的频率分布直方图中最高矩形的中点的横坐标,因此众数估计是2.25 t;在样本中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数,因此,在频率分布直方图中,中位数使得在它左边和右边的直方图的面积应该相等,由此可以估计中位数的值,下图中虚线代表居民月均用水量的中位数的估计值,此数据值为2.02 t.平均数是频率分布直方图的“重心”,是直方图的平衡点,因此,每个小矩形的面积与小矩形底边中点的横坐标的乘积之和为平均数,平均数为2.02 t.规律方法 根据样本频率分布直方图,可以分别估计总体的众数、中位数和平均数. (1)众数:最高矩形下端中点的横坐标;(2)中位数:直方图面积平分线与横轴交点的横坐标;(3)平均数:每个小矩形的面积与小矩形底边中点的横坐标的乘积之和.跟踪演练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是 1.70;这组数据的平均数是x =117(1.50×2+1.60×3+…+1.90×1)=28.7517≈1.69(m).答 17名运动员成绩的众数、中位数、平均数依次为1.75 m ,1.70 m,1.69 m. 要点二 平均数和方差的运用例2 甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,各从中抽取6件测量,数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. 解 (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均值相同,又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.规律方法 1.几个性质:(1)若x 1,x 2,…,x n 的平均数是x ,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数是m x +a .(2)数据x 1,x 2,…,x n 与数据x 1+a ,x 2+a ,…,x n +a 的方差相等. (3)若x 1,x 2,…,x n 的方差为s 2,那么ax 1,ax 2,…,ax n 的方差为a 2s 2. 2.(1)方差的基本公式:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].(2)方差的简化公式:s 2=1n [(x 21+x 22+…+x 2n )-n x 2].或写成s 2=1n(x 21+x 22+…+x 21)-x 2,即方差等于原数据平方和的平均数减去平均数的平方.跟踪演练2 (1)(2013·山东高考)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7A.1169 B.367 C .36 D.677答案 B解析 ∵由题意知去掉一个最高分和一个最低分后,所剩数据是87,90,90,91,91,94,90+x .∴这组数据的平均数是87+90+90+91+91+94+90+x7=91,∴x =4.∴这组数据的方差是17(16+1+1+0+0+9+9)=367.(2)(2013·江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:答案 2解析由表中的数据计算可得x甲=90,x乙=90,且方差s2甲=-2+-2+-2+-902+-25=4.s2乙=-2+-2+-2+-2+-25=2.所以乙运动员的成绩较稳定,方差为2.要点三频率分布与数字特征的综合应用例 3 已知一组数据:125 121 123 125 127 129 125 128 130 129 126 124 125 127 126 122 124 125 126 128(1)填写下面的频率分布表:(2)(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数.解(1)续表(2)(3)在[125,127)中的数据最多,取这个区间的中点值作为众数的近似值,得众数126,事实上,众数的精确值为125.图中虚线对应的数据是125+2×58=126.25,事实上中位数为125.5.使用“组中值”求平均数:x =122×0.1+124×0.15+126×0.4+128×0.2+130×0.15=126.3, 平均数的精确值为x =125.75.规律方法 1.利用频率分布直方图估计数字特征: (1)众数是最高的矩形的底边的中点. (2)中位数左右两侧直方图的面积相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标.2.利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致. 跟踪演练3 某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30、0.40、0.15、0.10、0.05.求:(1)高一参赛学生的成绩的众数、中位数; (2)高一参赛学生的平均成绩. 解 (1)由图可知众数为65, 又∵第一个小矩形的面积为0.3,∴设中位数为60+x ,则0.3+x ×0.04=0.5,得x =5, ∴中位数为60+5=65.(2)依题意,平均成绩为55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67, ∴平均成绩约为67.1.下面是高一(18)班十位同学的数学测试成绩:82,91,73,84,98,99,101,118,98,110,则该组数据的中位数是( ) A .98 B .99 C .98.5 D .97.5答案 A解析 将这组数据按从小到大排列为73,82,84,91,98,98,99,101,110,118,则最中间的两个数为98,98,故中位数是12(98+98)=98.2.下列各数字特征中,能反映一组数据离散程度的是( ) A .众数 B .平均数 C .标准差 D .中位数答案 C3.样本101,98,102,100,99的标准差为( ) A. 2 B .0 C .1 D .2答案 A解析 样本平均数x =100,方差为s 2=2,∴标准差s =2,故选A.4.甲乙两名学生六次数学测验成绩(百分制)如图所示. ①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学高; ③甲同学的平均分比乙同学低;④甲同学成绩的方差小于乙同学成绩的方差 上面说法正确的是( ) A .③④ B .①②④ C .②④ D .①③答案 A解析 甲的中位数为81,乙的中位数为87.5,故①错,排除B 、D ;甲的平均分x =16(76+72+80+82+86+90)=81,乙的平均分x ′=16(69+78+87+88+92+96)=85,故②错,③对,故选A.5.(2013·湖北高考)某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4则:(1)平均命中环数为________; (2)命中环数的标准差为________. 答案 (1)7 (2)2解析 利用平均值和标准差公式求解. (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s =2.1.一组数据中的众数可能不止一个,中位数是唯一的,求中位数时,必须先排序. 2.利用直方图求数字特征:①众数是最高的矩形的底边的中点.②中位数左右两边直方图的面积应相等.③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.本文档仅供文库使用。

2018版高中数学第二章统计2.2.2用样本的数字特征估计总体的数字特征学案

2018版高中数学第二章统计2.2.2用样本的数字特征估计总体的数字特征学案

2.2.2 用样本的数字特征估计总体的数字特征1.会求样本的平均数、标准差、方差.(重点)2.理解用样本的数字特征估计总体的数字特征的方法.(重点)3.会应用相关知识解决实际统计问题.(难点)[基础·初探]教材整理1 样本的平均数 阅读教材P 65~P 66,完成下列问题.1.定义:样本中所有个体的平均数叫做样本平均数.2.特点:平均数描述了数据的平均水平,定量地反映了数据的集中趋势所处的水平.用样本的平均数估计总体的平均数时,样本平均数只是总体平均数的近似.3.作用:n 个样本数据x 1,x 2,…,x n 的平均数x =x 1+x 2+…+x nn,则有n x =x 1+x 2+…+x n ,也就是把每个x i (i =1,2,…,n )都用x 代替后,数据总和保持不变.所以平均数x 对数据有“取齐”的作用,代表了一组数据的数值平均水平.一组观察值4,3,5,6出现的次数分别为3,2,4,2,则样本平均值约为( ) A.4.55 B.4.5 C.12.5D.1.64【解析】 x =4×3+3×2+5×4+6×23+2+4+2≈4.55.【答案】 A教材整理2 样本的方差和标准差阅读教材P 66“最后一段”至P 68,完成下列问题.1.数据的离散程度可以用极差、方差或标准差来描述.样本方差描述了一组数据围绕平均数波动的大小.一般地,设样本的元素为x 1,x 2,…,x n ,样本的平均数为x ,定义s 2= x 1-x 2+ x 2-x 2+…+ x n -x 2n.s 2表示样本方差.2.为了得到以样本数据的单位表示的波动幅度,通常要求出样本方差的算术平方根s s 表示样本标准差.某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4.则:(1)平均命中环数为________; (2)命中环数的标准差为________.【解析】 (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s =2.【答案】 (1)7 (2)2[小组合作型]2­2­20所示,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为_________和________.【精彩点拨】 由茎叶图分别提取出甲、乙10天中每天加工零件的个数,然后求平均数.【尝试解答】 甲每天加工零件的个数分别为:18,19,20,20,21,22, 23,31,31,35,所求平均数为x 甲=110×(18+19+20+20+21+22+23+31+31+35)=24.乙每天加工零件的个数分别为:11,17,19,21,22,24,24,30,30,32,所求平均数为:x 乙=110×(11+17+19+21+22+24+24+30+30+32)=23.【答案】 24 23茎叶图与平均数相结合的问题,关键是识别茎叶图的意义.在一般情况下,要计算一组数据的平均数可使用平均数计算公式;当数据较大,且大部分数据在某一常数a 左右波动时,可建立一组新的数据 各个数据减去a ,再利用平均数简化公式计算,应用此法可减少运算量.[再练一题]1.某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动),该校合唱团共有100名学生,他们参加活动的次数统计如图2­2­21所示.求合唱团学生参加活动的人均次数.图2­2­21【解】 由图可知,该合唱团学生参加的人均次数为10×1+50×2+40×3100=2.3.取6件测量数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定. 【精彩点拨】【尝试解答】 (1)x 甲=16[99+100+98+100+100+103]=100,x 乙=16[99+100+102+99+100+100]=100,s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)由(1)知x 甲=x 乙,比较它们的方差,∵s 2甲>s 2乙,故乙机床加工零件的质量更稳定.1.在实际问题中,仅靠平均数不能完全反映问题,还要研究其偏离平均值的离散程度(即方差或标准差),方差大说明取值分散性大,方差小说明取值分散性小或者取值集中、稳定.2.关于统计的有关性质及规律:(1)若x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数是m x +a ;(2)数据x 1,x 2,…,x n 与数据x 1+a ,x 2+a ,…,x n +a 的方差相等; (3)若x 1,x 2,…,x n 的方差为s 2,那么ax 1,ax 2,…,ax n 的方差为a 2s 2.[再练一题]2.某校高二年级在一次数学选拔赛中,由于甲、乙两人的竞赛成绩相同,从而决定根据平时在相同条件下进行的六次测试确定出最佳人选,这六次测试的成绩数据如下:赛.【解】 设甲、乙两人成绩的平均数分别为x 甲,x 乙,则x 甲=130+16(-3+8+0+7+5+1)=133,x 乙=130+16(3-1+8+4-2+6)=133,s 2甲=16[(-6)2+52+(-3)2+42+22+(-2)2]=473, s 2乙=16[02+(-4)2+52+12+(-5)2+32]=383. 因此,甲与乙的平均数相同,由于乙的方差较小,所以乙的成绩比甲的成绩稳定,应该选乙参加竞赛比较合适.125 121 123 125 127 129 125 128 130 129 126 124 125 127 126 122 124 125 126 128 (1)填写下面的频率分布表:(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数. 【精彩点拨】 将数据分组后依次填写分布表.然后画出直方图,最后根据数字特征在直方图中的求法求解.【尝试解答】 (1)(3)在[124.5,126.5)中的数据最多,取这个区间的中点值作为众数的近似值,得众数为125.5,事实上,众数的精确值为125.图中虚线对应的数据是124.5+2×58=125.75,事实上中位数为125.5.使用“组中值”求平均数:x -=121.5×0.1+123.5×0.15+125.5×0.4+127.5×0.2+129.5×0.15=125.8,事实上平均数的精确值为x -=125.75.1.利用频率分布直方图求数字特征: (1)众数是最高的矩形的底边的中点; (2)中位数左右两侧直方图的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.利用直方图求众数、中位数、平均数均为近似值,往往与实际数据得出的不一致,但它们能粗略估计其众数、中位数和平均数.[再练一题]3.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图2­2­22所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30、0.40、0.15、0.10、0.05.求:图2­2­22(1)高一参赛学生的成绩的众数、中位数;(2)高一参赛学生的平均成绩.【解】(1)由题图可知众数为65,又∵第一个小矩形的面积为0.3,∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,∴中位数为60+5=65.(2)依题意,平均成绩为:55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,∴平均成绩约为67.[探究共研型]探究1【提示】一组数据的平均数、中位数都是唯一的,众数不唯一,可以有一个,也可以有多个,还可以没有.如果有两个数据出现的次数相同,并且比其他数据出现的次数都多,那么这两个数据都是这组数据的众数.探究2 如何从样本的数字特征中了解数据中是否存在极端数据?【提示】中位数不受几个极端数据的影响,而平均数受每个数据的影响,“越离群”的数据,对平均数的影响越大,因此如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以了解样本数据中极端数据的信息.探究3 众数、中位数有哪些应用?【提示】(1)众数只与这组数据中的部分数据有关,当一组数据中有不少数据重复出现时,众数往往更能反映问题.(2)中位数仅与数据的排列位置有关,中位数可能在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.探究4【提示】(1)数据的离散程度可以通过极差、方差或标准差来描述,极差反映了一组数据变化的最大幅度,它对一组数据中的极端值极为敏感,一般情况下,极差大,则数据波动性大;极差小,则数据波动性小.极差只需考虑两个极端值,便于计算,但没有考虑中间的数据,可靠性较差.(2)标准差和方差则反映了一组数据围绕平均数波动的大小,方差、标准差的运算量较大.因为方差与原始数据单位不同,且平方后可能夸大了偏差程度,所以虽然标准差与方差在体现数据离散程度上是一样的,但解决问题时一般用标准差.探究5 【提示】 (1)样本的数字特征具有随机性,这种随机性是由样本的随机性引起的. (2)样本的数字特征具有规律性,在很广泛的条件下,简单随机样本的数字特征(如众数、中位数、平均数和标准差等)随样本容量的增加而稳定于总体相应的数字特征(总体的数字特征是一定的,不存在随机性).某班4个小组的人数为10,10,x,8,已知该组数据的中位数与平均数相等,求这组数据的中位数.【精彩点拨】 x 的大小未知,可根据x 的取值不同分别求中位数.【尝试解答】 该组数据的平均数为14(x +28),中位数一定是其中两个数的平均数,由于x 不知是多少,所以要分几种情况讨论:(1)当x ≤8时,原数据按从小到大的顺序排列为x,8,10,10,其中位数为12×(10+8)=9. 若14(x +28)=9,则x =8,此时中位数为9.(2)当8<x ≤10时,原数据按从小到大的顺序排列为8,x,10,10,其中位数为12(x +10).若14(x +28)=12(x +10),则x =8,而8不在8<x ≤10的范围内,所以舍去. (3)当x >10时,原数据按从小到大的顺序排列为8,10,10,x ,其中位数为12×(10+10)=10.若14(x +28)=10,则x =12,此时中位数为10.综上所述,这组数据的中位数为9或10.当在数据中含有未知数x ,求该组数据的中位数时,由于x 的取值不同,所以数据由小到大 或由大到小 排列的顺序不同,由于条件的变化,问题的结果有多种情况,不能用同一标准或同一种方法解决,故需分情况讨论,讨论时要做到全面合理,不重不漏.[再练一题]4.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为______________.【解析】 设5个班级中参加的人数分别为x 1,x 2,x 3,x 4,x 5,则由题意知x 1+x 2+x 3+x 4+x 55=7,(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2=20,五个整数的平方和为20,则必为0+1+1+9+9=20,由|x-7|=3可得x=10或x=4.由|x-7|=1可得x=8或x=6,由上可知参加的人数分别为4,6,7,8,10,故最大值为10.【答案】101.样本101,98,102,100,99的标准差为( )A. 2B.0C.1D.2【解析】样本平均数x=100,方差为s2=2,∴标准差s=2,故选A.【答案】 A2.甲乙两名学生六次数学测验成绩(百分制)如图2­2­23所示.图2­2­23①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学高;③甲同学的平均分比乙同学低;④甲同学成绩的方差小于乙同学成绩的方差.上面说法正确的是( )A.③④B.①②④C.②④D.①③【解析】甲的中位数81,乙的中位数87.5,故①错,排除B、D;甲的平均分x=16 (76+72+80+82+86+90)=81,乙的平均分x′=16(69+78+87+88+92+96)=85,故②错,③对,排除C,故选A.【答案】 A3.甲、乙、丙、丁四名射手在选拔赛中所得的平均环数x及其方差s2如下表所示,则选送决赛的最佳人选应是( )A.甲B.乙【解析】∵x乙=x丙>x甲=x丁,且s2甲=s2乙<s2丙<s2丁,∴应选择乙进入决赛.【答案】 B4.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量得到频率分布直方图如图2­2­24,则图2­2­24(1)这20名工人中一天生产该产品数量在[55,75)的人数是________.(2)这20名工人中一天生产该产品数量的中位数为________.(3)这20名工人中一天生产该产品数量的平均数为________.【解析】(1)(0.040×10+0.025×10)×20=13.(2)设中位数为x,则0.2+(x-55)×0.04=0.5,x=62.5.(3)0.2×50+0.4×60+0.25×70+0.1×80+0.05×90=64.【答案】(1)13 (2)62.5 (3)645.甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图2­2­25所示:图2­2­25(1)填写下表:①从平均数和方差结合分析偏离程度;11 ②从平均数和中位数结合分析谁的成绩好些;③从平均数和命中9环以上的次数相结合看谁的成绩好些;④从折线图上两人射击命中环数及走势分析谁更有潜力.【解】 (1)乙的射靶环数依次为2,4,6,8,7,7,8,9,9,10.所以x 乙=110(2+4+6+8+7+7+8+9+9+10)=7;乙的射靶环数从小到大排列为2,4,6,7,7,8,8,9,9,10,所以中位数是7+82=7.5;甲的射靶环数从小到大排列为5,6,6,7,7,7,7,8,8,9,所以中位数为7.于是填充后的表格如下表所示:甲乙离平均数的程度大.②甲、乙的平均水平相同,而乙的中位数比甲大,说明乙射靶成绩比甲好.③甲、乙的平均水平相同,而乙命中9环以上(包含9环)的次数比甲多2次,可知乙的射靶成绩比甲好.④从折线图上看,乙的成绩呈上升趋势,而甲的成绩在平均线上波动不大,说明乙的状态在提升,更有潜力.。

2.2.2用样本的数字特征估计总体的数字特征

2.2.2用样本的数字特征估计总体的数字特征

举例 1. 甲在一次射击比赛中的得分如下: ( 单 位:环).7,8,6,8,6,5,9,10,7,5,则他命中的平均 数是_____. 7.1 2. 某次数学试卷得分抽样中得到:90分 的有3个人,80分的有10人,70分的有5人,60 77分 分的有2人,则这次抽样的平均分为______.
思考
2.2.2用样本的数字特征 估计总体的数字特征
创设意境
在一次射击比赛中,甲、乙两名运动员各射击
10次,命中环数如下﹕ 甲运动员﹕7,8,6,8,6,5,8,10,7,4; 乙运动员﹕9,5,7,8,7,6,8,6,7,7. 观察上述样本数据,你能判断哪个运动员发挥
的更稳定些吗?为了从整体上更好地把握总体的规
如何从频率分布直方图中估计中位数?
练习
应该采用平均数来表示每一个国家项目的平 均金额,因为它能反映所有项目的信息.但平均数 会受到极端数据2200万元的影响,所以大多数项 目投资金额都和平均数相差比较大.
标准差
有两位射击运动员在一次射击测试中各射 靶十次,每次命中的环数如下:
如果你是教练,你应当如何对这次射击情况作出 评价?如果这是一次选拔性考核,你应当如何作出选 择?
律,我们要通过样本的数据对总体的数字特征进行 研究——用样本的数字特征估计总体的数字特征.
1. 众数
在一组数据中,出现次数最多
的数据叫做这一组数据的众数. 2. 中位数 将一组数据按大小依次排列,把 处在最中间位置的一个数据(或两个数据的 平均数)叫做这组数据的中位数. 3. 平均数 (1) x = (x1+x2+……+xn) /n (2) x = x’ +a (3) x = (x1f1+x2f2+……xkfk)/n

2.2.2用样本的数字特征估计总体的数字特征课件人教新课标

2.2.2用样本的数字特征估计总体的数字特征课件人教新课标
注:在只有样本频率散布直方图的情况下,我 们可以按上述方法估计众数、中位数和平均 数,并由此估计总体特征.
三数的优缺点
样本的众数、中位数和平均数常用来表示 样本数据的“中心值”.
1.众数和中位数容易计算,不受少数几个极端 值的影响,但只能表达样本数据中的少量信息.
2.平均数代表了数据更多的信息,但受样本中 每个数据的影响,越极端的数据对平均数的影 响也越大.
一天 10名工人生产的零件的中位数是( C )
A.14 B.16 C.15 D.17 【解析】选C.把件数从小到大排列为10,12,14, 14,15,15,16,17,17,19,可知中位数为15.
2.甲、乙两个班各随机选出 15名同学进行测验,所得成 绩的茎叶图如图.从图中看, _____班的平均成绩较高. 【解析】结合茎叶图中成绩的情况可知,
频率散布直方图中,你认为众数应在哪个
小矩形内?由此估计总体的众数是什么?
频率/组距
注意:哪段范围的数最多?
0.5
0
取最高矩形下端中点的
0.4
横坐标2.25作为众数.
0
0.3
0O 0.2
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
0
?由直方图看出众数是2.25,可
是抽样的数据中没有2.25,为什么 区间的中点值2.25是众数呢?
3.平均数的定义:一组数据的和除以数据的 个数所得到的数.
小练 习
求下列一组数的众数、中位数、平均数
(1)2,2,3,3,5,6,7
(2)2,3,5,5
判一判(正确的打“√”,错误的打“×”) (1)中位数一定是样本数据中的某个数.(× ) (2)在一组样本数据中,众数一定是唯一的.( × )

高中数学第二章统计2.2.2用样本的数字特征估计总体的数字特征课件新人教A版必修307182164

高中数学第二章统计2.2.2用样本的数字特征估计总体的数字特征课件新人教A版必修307182164

(1)高一参赛学生的成绩的众数、中位数; (2)高一参赛学生的平均成绩. 【解】 (1)由题图可知众数为 65, 又∵第一个小矩形的面积为 0.3, ∴设中位数为 60+x,则 0.3+x×0.04=0.5,得 x=5, ∴中位数为 60+5=65. (2)依题意,平均成绩为: 55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67, ∴平均成绩约为 67.
第二十一页,共47页。
频率分布直方图与数字特征 的综合应用
已知一组数据:
125 121 123 125 127 129 125 128 130
129 126 124 125 127 126 122 124
(1)填写下面的频率分布表: 分组
频数累计
[120.5,122.5) [122.5,124.5) [124.5,126.5) [126.5,128.5) [128.5,130.5]
第十七页,共47页。
s2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+ (100-100)2]=1.
(2)由(1)知 x 甲= x 乙,比较它们的方差,∵s2甲>s2乙,故乙机床加工零件的质量 更稳定.
第十八页,共47页。
1.在实际问题中,仅靠平均数不能完全反映问题,还要研究 其偏离平均值的离散程度(即方差或标准差),方差大说明取值分散 性大,方差小说明取值分散性小或者取值集中、稳定.
第十六页,共47页。
【精彩点拨】
【尝试解答】 (1) x 甲=16[99+100+98+100+100+103]=100, x 乙=16[99+100+102+99+100+100]=100, s2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+ (103-100)2]=73,

高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案 新人教B版必修3-新人教

高中数学 第二章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案 新人教B版必修3-新人教

2.2.2 用样本的数字特征估计总体的数字特征1.了解平均数、标准差、方差、样本数据的提取方法.2.理解样本数据标准差的意义和作用.3.掌握平均数、标准差、方差的求法.[学生用书P40])1.样本平均数(1)定义:样本中所有个体的平均数叫做样本平均数. (2)样本平均数与平均数的特点平均数描述了数据的平均水平,定量地反映了数据的集中趋势所处的水平.用样本的平均数估计总体的平均数时,样本平均数只是总体的平均数的近似值.(3)样本平均数的作用n 个样本数据x 1,x 2,…,x n 的平均数x -=x 1+x 2+…+x n n,则有n x -=x 1+x 2+…+x n .也就是把每个x i (i =1,2,…,n )都用x -代替后,数据总和保持不变.所以平均数x -对数据有“取齐”的作用,代表了一组数据的数值平均水平.2.用样本标准差估计总体标准差(1)数据的离散程度可以用极差、方差或标准差来描述.样本方差描述了一组数据围绕平均数波动的大小.一般地,设样本的元素为x 1,x 2,…,x n ,样本的平均数为x -,定义s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],表示样本方差.(2)为了得到以样本数据的单位表示的波动幅度,通常要求出样本方差的算术平方根.s =s 2,s 表示样本标准差.1.判断正误.(对的打“√”,错的打“×”) (1)数据5,4,4,3,5,2的众数为4.( )(2)数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半.( ) (3)方差与标准差具有相同的单位.( )(4)如果一组数中每个数减去同一个非零常数,则这组数的平均数改变,方差不变.( )解析:(1)中的众数应为4和5;(2)正确;(3)二者单位不一致;(4)正确,平均数也应减去该常数,方差不变.答案:(1)× (2)√ (3)× (4)√2.已知一组数据为20,30,40,50,50,60,70,80.其中平均数、中位数和众数的大小关系是( )A .平均数>中位数>众数B .平均数<中位数<众数C .中位数<众数<平均数D .众数=中位数=平均数解析:选D.平均数、中位数、众数皆为50,故选D.3.已知五个数据3,5,7,4,6,则该样本的标准差为________. 解析:因为x -=15×(3+5+7+4+6)=5,所以s = 15×[(3-5)2+…+(6-5)2]= 2. 答案: 2样本平均数的计算[学生用书P41]一个球队所有队员的身高如下(单位:cm):178,179,181,182,176,183,176,180,183,175,181,185,180,184,问这个球队的队员平均身高是多少?(精确到1 cm)【解】 法一:利用平均数的公式计算. x -=114×(178+179+181+…+180+184)=114×2 523≈180.法二:建立新数据,再利用平均数简化公式计算.取a =180,将上面各数据同时减去180,得到一组新数据: -2,-1,1,2,-4,3,-4,0,3,-5,1,5,0,4. x -′=114×(-2-1+1+2-4+3-4+0+3-5+1+5+0+4)=114×3=314≈0.2.所以x -=x -′+a ≈0.2+180≈180. 法三:利用加权平均数公式计算. x -=114×(185×1+184×1+183×2+182×1+181×2+180×2+179×1+178×1+176×2+175×1)=114×2 523≈180.法四:建立新数据,再利用加权平均数公式计算. x -′=114×[5×1+4×1+3×2+2×1+1×2+0×2+(-1)×1+(-2)×1+(-4)×2+(-5)×1]=114×3≈0.2,所以x -=x -′+a =0.2+180≈180.(1)平均数公式是一个计算平均数的基本公式,在一般情况下,要计算一组数据的平均数可使用这个公式.(2)当数据较大,且大部分数据在某一常数左右波动时,“法二”可以减轻运算量,故此法比较简便,常数a 通常取接近这组数据(大约估计)平均数的较“整”的数,以达到简化计算过程的目的,常数a 的取法并不唯一,比如本例中取a =181也可以.(3)当一组数据中有不少数重复出现时,可用加权平均数公式来计算平均数.个体户王某经营一家餐馆,下面是餐馆所有工作人员的某个月的工资: 王某厨师甲厨师乙杂工招待甲招待乙会计3 000元 1 450元 1 400元 1 320元 1 350元 1 320元 1 410元 (1)计算工作人员的平均工资;(2)计算出的平均工资能否反映工作人员在这个月收入的一般水平? (3)去掉王某的工资后,再计算平均工资;(4)(3)中所求的平均工资能代表工作人员的收入吗?解:(1)工作人员的平均工资为v =3 000+1 450+1 400+1 320+1 350+1 320+1 4107≈1 607(元).(2)计算出的平均工资不能反映工作人员的这个月收入的一般水平,因为王某的数据为一极端数据.(3)去掉王某的工资后,工作人员的平均工资为u =1 450+1 400+1 320+1 350+1 320+1 4106=1 375(元).(4)(3)中所求的平均工资能代表工作人员的收入.标准差、方差的计算及应用[学生用书P41]为了考察甲、乙两种小麦的长势,分别从甲、乙两种麦苗中各抽10株,测得它们的株高分别为(单位:cm):甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 (1)哪种小麦的苗长得高? (2)哪种小麦的苗长得齐?【解】 (1)x -甲=110×(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm).x -乙=110×(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm). 显然x -甲<x -乙,所以乙种小麦的苗长得高. (2)s 2甲=110×[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110×(25+121+100+49+64+256+121+81+81+144)=110×1 042=104.2. s 2乙=110×[(27-31)2+(16-31)2+(44-31)2+(27-31)2+(44-31)2+(16-31)2+(40-31)2+(40-31)2+(16-31)2+(40-31)2]=110×(16+225+169+16+169+225+81+81+225+81)=110×1288=128.8. 显然s 2甲<s 2乙,所以甲种小麦的苗长得齐.(1)用样本的标准差、方差估计总体的方法用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,当所得数据的平均数不相等时,需先分析平均水平,再计算标准差(方差)分析稳定情况.(2)标准差(方差)的作用在实际应用中,常常把平均数与标准差结合起来进行决策.在平均数相等的情况下,比较方差或标准差以确定稳定性.甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,从中抽取6件测量数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定. 解:(1)x -甲=16(99+100+98+100+100+103)=100, x -乙=16(99+100+102+99+100+100)=100,s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)由(1)知x -甲=x -乙,比较它们的方差,因为s 2甲>s 2乙,故乙机床加工零件的质量更稳定.利用样本的数字特征估计总体的数字特征[学生用书P42]随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)用样本数据估计甲班总体中有多少数据落入区间(x --s ,x -+s )中.【解】 (1)由茎叶图可知,甲班身高集中于160~179 cm 之间,而乙班身高集中于170~180 cm 之间.因此,乙班平均身高高于甲班.(2)x -=158+162+163+168+168+170+171+179+179+18210=170.甲班的样本方差为110×[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(3)由(2)知,s ≈7.56,故区间(x --s ,x -+s )=(162.44,177.56).由茎叶图可知,甲班总体中落入区间(162.44,177.56)中的数据约为510=50%.平均数反映了这组数据的平均水平,方差或标准差反映了这组数据的稳定与波动、集中与离散程度,在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中,稳定性越好.对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下:甲 27 38 30 37 35 31 乙332938342836试判断选谁参加某项重大比赛更合适.解:可以从平均成绩及方差、标准差方面来考察样本数据的水平及稳定性. 他们的平均速度为 x -甲=16(27+38+30+37+35+31)=33(m/s), x -乙=16(33+29+38+34+28+36)=33(m/s).他们的平均速度相同,再看方差:s 2甲=16[(-6)2+52+(-3)2+42+22+(-2)2]=473(m 2/s 2), s 2乙=16[(-4)2+52+12+(-5)2+32]=383(m 2/s 2). 则s 2甲>s 2乙,即s 甲>s 乙.故乙的成绩比甲稳定.所以,应选乙参加比赛更合适.1.样本的标准差描述了总体数据围绕平均数波动的大小程度,样本的标准差越大,总体数据估计越分散;样本的标准差越小,总体估计越集中.特别地,当样本的标准差为0时,则表明总体数据估计没有波动,估计数据全相等.2.样本的平均数和标准差是两个重要的数字特征,在应用平均数和标准差解决问题时,若平均数不同,则直接应用平均数比较优劣,若平均数相同,则要由标准差研究其与平均数的偏离程度.3.常用性质及计算方法 (1)性质①若x 1,x 2,x 3,…,x n 的平均数是x -,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数是m x -+a .②数据x 1,x 2,…,x n 与数据x 1+a ,x 2+a ,…,x n +a 的方差相等. ③若x 1,x 2,…,x n 的方差为s 2,那么ax 1,ax 2,…,ax n 的方差为a 2s 2. (2)方差的计算①基本公式s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].②简化计算公式:s 2=1n [(x 21+x 22+…+x 2n )-n x -2],或写成s 2=1n(x 21+x 22+…+x 2n )-x -2,即方差等于原数据平方的平均数减去平均数的平方.1.防止计算出错.2.对平均数、方差的理解要准确.1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的程度大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 解析:选B.由平均数、方差的定义及公式可知.2.样本中共有五个个体,其值分别为a ,0,1,2,3.若该样本的平均值为1,则样本方差为( )A .65B .65C . 2D .2解析:选D.因为样本的平均值为1,所以15(a +0+1+2+3)=1,所以a =-1,所以样本方差s 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.3.临近元旦,老师们陆续收到毕业学生寄送的贺卡和名信片.孔老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.解析:该组数据的平均数x -=10+6+8+5+65=7,方差s 2=(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)25=165.答案:1654.甲、乙两名运动员在同样条件下练习射击,每人打5发子弹,命中环数如下:甲:6,8,9,9,8;乙:10,7,7,7,9,则两名运动员射击成绩中________的成绩较稳.解析:x -甲=6+8+9+9+85=8,x -乙=10+7+7+7+95=8.s 2甲=15[(6-8)2+(8-8)2+(9-8)2+(9-8)2+(8-8)2]=65,s 2乙=15[(10-8)2+(7-8)2+(7-8)2+(7-8)2+(9-8)2]=85.因为x -甲=x -乙,s 2甲<s 2乙,所以甲比乙稳定. 答案:甲, [学生用书P105(单独成册)])[A 基础达标]1.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为x -甲=82分,x -乙=82分;s 2甲=245,s 2乙=190,那么成绩较为集中的是( )A .甲班B .乙班C .两班一样D .无法确定解析:选B.方差越小,成绩越集中.2.某样本数据的茎叶图如图所示,若该组数据的中位数为85,平均数为85.5,则x +y =( )A .12B .13C .14D .15解析:选B.因为中位数为85, 所以4+x =2×5,解得x =6. 又平均数为85.5,所以73+79+3×84+86+87+88+93+90+y =855, 所以y =7.故x +y =13.3.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差解析:选C.由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.4.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A .11B .11.5C .12D .12.5解析:选C.由题图可知:区间[5,10]对应的频率为0.3.令中位数对应的点为x ,则在区间[10,15]中有0.1(x -10)=0.5-0.3,解得x =12.5.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x -A 和x -B ,样本标准差分别为s A 和s B ,则( )A .x -A >x -B ,s A >s B B .x -A <x -B ,s A >s BC .x -A >x -B ,s A <s BD .x -A <x -B ,s A <s B解析:选B.A 中的数据都不大于B 中的数据,所以x -A <x -B ,但A 中的数据比B 中的数据波动幅度大,所以s A >s B .6.若a 1,a 2,…,a 20,这20个数据的平均数为x -,方差为0.20,则数据a 1,a 2,…,a 20,x -这21个数据的方差为________.解析:这21个数的平均数仍为x -,从而方差为121×[20×0.2+(x --x -)2]≈0.19.答案:0.197.已知样本9,10,11,x ,y 的平均数是10,标准差是2,则xy =________. 解析:平均数x -=15(9+10+11+x +y )=10,所以x +y =20,标准差s =15[(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2] =15[2+x 2+y 2-20(x +y )+200]= 2. x 2+y 2-20(x +y )=-192, x 2+y 2=-192+20×20=208,(x +y )2-2xy =208,202-2xy =208,xy =96.答案:968.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679则以上两组数据的方差中较小的一个为s 2=________. 解析:x -甲=7,s 2甲=15×(12+02+02+12+02)=25;x -乙=7,s 2乙=15×(12+02+12+02+22)=65.答案:259.为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:组号 分组 频数 频率 1 [50,60) 4 0.08 2 [60,70) 8 0.16 3 [70,80) 10 0.20 4 [80,90) 16 0.32 5 [90,100]合计(1)填充频率分布表中的空格;(2)如图,不具体计算频率组距,补全频率分布直方图;(3)估计这900名学生竞赛的平均成绩(同一组中的数据用该组区间的中点值作代表).解:(1)40.08=50,即样本容量为50.第5组的频数为50-4-8-10-16=12, 从而第5组的频率为1250=0.24.又各小组频率之和为1,所以频率分布表中的四个空格应分别填12,0.24,50,1. (2)根据小长方形的高与频数成正比,设第一个小长方形的高为h 1,第二个小长方形的高为h 2,第五个小长方形的高为h 5.由等量关系得h 1h 2=12,h 1h 5=13,补全的频率分布直方图如图所示.(3)50名学生竞赛的平均成绩为x -=4×55+8×65+10×75+16×85+12×9550=79.8≈80(分).利用样本估计总体的思想可得这900名学生竞赛的平均成绩约为80分.10.为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x -1,x -2,估计x -1-x -2 的值.解:(1)设甲校高三年级学生总人数为n . 由题意知30n=0.05,解得n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级这次联考数学成绩的及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x -1′,x -2′. 根据样本茎叶图可知30(x -1′-x -2′)=30x -1′-30x -2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92 =2+49-53-77+2+92=15.因此x -1′-x -2′=0.5.故x -1-x -2的估计值为0.5分.[B 能力提升]11.一组数据的方差是s 2,将这组数据中的每一个数都乘以2,得到一组新数据,其方差是( )A .12s 2B .2s 2C .4s 2D .s 2解析:选C.设一组数据x 1,x 2,…,x n ,则s 2=(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2n,将每一个数乘以2,则x ′=2x -.所以s ′2=(2x 1-2x -)2+(2x 2-2x -)2+…+(2x n -2x -)2n=4n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]=4s 2.故答案选C.12.从甲、乙、丙三个厂家生产的同一种产品中抽取8件产品,对其中使用寿命跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10 乙:4,6,6,6,8,9,12,13 丙:3,3,4,7,9,10,11,12三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲________,乙________,丙________.解析:甲中的众数是8,乙中的平均数是8,丙中的中位数7+92=8.答案:众数 平均数 中位数13.为了了解市民的环保意识,高一某班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50户居民每天丢弃旧塑料袋的平均数; (2)求这50户居民每天丢弃旧塑料袋的标准差;(3)由样本估计总体中有多少数据落入区间(x --s ,x -+s ). 解:(1)平均数x -=150(2×6+3×16+4×15+5×13)=18550=3.7.(2)这50户居民每天丢弃旧塑料袋的方差为s 2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97,所以标准差s ≈0.985.(3)由(1)(2)知,区间(x --s ,x -+s ),即(2.715,4.685),则估计总体中落入区间(x --s ,x -+s )的数据约为16+1550×100%=62%.14.(选做题)在一次科技知识竞赛中,两组学生的成绩如下表:已经算得两个组的平均分都是80分.请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中的成绩谁优谁劣,并说明理由.解:(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数看,甲组成绩较好.(2)甲、乙两组成绩的中位数、平均数都是80分.其中,甲组成绩在80分以上(包括80分)的有33人,乙组成绩在80分以上(包括80分)的有26人.从这一角度看,甲组成绩较好.(3)s2甲=150×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=172,s2乙=150×[4×(50-80)2+4×(60-80)2+16×(70-80)2+2×(80-80)2+12×(90-80)2+12×(100-80)2]=256.显然s2甲<s2乙,故甲组成绩比乙组成绩稳定,从这一角度看,甲组成绩较好.(4)从成绩统计表看,甲组成绩大于或等于90分的有20人,乙组成绩大于或等于90分的有24人,所以乙组成绩分布在高分段的人数多.同时,乙组得满分的人数比甲组得满分的人数多6.从这一角度看,乙组成绩较好.。

高中数学 第2章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案 新人教A版必修3

高中数学 第2章 统计 2.2.2 用样本的数字特征估计总体的数字特征学案 新人教A版必修3

学习资料2。

2。

2 用样本的数字特征估计总体的数字特征学习目标核心素养1.会求样本的众数、中位数、平均数、标准差、方差.(重点)2.理解用样本的数字特征来估计总体数字特征的方法.(重点)3.会应用相关知识解决实际统计问题.(难点)1.通过数字特征的计算,提升数学运算素养.2.借助实际统计问题的应用,培养数学建模素养。

1.众数、中位数、平均数的概念(1)众数:一组数据中出现次数最多的数.(2)中位数:一组数据按大小顺序排列后,处于中间位置的数.如果个数是偶数,则取中间两个数据的平均数.(3)平均数:一组数据的和除以数据个数所得到的数.2.三种数字特征的比较名称优点缺点众数①体现了样本数据的最大集中点;②容易计算①它只能表达样本数据中很少的一部分信息;②无法客观地反映总体的特征中位数①不受少数几个极端数据(即排序靠前或靠后的数据)的影响;②容易计算,便于利用中间数据的信息对极端值不敏感平均数代表性较好,是反映数据集中趋势的量.一般情况下,可以反映出更多的关于样本数据全体的信息任何一个数据的改变都会引起平均数的改变.数据越“离群”,对平均数的影响越大(1)标准差:标准差是样本数据到平均数的一种平均距离,一般用s表示,s=错误!.(2)方差:标准差的平方s2叫做方差.s2=错误![(x1-错误!)2+(x2-错误!)2+…+(x n-错误!)2].其中,x n是样本数据,n是样本容量,错误!是样本平均数.思考:在统计中,计算方差的目的是什么?[提示]方差与标准差描述了一组数据围绕平均数波动的大小,其值越大,数据离散程度越大,当其值为0时,说明样本各数据相等,没有离散性.1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是() A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[标准差能反映一组数据的稳定程度.]2.数据101,98,102,100,99的标准差为()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.2 用样本的数字特征估计总体的数字特征[学习目标] 1.正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2.理解用样本的基本数字特征来估计总体的基本数字特征.知识点一众数、中位数、平均数1.众数、中位数、平均数定义(1)众数:一组数据中重复出现次数最多的数.(2)中位数:把一组数据按从小到大的顺序排列,处在中间位置(或中间两个数的平均数)的数叫做这组数据的中位数.(3)平均数:如果n个数x1,x2,…,x n,那么x=1n(x1+x2+…+x n)叫做这n个数的平均数.2.三种数字特征与频率分布直方图的关系1.标准差(1)平均距离与标准差标准差是样本数据到平均数的一种平均距离,一般用s表示.假设样本数据是x1,x2,…,x n,x表示这组数据的平均数.x i到x的距离是|x i-x|(i=1,2,…,n),则用如下公式来计算标准差:s =1nx1-x2+x2-x2+…+x n-x2].(2)计算标准差的步骤①求样本数据的平均数x;②求每个样本数据与样本平均数的差x i-x(i=1,2,…,n);③求(x i -x )2(i =1,2,…,n );④求s 2=[1n(x 1-x )2+(x 2-x )2+…+(x n -x )2];⑤求s =s 2,即为标准差. 2.方差标准差的平方s 2叫做方差.s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中,x i (i =1,2,…,n )是样本数据,n 是样本容量,x 是样本平均数.题型一 众数、中位数、平均数的简单运用例1 某公司的33名职工的月工资(以元为单位)如下表:(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法. 解 (1)平均数是:x =1500+4000+3500+2000×2+1500+1000×5+500×3+0×2033≈1500+591=2091(元),中位数是1500元,众数是1500元. (2)新的平均数是x ′=1500+28500+18500+2000×2+1500+1000×5+500×3+0×2033≈1500+1788=3288(元),新的中位数是1500元,新的众数是1500元.(3)在这个问题中,中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.反思与感悟 1.众数、中位数及平均数都是描述一组数据集中趋势的量,当一组数据中个别数据较大时,可用中位数描述其集中趋势,当一组数据中有不少数据重复出现时,其众数往往更能反映问题.2.在求平均数时,可采用新数据法,即当所给数据在某一常数a 的左右摆动时,用简化公式:x =x ′+a .跟踪训练1 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:解 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是 1.70;这组数据的平均数是x =117(1.50×2+1.60×3+…+1.90×1)=28.7517≈1.69(m).答 17名运动员成绩的众数、中位数、平均数依次为1.75m ,1.70m,1.69m. 题型二 平均数和方差的运用例2 甲、乙两机床同时加工直径为100cm 的零件,为检验质量,各从中抽取6件测量,数据为甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. 解 (1)x 甲=16(99+100+98+100+100+103)=100,x 乙=16(99+100+102+99+100+100)=100.s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73, s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均值相同, 又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定. 反思与感悟 1.极差、方差与标准差的区别与联系: 数据的离散程度可以通过极差、方差或标准差来描述.(1)极差是数据的最大值与最小值的差,它反映了一组数据变化的最大幅度,它对一组数据中的极端值非常敏感.(2)方差或标准差则反映了一组数据围绕平均数波动的大小,为了得到以样本数据的单位表示的波动幅度通常用标准差,即样本方差的算术平方根,是样本数据到平均数的一种平均距离. 2.在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中,质量越稳定.跟踪训练2 某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记录抽查数据如下(单位:kg): 甲:102 101 99 98 103 98 99 乙:110115908575115110 (1)这种抽样方法是哪一种方法?(2)试计算甲、乙两个车间产品质量的平均数与方差,并说明哪个车间产品比较稳定. 解 (1)采用的抽样方法是:系统抽样.(2)x 甲=17(102+101+99+98+103+98+99)=100;x 乙=17(110+115+90+85+75+115+110)=100;x 2甲=17[(102-100)2+(101-100)2+(99-100)2+(98-100)2+(103-100)2+(98-100)2+(99-100)2]=17(4+1+1+4+9+4+1)≈3.43; s 2乙=17[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(110-100)2]=17(100+225+100+225+625+225+100) ≈228.57.所以s 2甲<s 2乙,故甲车间产品较稳定. 题型三 频率分布与数字特征的综合应用 例3 已知一组数据:125 121 123 125 127 129 125 128 130 129 126 124 125 127 126 122 124 125 126 128 (1)填写下面的频率分布表:(2)作出频率分布直方图;(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数. 解 (1)(2)频率分布直方图如下:(3)在[125,127)中的数据最多,取这个区间的中点值作为众数的近似值,得众数126,事实上,众数的精确值为125.图中虚线对应的数据是125+2×58=126.25,事实上中位数为125.5.使用“组中值”求平均数:x =122×0.1+124×0.15+126×0.4+128×0.2+130×0.15=126.3,平均数的精确值为x =125.75.反思与感悟 1.利用频率分布直方图估计数字特征: (1)众数是最高的矩形的底边中点的横坐标. (2)中位数左右两侧直方图面积相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和. 2.利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.跟踪训练3 某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05..求:(1)高一参赛学生成绩的众数、中位数; (2)高一参赛学生的平均成绩. 解 (1)由图可知众数为65, 又∵第一个小矩形的面积为0.3,∴设中位数为60+x ,则0.3+x ×0.04=0.5,得x =5, ∴中位数为60+5=65.(2)依题意,平均成绩为55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,∴平均成绩约为67.分类讨论思想例4 某班有四个学习小组,各小组人数分别为10,10,x,8,已知这组数据的中位数与平均数相等,求这组数据的中位数.分析 由于x 未知,因此中位数不确定,需讨论.解 该组数据的平均数为14(10+10+x +8)=14(28+x ),中位数是这4个数按从小到大的顺序排列后处在最中间两个数的平均数.(1)当x ≤8时,原数据从小到大排序为x,8,10,10,中位数是9,由14(28+x )=9,得x =8,符合题意,此时中位数是9;(2)当8<x ≤10时,原数据从小到大排序为8,x,10,10,中位数是12(x +10),由14(28+x )=12(10+x ),得x =8,与8<x ≤10矛盾,舍去; (3)当x >10时,原数据从小到大排序为8,10,10,x ,中位数是10,由14(28+x )=10,得x=12,符合题意,此时中位数是10. 综上所述,这组数据的中位数是9或10.解后反思 一组数据按从小到大排列,中间一个(或中间两项的平均数)为中位数.当题目中含有参数,且参数的不同取值影响求解结果时,需对参数的取值分类讨论.1.下列选项中,能反映一组数据的离散程度的是( ) A .平均数 B .中位数 C .方差 D .众数答案 C解析 由方差的定义,知方差反映了一组数据的离散程度.2.一组样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x 等于( )A .21B .22C .20D .23 答案 A解析 根据题意知,中位数22=x +232,则x =21.3.一组样本数据a,3,5,7的平均数是b ,且a ,b 是方程x 2-5x +4=0的两根,则这个样本的方差是( ) A .3B .4C .5D .6 答案 C解析 x 2-5x +4=0的两根是1,4. 当a =1时,a,3,5,7的平均数是4; 当a =4时,a,3,5,7的平均数不是1. 所以a =1,b =4,则方差为s 2=5.4.一次选拔运动员的测试中,测得7名选手中的身高(单位:cm)分布的茎叶图如图所示.记录的平均身高为177cm ,有一名候选人的身高记录不清楚,其末位数记为x ,则x 等于( )A .5B .6C .7D .8 答案 D解析 由题意知,10+11+0+3+x +8+9=7×7,解得x =8.5.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4 则:(1)平均命中环数为________; (2)命中环数的标准差为________. 答案 (1)7 (2)2解析 (1)x =7+8+7+9+5+4+9+10+7+410=7.(2)∵s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s =2.1.一组数据中的众数可能不止一个,中位数是唯一的,求中位数时,必须先排序. 2.利用直方图求数字特征时,一方面要掌握众数、中位数、平均数的计算方法;另一方面要理解这些数字特征只是真实数据的估计值.3.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,方差一定程度上夸大了离散程度,在实际应用中一般多采用标准差.。

相关文档
最新文档