2018年江苏高考数学考试说明(含试题)
2018年江苏高考数学考试说明(含最新试题)

2018年江苏省高考(ɡāo kǎo)说明-数学科一、命题指导思想2018年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲》,结合江苏省普通高中课程标准教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.试卷保持较高的信度、效度以及必要的区分度和适当的难度.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,支撑学科知识体系的重点内容在试卷中要占有较大的比例.注重知识内在联系的考查,不刻意追求知识的覆盖面.注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解(qiújiě)能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造适合的数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够发现问题、提出问题,综合与灵活地运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有初步的、感性的认识,并能解决相关的简单问题.理解(lǐjiě):要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题.具体考查要求如下:1.必做题部分内容要求A B C1.集合集合及其表示√子集√交集、并集、补集√2.函数概念与基本初等函数Ⅰ函数的概念√函数的基本性质√指数与对数√指数函数的图象与性质√对数函数的图象与性质√幂函数√函数与方程√函数模型及其应用√3.基本初等函数Ⅱ(三角函数)、三角恒等变换三角函数的概念√同角三角函数的基本关系式√正弦函数、余弦函数的诱导公式√正弦函数、余弦函数、正切函数的图象与性质√函数的图象与性质√两角和(差)的正弦、余弦及正切√二倍角的正弦、余弦及正切√圆的标准方程与一般方程√直线与圆、圆与圆的位置关系√17.圆锥曲线与方程中心在坐标原点的椭圆的标准方程与几何性质√中心在坐标原点的双曲线的标准方程与几何性质√顶点在坐标原点的抛物线的标准方程与几何性质√2.附加(fùjiā)题部分内容要求A B C选修系列:不含选修系列中的内容1.圆锥曲线与方程曲线与方程√顶点在坐标原点的抛物线的标准方程与几何性质√2.空间向量与立体几何空间向量的概念√空间向量共线、共面的充分必要条件√空间向量的加法、减法及数乘运算√空间向量的坐标表示√空间向量的数量积√空间向量的共线与垂直√直线的方向向量与平面的法向量√空间向量的应用√3.导数及其应用简单的复合函数的导数√4.推理与证数学归纳法的原理√明数学归纳法的简单应用√5.计数原理加法原理与乘法原理√排列与组合√二项式定理√6.概率、统计离散型随机变量及其分布列√超几何分布√条件概率及相互独立事件√次独立重复试验的模型及二项分布√离散型随机变量的均值与方差√选修系列中4个专题7.几何证明选讲相似三角形的判定与性质定理√射影定理√圆的切线的判定与性质定理√圆周角定理,弦切角定理√相交弦定理、割线定理、切割线定理√圆内接四边形的判定与性质定理√8.矩阵与变换矩阵的概念√二阶矩阵与平面向量√常见的平面变换√矩阵的复合与矩阵的乘法√二阶逆矩阵√二阶矩阵的特征值与特征向量√三、考试形式及试卷(shìjuàn)结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加(fùjiā)题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例A.必做题部分1. 设复数满足(i 是虚数单位),则的虚部为_____【解析】本题主要考查复数的基本概念,基本运算.本题属容易题.【答案】2. 设集合,则实数的值为_【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题.【答案】1.3. 右图是一个算法流程图,则输出的k的值是.【解析】本题主要考查算法流程图的基础知识,本题属容易题.【答案】5结束k←k +1开始k←1k2-5k+4>0N 输出kY4. 函数(hánshù)的定义域为【解析】本题主要考查对数函数的单调性,本题属容易题.【答案】5.某棉纺厂为了解一批棉花的质量,从中随机抽取了根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间中,其频率分布直方图如图所示,则在抽测的100根中,有_ _根棉花纤维的长度小于.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题.【答案】由频率分布直方图观察得棉花纤维长度小于mm20的频率为,故频数为.6. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题.【答案】7. 已知函数,它们的图像有一个横坐标为的交点,则的值是________.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题.【答案(dáàn)】.8.在各项均为正数的等比数列中,若的值是______.【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.9.在平面直角坐标系中,双曲线的右准线与它的两条渐近线分别交于,其焦点是,,则四边形的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.本题属中等难度题. 【答案】10.如图,在长方体中,,,则四棱锥的体积为 cm 3.【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力.本题属容易题. 【答案】6. 11.设直线是曲线的一条切线,则实数的值是 .【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】.12.设是定义在上且周期为2的函数,在区间上,其中.若,则的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题. 【答案(d á àn)】DABC13.如图,在中,D是BC的中点,E,F是AD上的两个三等分点,,,则的值是 .【解析】本题主要考查平面向量的概念、平面向量的运算以及平面向量的数量积等基础知识,考查数形结合和等价转化的思想,考查运算求解能力.本题属难题.【答案】.14. 已知正数满足:则的取值范围是.【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解决问题的能力.本题属难题.【答案】二、解答题15.在ABC∆中,角.已知(1)求值;(2)求的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力.本题属容易题.【参考答案】(1)在ABC∆中,因为,故由正弦定理得,于是.所以(suǒyǐ).(2)由(1)得.所以.又因为,所以.从而.在,所以.因此由正弦定理得.16.如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.本题属容易题【参考答案】证明:(1)在平面内,因为AB⊥AD,,所以.又因为平面ABC,平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以(suǒyǐ)平面ABD.因为平面ABD,所以BC⊥.又AB⊥AD,,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.17.如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知识,考查分析问题能力和运算求解能力.本题属中等难度题.【参考答案】(1)设椭圆的半焦距为c.因为椭圆E的离心率为12,两准线之间的距离为8,所以,,解得,于是,因此椭圆E的标准方程是.(2)由(1)知,,.设,因为点为第一象限的点,故.当时,与相交于,与题设不符.当时,直线的斜率为,直线的斜率为.因为(yīn wèi),,所以直线1l的斜率为,直线2l的斜率为,从而直线1l的方程:,①直线2l的方程:. ②由①②,解得,所以.因为点在椭圆上,由对称性,得,即或.又P在椭圆E上,故.由,解得;,无解.因此点P的坐标为.18. 如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥BC与河岸垂直;保护区的边界为圆心在线段OA上并与BC相切的圆,且古桥两端和到该圆上任一点的距离均不少于80,经测量,点A位于点O正北方向60m处,点位于点O正东方向170m处,(为河岸),.(1)求新桥BC的长;(2)当多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力..【参考答案】解法(jiě fǎ)一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.由条件知A(0, 60),C(170, 0),直线BC的斜率k BC=-tan∠BCO=-.又因为AB⊥BC,所以直线AB的斜率k AB=.设点B的坐标为(a,b),则k BC= k AB=解得a=80,b=120. 所以BC=.因此新桥BC的长是150 m.(2)设保护区的边界圆M的半径为r m,OM=d m,(0≤d≤60).由条件知,直线BC的方程为,即由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得故当d=10时,最大,即圆面积最大.所以当OM = 10 m时,圆形保护区的面积最大.解法二:(1)如图,延长OA, CB交于点F..所以sin∠FCO=,cos∠FCO=.因为tan∠BCO=43因为OA=60,OC=170,所以OF=OC tan∠FCO=.CF=,从而.因为OA⊥OC,所以cos∠AFB=sin∠FCO==4,5又因为(yīn wèi)AB⊥BC,所以BF=AF cos∠AFB==,从而BC=CF-BF=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 19. 设函数,其中a 为实数.(1)若)(x f 在上是单调减函数,且在),1(+∞上有最小值,求a 的取值范围;(2)若)(x g 在上是单调增函数,试求)(x f 的零点个数,并证明你的结论.【解析】本题主要考查函数的单调性、最值、零点等基础知识,考查灵活运用数形结合、分类讨论等数学思想方法进行探索、分析与解决问题的能力.本题属难题. 【参考答案】解:(1)令f ′(x )=<0,考虑到f (x )的定义域为(0,+∞),故a>0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1. 结合上述两种情况,有a ≤e -1.①当a=0时,由f(1)=0以及(yǐjí)f′(x)=>0,得f(x)存在唯一的零点;②当a<0时,由于f(e a)=a-a e a=a(1-e a)<0,f(1)=-a>0,且函数f(x)在[e a,1]上的图象不间断,所以f(x)在(e a,1)上存在零点.-a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)另外,当x>0时,f′(x)=1x只有一个零点.-a=0,解得x=a-1.当0<x<a-1时,f′(x)>0,当③当0<a≤e-1时,令f′(x)=1xx>a-1时,f′(x)<0,所以,x=a-1是f(x)的最大值点,且最大值为f(a-1)=-ln a -1.当-ln a-1=0,即a=e-1时,f(x)有一个零点x=e.当-ln a-1>0,即0<a<e-1时,f(x)有两个零点.实际上,对于0<a<e-1,由于f(e-1)=-1-a e-1<0,f(a-1)>0,且函数f(x)在[e -1,a-1]上的图象不间断,所以f(x)在(e-1,a-1)上存在零点.-a>0,故f(x)在(0,a-1)上是单调增函数,所另外,当x∈(0,a-1)时,f′(x)=1x以f(x)在(0,a-1)上只有一个零点.下面考虑f(x)在(a-1,+∞)上的情况.先证f(e a-1)=a(a-2-e a-1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x-x2,则h′(x)=e x-2x,再设l(x)=h′(x)=e x-2x,则l′(x)=e x-2.当x>1时,l′(x)=e x-2>e-2>0,所以l(x)=h′(x)在(1,+∞)上是单调增函数.故当x>2时,h′(x)=e x-2x>h′(2)=e2-4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x-x2>h(e)=e e-e2>0.即当x>e时,e x>x2.当0<a<e-1,即a-1>e时,f(e a-1)=a-1-a e a-1=a(a-2-e a-1)<0,又f(a-1)>0,且函数f(x)在[a-1,e a-1]上的图象不间断,所以f(x)在(a-1,e a-1)上存在零点.又当x>a-1时,f′(x)=1-a<0,故f(x)在(a-1,+∞)上是单调减函数,所以f(x)在(a-1,+∞)上只x有一个零点.综合①,②,③,当a≤0或a=e-1时,f(x)的零点个数为1,当 0<a<e-1时,f(x)的零点个数为2.20. 设数列的前n项和为.若对任意的正整数n,总存在正整数m,使得,则称{}a是“H数列”.n(1)若数列{}a的前n项和,证明:{}n a是“H数列”;n(2)设{}a是等差数列,其首项,公差.若{}n a是“H数列”,求d的值;n(3)证明:对任意(rènyì)的等差数列{}a,总存在两个“H数列”和,使得n成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当时,当时,∴1n =时,,当2n ≥时,∴{}na 是“H 数列” (2)对,使nm Sa =,即取得, ∵0d <,∴,又,∴,∴(3)设{}na 的公差为d 令,对n *∀∈N ,,对n *∀∈N ,则,且为等差数列 {}n b 的前n 项和,令,则当1n =时1m =; 当2n =时1m =; 当时,由于n 与奇偶性不同,即非负偶数,m *∈N因此对,都可找到m *∈N ,使成立,即{}nb 为“H 数列”.{}n c 的前n项和,令,则∵对n*∈N∀∈N,是非(shìfēi)负偶数,∴m*即对n*∈N,使得成立,即{}n c为“H数列”∀∈N,都可找到m*因此命题得证.B.附加题部分1.选修几何证明选讲如图,AB是圆O的直径,为圆O上一点,过点D作圆O的切线交AB的延长线于点C,若,求证:【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力.本题属容易题.【参考答案】连结,因为AB是圆O的直径,所以因为是圆O的切线,所以,又因为所以于是≌从而即得故.AB=2BC2.选修矩阵与变换已知矩阵,,求.【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.本题属容易题.【参考答案】设A的逆矩阵为,则,即,故,,,,从而A的逆矩阵为,所以,.3.选修(xu ǎnxi ū)坐标系与参数方程在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆C 的极坐标方程.【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。
(完整word版)2018高考真题——数学(江苏卷)+Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1 .本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2 .答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定3 .请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4 •作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5 •如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:锥体的体积Y 其中药是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上1. 已知集合A{叩丄已,pi」血約,那么MU__________________ .【答案】{1 , 8}【解析】分析:根据交集定义■- : :■- - . \ :-\ ■ - .求结果•详解:由题设和交集的定义可知:点睛:本题考查交集及其运算,考查基础知识,难度较小2. 若复数/满足I ■ z M2:,其中i是虚数单位,则z的实部为___________ .【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果1 +2i详解:因为id 1+匸,—:—-2 L,则2的实部为2.I点睛:本题重点考查复数相关基本概念,如复数a亠hLfAbER.}的实部为乩、虚部为tv模为(齐总、对应点为d共轭复数为乞-呼.•3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为9 011(第\题)【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数详解:由苹叶图可知t 5位裁判打出的分数分别为89.90,91,91 ,故平均数为B9 - S9 + 90 + 91 + 91-------- ------------- = 90□be + 3C + + xJ点睛:的平均数为n4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为 ________ .I ------------------------- 1”1!I I門![While 7<6 ;:I十2;:S—2S ;;End While ;;Print S \…〔第WW…【答案】8【解析】分析:先判断i■:二T是否成立,若成立,再计算 .,若不成立,结束循环,输出结果•详解:由伪代码可得■红7总-4 因为,所以结束循环,输出=二|点睛:本题考查伪代码,考查考生的读图能力,难度较小5. 函数2屮曾'的定义域为 _______________ .【答案】[2, +R)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域详解:要使函数「(川有意义,则log2x 110,解得X-2,即函数的定义域为[工点睛:求给定函数的定义域往往需转化为解不等式(组)的问题6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为【答案】10【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率•详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为10点睛:古典概型中基本事件数的探求方法(1) 列举法•(2) 树状图法:适合于较为复杂的问题中的基本事件的探求采用树状图法••对于基本事件有有序”与无序”区别的题目,常(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化⑷排列组合法(理科):适用于限制条件较多且元素数目较多的题目7.已知函数y ■- sin(2x + < P --的图象关于直线对称,则T的值是【答案】【解析】分析:由对称轴得qj - --4 k<k € Z),再根据限制范围求结果•详解:由题意可得:1,所以2 兀丸n +甲■ ■十上旺(p - ― + kz(k毛Z),因为-、 2 6北...-,所以:.点睛:函数厂加诚曲IB (A>0, 3>0 )的性质:(彷唤-2 乞沁厂八I B;(2)最小正周期I(!)冗朮;(3)由厨為I业■,+求对称轴;(4)由斥+ ]也冬3咒+屮冬;斗求增区间;2 223x兀JX 、由_ + 2kjt ——■+ 2kx(k € £.i求减区间•8.在平面直角坐标系中,若双曲线-=iu >o)的右焦点到一条渐近线的距离为,则其离心率的值是_________ •【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率详解:因为双曲线的焦点F(c.O)到渐近线y = ± :热即bx ±av= 0的距离为聲寻=7= 0所以b = yc ,因此『=c2-b? = c2-|c?= f a = ^c#e = 2.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为 a.(cos—,0 < x < 2,9.函数[侃满足+ 4) - «x.KxeR),且在区间(W]上,f(刃二:贝他⑸)的值为|x - - 2 <x< 0h【答案】2【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果•详解:由、•门2得函数世対的周期为4,所以I.讥iH) F I L - \ ',因此.. .1 兀 Qt(f(l5)) = f(^) = cos- = —点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现|;m:的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围•10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 _______________ •(第10®)【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,| l r 4所以该多面体的体积为2 —1、〔a -点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.若函数I: . . I ::_:在•内有且只有一个零点,则:在|上的最大值与最小值的和为【答案】-【解析】分析:先结合三次函数图象确定在隐-閱上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由- 0得—0^ ■:,因为函数啦•在0亠「珂上有且仅有一个零点且f(0)],所以一品从而函数須在[上单调递增,在[H'J上单调递减,所以轨《.阿躯也・曲诃[-1)血)}7可,附心+姻)丄・| D- 1-4--3.点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件•从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线族■:制上在第一象限内的点,|哄淇;|,以AB为直径的圆C与直线I交于另一点D •若AB 00 = (',则点A的横坐标为_____________ •【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果亂+ 5详解:设|A(aJa)(a >0),则由圆心C为.中点得C(——Q易得|OC.(x-5)(x a)-hyiy-2a) o|,与y■■毀联立解 2得点D的横坐标£ - I」所以疥、聞.所以p I厂遊颅上J上二2-克| £1 + 5 r由.输■ CD = 0得15-a)( 1—-—) + (^2aX2_a) - 0用^2a 3 ■ 0,a ■ 3或a ■ - 1 ,因为Im】,所以£ - |点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法•13. 在|二阳也:中,角km所对的边分别为k"l,m m •心:的平分线交于点D,且.m,则碾::的最小值为__________ •【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值详解:由题意可知,渝込-仏加口+ S ABCL,由角平分线性质和三角形面积公式得ncsinl 20" - ■ I - + 1sin60°,化简得ac " a + + - = I ,因此|2 2 2 A c] [ (T 4a |cWa + c = (4a + + -) = 5-i >5 + 2 h1— - 9,a c a. c * e当且仅当匚J.i 2时取等号,则!(.的最小值为目.点睛:在利用基本不等式求最值时,要特别注意拆、拼、凑”等技巧,使其满足基本不等式中正”即条件要求中字母为正数卜定”不等式的另一边必须为定值)、等”等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合A ■仪恢■ 2n—l,n €N }, B ■凶%■ E N } •将AUB(的所有兀素从小到大依次排列构成一个数列何J.记S:为数列他丿的前n项和,则使得S n> I2a-—成立的n的最小值为_____________ •【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,贝U -Q- i —w十--十住芒--:;■]占+ 十2(1-右_ 尹七小_22 1-2由驚》也.十]得尹'+ 屮"012(21£+]人少¥-20(2* \T4AQ210 l> :\k>6所以只需研究是否有满足条件的解,此时\ = [(21-1)十(2 V—I)十…十门叶打]十十于十…十刃[J + f 2, %+1-加+ 1 , m为等差数列项数,且序-化由' ‘I !- 1. ■' r- I ■得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常二、解答题:本大题共 6小题,共计90分•请在答题卡指定区域.内作答,解答时应写出文字说明、证明过 程或演算步骤.15.在平行六面体 I ' ■- \1'_' J .中, 一";I '求证:(1) d 訂..\: (2)平面1 平面AiBC . 【答案】答案见解析【解析】分析:(1 )先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB I A I ,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后 根据面面垂直判定定理得结论 详解:证明:(1)在平行六面体 ABCD-A I B I C I D I 中,AB // A I B I .因为 AB 平面 A 1B 1C , A 1B 1;平面 A 1B 1C , 所以AB //平面A 1B 1C .见类型主要有分段型(如如需需蠶),符号型(如备十曲),周期型(如埠喑)(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA I=AB,所以四边形ABB i A i为菱形,因此AB i丄A I B .又因为AB i 丄B i C i, BC // B1C1,所以AB i丄BC.又因为A I B Q BC=B, A I B平面A i BC, BC 平面A i BC,所以AB i丄平面A i BC .因为AB i :二平面ABB i A i,所以平面ABB i A i丄平面A i BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明i6.已知为锐角,,^3 5(i)求卜芯领的值;(2 )求• 的值.°7【答案】(i) ■加osPT -25lan2a-tan(tt + B) 2(2)1 + un2atan(<i 十卩) 11【解析】分析:先根据同角三角函数关系得帚抄』,再根据二倍角余弦公式得结果;公式得,再利用两角差的正切公式得结果(2)因为k加为锐角,所以(■: -:-又因为costa+ p)= - ,所以$in(a + p)= Ji - 卩)因此"U42Lum 24因lana,所以un2a 、-(2)先根据二倍角正切详解:解:4sina tana ,t^na3COS<1因为ccsTi 1,所以因此,3曲"■烷(i)因为,所以3 1 - tan3a 丁因此,tan2a - Un(a + 阳 2吨邛)-网"3卩)]■门融亦卩1 5点睛:应用三角公式解决问题的三个变换角度(1) 变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是 配凑”.(2) 变名:通过变换函数名称达到减少函数种类的目的,其手法通常有切化弦”、升幕与降幕”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有: 换”、逆用变用公式”、通分约分”、分解与组合”、配方与平方”等• 17.某农场有一块农田,如图所示,它的边界由圆0的一段圆弧if ( P 为此圆弧的中点)和线段MN 构成.已 知圆0的半径为40米,点P 到MN 的距离为50米•现规划在此农田上修建两个温室大棚,大棚I 内的地 块形状为矩形 ABCD ,大棚H 内的地块形状为 HF ,要求卢制均在线段上,均在圆弧上.设 0C 与MN 所成的角为耳(第门题)(1 )用卜分别表示矩形 忙益时和■■■■■■ 的面积,并确定林嗟的取值范围; (2)若大棚I 内种植甲种蔬菜,大棚n 内种植乙种蔬菜, 且甲、乙两种蔬菜的单位面积年产值之比为岂胡.求当 为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】 (1)矩形ABCD 的面积为800 (4sin 9cos &+cos B)平方米,△ CDP 的面积为【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定阪的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根 据单调性确定函数最值取法 •常值代1600 (cos B —in 0cos 9) , sin 1) (2)当详解:解:(1)连结PO并延长交MN于H,贝U PH丄MN,所以OH=10.过O 作OE 丄BC 于E,贝U OE // MN,所以/ COE= 0,故OE=40cos 0 EC=40sin 0,则矩形ABCD 的面积为2><4Ocos0( 40sin0+1O) =800 (4sin 0cos 0+cos 0), △ CDP 的面积为1X2 X40cos 0 (40 -40sin 0) =1600 (cos 0-sin 0cos 0).过N作GN丄MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10 .I gr令/ GOK= 0,则sin 0= , (0,).4 6r兀当0€ [ 0,-)时,才能作出满足条件的矩形ABCD ,所以sin0的取值范围是[,1).4答:矩形ABCD的面积为800 (4sin0cos 0+cos 0平方米,△ CDP的面积为11600 (cos 0-in 0cos 0) , si n0 的取值范围是[,1).]4(2)因为甲、乙两种蔬菜的单位面积年产值之比为 4 : 3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k (k>0),则年总产值为4k >800 (4si n0cos0+cos0) +3kX1600 (cos 0-si n 0cos 0)=8000k (sin 0cos 0+cos 0) , 0€ [ 00,).设 f ( 0) = sin 0cos0+cos 0, 0€[ 0, “),则卜覚=「屣憑-涂蛙理心=-划用2心H=-加z -斗ii:兀令f⑹0,得0-,当0€ ( 0,)时,,所以f ( 0)为增函数;当0€ (,)时,];;/:*所以f ( 0)为减函数,因此,当0=时,f ( 0)取到最大值.p7C答:当匸时,能使甲、乙两种蔬菜的年总产值最大.6点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题•18. 如图,在平面直角坐标系koy中,椭圆C过点屁',焦点F1(曲切皿新0),圆O的直径为F』』.(1)求椭圆C及圆O的方程;(2)设直线I与圆O相切于第一象限内的点P.①若直线I与椭圆C有且只有一个公共点,求点P的坐标;②直线I与椭圆C交于两点.若的面积为工,求直线I的方程.7i【答案】(1)椭圆C的方程为- +[;圆O的方程为耳(2)①点P的坐标为;②直线I的方程为];•=,【解析】分析:(1 )根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得即得椭圆方程;(2 )第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标•第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程•详解:解:(1 )因为椭圆C的焦点为.:•,所以a2 4b2,解得a" - ~ 3,因此,椭圆C的方程为F十严=1・因为圆O的直径为儿叫,所以其方程为宀 f(2)①设直线I与圆O相切于,则,%所以直线1的方程为V =-上& -心+ y0,y=-—X +a,b,可设椭圆C的’-一=l(a ■' b ■■■ O'.又点『b2(黒)在椭圆C上,点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用+ - ?帰 + 36 - 4y 02 0-( *) 因为直线I 与椭圆C 有且只有一个公共点,所以鸟=.羽叼卩-4(%' yf )(茹_ %?)=地代J ・2) = o| • 因为陥% - °,所以鮭■百矿】•因此,点P 的坐标为匕:.办『②因为三角形OAB 的面积为•,所以丄需■设卜念「■.; :/:•.:「:: 由(* )得2% 士(4%丫好 一2)2(吋+泊所以总”广=十:_“「因为 所以解得(^2^)2 49,5瓜■:血-20舍去),则yf [,因此P 的坐标为 »)设而不求”思想求解;由综上,直线I 的方程为因此,f (x )与g (x )不存在“ S ”点.(2)函数『3I TTK则 fCx) -2ax, g R (x)--.x设 x o 为 f (x )与 g (x )的“ S'点,由 f (x o )与 g (x o )且 f ' (x o )与 g (x o ),得,即得 Inxo---甘八则1 ea . --------- ■ ■T1 2 2(/ ¥当垃■时,--=、满足方程组(*),即k 为f ( X )与g (X )的“ s’点. ^0芒因此,a 的值为I二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的 情况•19•记分别为函数f(x).g(x)的导函数.若存在K ,满足Rg 以血且l (K 』・g 〔加,则称为函数「(X ) 与|券:的一个“ S 点”. (1)证明:函数血r.与 不存在“ S 点”;(2) 若函数- ax 3-l.与Inx 存在“ S 点”,求实数a 的值;(3) 已知函数”闆■」缸,皐代^骂. 对任意a *0,判断是否存在b >0 ,使函数心)与g (心在区间(0*亠上)内x 存在“ S 点”,并说明理由. 【答案】(1)证明见解析 (2) a 的值为(3)对任意a>0,存在b>0,使函数f (x )与g (x )在区间(0, +8)内存在“ S 点” 【解析】分析:(1 )根据题中S 点”的定义列两个方程,根据方程组无解证得结论; (2)同(1)根据S 点的定义列两个方程,解方程组可得 a 的值;(3)通过构造函数以及结合S 点”的定义列两个方程,再判断方程组是否有解即可证得结论 •详解:解:(1)函数 f (x ) =x , g (x ) =x 2+2x-2,贝V f' (x ) =1 , g' (x ) =2x+2 .由 f (x ) =g (x )且 f' (x ) = g' (x ),得(x = X' + 2x - 2 (1 = 2x + 2 ,此方程组无解,(3)对任意 a>0,设+乩.因为1. j I |.L _ 1.,且h (x )的图象是不间断的,be" f(x) = - x 2 + a . g(x)=——由 f (x )与 g (x )且 f' (x )与 g' (x ),得be -+ a -——Xbe y (x - 1)所以存在(0, 1),使得h(%) 0,令匕=,则 b>0.函数 则 f(x) = - 2x ,, g'lx}be\x - 1 j,即(** )此时, 满足方程组(** ),即是函数f (x )与g (x )在区间(0, 1)内的一个"S 点”因此,对任意a>0,存在b>0,使函数f (x )与g (x )在区间(0, +〜内存在"S 点” 点睛: 涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单 调性、 最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底 还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路 20.设卜丿是首项为 ,公差为d 的等差数列,|代是首项为,公比为q 的等比数列. (1)设」.j2,若% bjub ]对:i 12〃均成立,求d 的取值范围;(2)若 =b 1>0,m€N".c]G(l.V -l,证明:存在乙;K ,使得'"r - 对-I 均成立,并求旧的取 值范围(用% E 兀表示).【答案】(1) d 的取值范围为 D与2(2) d 的取值范围为MEM 0------- •—I m m,证明见解析。
2018江苏高考数学试题与答案

2018年普通高等学校夏季招生全国统一考试数学(江苏卷> 本试题卷分为非选择题(第1题~第20题,共20题>.本卷满分为160分,考试时间为120分钟.参考公式:(1>样本数据x1,x2,…,xn 的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑. (2>直棱柱的侧面积S =ch ,其中c 为底面周长,h 为高. (3>棱柱的体积V =Sh ,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 1.已知集合A ={-1,1,2,4},B ={-1,0,2},则A ∩B =________.2.函数f(x>=log5(2x +1>的单调增区间是________.3.设复数z 满足i(z +1>=-3+2i(i 为虚数单位>,则z 的实部是________.4.根据如图所示的伪代码,当输入a ,b 分别为2,3时,最后输出的m 的值为________.5.从1,2,3,4这四个数中一次随机地取两个数.则其中一个数是另一个数的两倍的概率是________.SjkbsIFcn16.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s2=________.SjkbsIFcn17.已知tan()4x π+=2,则tan tan 2xx的值为________. 8.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数2()f x x=的图象交于P ,Q 两点,则线段PQ 长的最小值是________.SjkbsIFcn19.函数f(x>=Asin(ωx +φ>(A ,ω,φ为常数,A >0,ω>0>的部分图象如图所示,则f(0>的值是________.SjkbsIFcn110.已知e1,e2是夹角为23π的两个单位向量,a =e1-2e2,b =ke1+e2,若a ·b =0,则实数k 的值为________.SjkbsIFcn111.已知实数a ≠0,函数2,1,()2, 1.x a x f x x a x +<⎧⎨--≥⎩=若f(1-a>=f(1+a>,则a 的值为________.12.在平面直角坐标系xOy 中,已知P 是函数f(x>=ex(x >0>的图象上的动点,该图象在点P 处的切线l 交y 轴于点M.过点P 作l 的垂线交y 轴于点N.设线段MN 的中点的纵坐标为t ,则t 的最大值是________.SjkbsIFcn113.设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q 的等比数列,a2,a4,a6成公差为1的等差数列,则q 的最小值是________.SjkbsIFcn114.设集合A ={(x ,y>|2m ≤(x -2>2+y2≤m2,x ,y ∈R},B ={(x ,y>|2m ≤x +y ≤2m +1,x ,y ∈R},若A ∩B ≠∅,则实数m 的取值范围是________.SjkbsIFcn1二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,C .(1>若sin()6A π+=2cos A ,求A 的值;(2>若1cos 3A =,b =3c ,求sin C 的值.16.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.SjkbsIFcn1求证:(1>直线EF ∥平面PCD ; (2>平面BEF ⊥平面PAD .17.请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒. E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x(cm>.SjkbsIFcn1(1>某广告商要求包装盒的侧面积S(cm2>最大,试问x 应取何值?(2>某厂商要求包装盒的容积V(cm3>最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.18.如图,在平面直角坐标系xOy 中,M ,N 分别是椭圆22=142x y 的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限.过P 作x 轴的垂线,垂足为C .连结AC ,并延长交椭圆于点B .设直线PA 的斜率为k.SjkbsIFcn1(1>若直线PA 平分线段MN ,求k 的值; (2>当k =2时,求点P 到直线AB 的距离d ; (3>对任意的k >0,求证:PA ⊥PB .19.已知a ,b 是实数,函数f(x>=x3+ax ,g(x>=x2+bx ,f ′(x>和g ′(x>分别是f(x>和g(x>的导函数.若f ′(x>g ′(x>≥0在区间I 上恒成立,则称f(x>和g(x>在区间I 上单调性一致.SjkbsIFcn1(1>设a >0,若f(x>和g(x>在区间[-1,+∞>上单调性一致,求b 的取值范围;(2>设a <0且a ≠B .若f(x>和g(x>在以a ,b 为端点的开区间上单调性一致,求|a -b|的最大值.SjkbsIFcn120.设M 为部分正整数组成的集合,数列{an}的首项a1=1,前n 项的和为S n ,已知对任意的整数k ∈M ,当整数n >k 时,Sn +k +Sn -k =2(Sn +Sk>都成立.SjkbsIFcn1(1>设M ={1},a2=2,求a5的值;(2>设M ={3,4},求数列{an}的通项公式. 21.A .选修4-1:几何证明选讲如图,圆O1与圆O2内切于点A ,其半径分别为r1与r2(r1>r2>.圆O1的弦AB 交圆O2于点C(O1不在AB 上>.求证:AB ∶AC 为定值. B .选修4-2:矩阵与变换 已知矩阵A =1121⎡⎤⎢⎥⎣⎦,向量β=12⎡⎤⎢⎥⎣⎦,求向量α,使得A2α=β. C .选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,求过椭圆5cos 3sin x y ϕϕ=⎧⎨=⎩(φ为参数>的右焦点,且与直线423x ty t=-⎧⎨=-⎩ (t 为参数>平行的直线的普通方程.SjkbsIFcn1D .选修4-5:不等式选讲 解不等式x +|2x -1|<3.22.如图,在正四棱柱ABCD -A1B1C1D1中,AA1=2,AB =1,点N 是BC 的中点,点M 在CC1上.设二面角A1—DN —M 的大小为θ.SjkbsIFcn1(1>当θ=90°时,求AM 的长;(2>当cos θ=6时,求CM 的长. 23.设整数n ≥4,P(a ,b>是平面直角坐标系xOy 中的点,其中a ,b ∈{1,2,3,…,n},a >B .SjkbsIFcn1(1>记An 为满足a -b =3的点P 的个数,求An ;(2>记Bn 为满足1()3a b -是整数的点P 的个数,求Bn.参考答案1.答案:{-1,2} 2.答案:(12-,+∞> 3.答案:1 4.答案:35.答案:136.答案:1657.答案:498.答案:4910.答案:54.11.答案:34-12.答案:2e +12e1314.答案:[12,2]15.解:(1>由题设知sin cos +cos sin 66A A ππ=2cos A .从而sinA =,cos A ≠0,所以tan A .因为0<A <π,所以A =3π.SjkbsIFcn1(2>由cos A =13,b =3c 及a2=b2+c2-2bccos A ,得a2=b2-c2.故△ABC 是直角三角形,且B =2π.所以sin C =cos A =13.16.证明:(1>在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD . 所以直线EF ∥平面PCD .(2>连结BD .因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形.因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD ∩平面ABCD =AD ,所以BF ⊥平面PAD .SjkbsIFcn1又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .17.解:设包装盒的高为h(cm>,底面边长为a(cm>.由已知得a,h=)x =-,0<x <30. (1>S =4ah =8x(30-x>=-8(x -15>2+1 800, 所以当x =15时,S 取得最大值. (2>V =a2h=32+30x x -),V′=(20)x -. 由V ′=0得x =0(舍>或x =20.当x ∈(0,20>时,V ′>0;当x ∈(20,30>时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时1=2h a .即包装盒的高与底面边长的比值为12.18. 解:(1>由题设知,a =2,b M(-2,0>,N(0,,所以线段MN 中点的坐标为(-1,2->.由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过坐标原点,所以2=12k -.SjkbsIFcn1(2>直线PA 的方程为y =2x ,代入椭圆方程得224+=142x x ,解得23x =±,因此P(23,43>,A(23-,43->.于是C(23,0>,直线AC 的斜率为40+3=122+33,故直线AB 的方程为2=03x y --.因此,d=3. (3>解法一:将直线PA 的方程y =kx 代入22+=142x y ,解得x=记μP(μ,μk>,A(-μ,-μk>.于是C(μ,0>.故直线AB 的斜率为0++k μμμ=2k ,其方程为y =2kx μ-()代入椭圆方程得(2+k2>x2-2μk2x -μ2(3k2+2>=0,解得x =22322k kμ(+)+或x =-μ.因此B(22322k k μ(+)+,322k k μ+>.SjkbsIFcn1于是直线PB 的斜率k1=32222322k k k k k μμμμ-+(+)-+=32222322k k k k k -(+)+-(+)=1k-.因此k1k =-1,所以PA ⊥PB .解法二:设P(x1,y1>,B(x2,y2>,则x1>0,x2>0,x1≠x2,A(-x1,-y1>,C(x1,0>.设直线PB ,AB 的斜率分别为k1,k2.因为C 在直线AB 上,所以k2=1110y x x -(-)-(-)=112yx =2k.SjkbsIFcn1从而k1k +1=2k1k2+1=2·2121y y x x --·2121()()y y x x ----+1 =2221222122y y x x --+1=22222211222122x y x y x x (+)-(+)- =222144x x --=0.因此k1k =-1,所以PA ⊥PB . 19.解:f ′(x>=3x2+a ,g ′(x>=2x +B .(1>由题意知f ′(x>g ′(x>≥0在[-1,+∞>上恒成立.因为a >0,故3x2+a >0,进而2x +b ≥0,即b ≥-2x 在区间[-1,+∞>上恒成立,所以b ≥2.因此b 的取值范围是[2,+∞>.SjkbsIFcn1(2>令f ′(x>=0,解得x=若b >0,由a <0得0∈(a ,b>.又因为f ′(0>g ′(0>=ab <0,所以函数f(x>和g(x>在(a ,b>上单调性不一致.因此b ≤0.SjkbsIFcn1现设b ≤0.当x ∈(-∞,0>时,g ′(x><0;当x ∈(-∞,时,f ′(x>>0.因此,当x ∈(-∞,时,f ′(x>g ′(x><0.故由题设得a≥b≥13-≤a <0,于是13-≤b ≤0.因此|a -b|≤13,且当a =13-,b =0时等号成立.SjkbsIFcn1又当a =13-,b =0时,f ′(x>g ′(x>=6x(x219->,从而当x ∈(13-,0>时f ′(x>g ′(x>>0,故函数f(x>和g(x>在(13-,0>上单调性一致.因此|a -b|的最大值为13.SjkbsIFcn120.解:(1>由题设知,当n ≥2时,Sn +1+Sn -1=2(Sn +S1>,即(Sn +1-Sn>-(Sn -Sn -1>=2S1.从而an +1-an =2a1=2.又a2=2.故当n ≥2时,an =a2+2(n -2>=2n -2.所以a5的值为8.(2>由题设知,当k ∈M ={3,4}且n >k 时,Sn +k +Sn -k =2Sn +2Sk 且Sn +1+k +Sn +1-k =2Sn +1+2Sk ,两式相减得an +1+k +an +1-k =2an +1,即an +1+k -an +1=an +1-an +1-k.所以当n ≥8时,an -6,an -3,an ,an +3,an +6成等差数列,且an -6,an -2,an +2,an +6也成等差数列.SjkbsIFcn1从而当n ≥8时,2an =an +3+an -3=an +6+an -6,(*> 且an +6+an -6=an +2+an -2,所以当n ≥8时,2an =an +2+an -2,即an +2-an =an -an -2,于是当n ≥9时,an -3,an -1,an +1,an +3成等差数列,从而an +3+an -3=an +1+an -1,故由(*>式知2an =an +1+an -1,即an +1-an =an -an -1,当n ≥9时,设d =an -an -1.SjkbsIFcn1当2≤m ≤8时,m +6≥8,从而由(*>式知2am +6=am +am +12,故2am +7=am +1+am +13.SjkbsIFcn1从而2(am +7-am +6>=am +1-am +(am +13-am +12>,于是am +1-am =2d -d =D .SjkbsIFcn1因此,an +1-an =d 对任意n ≥2都成立.又由Sn +k +Sn -k -2Sn =2Sk(k ∈{3,4}>可知(Sn +k -Sn>-(Sn -Sn -k>=2Sk ,故9d =2S3且16d =2S4.解得472a d =,从而232a d =,12d a =.因此,数列{an}为等差数列.由a1=1知d =2.SjkbsIFcn1所以数列{an}的通项公式为an =2n -1. 21.选做题A .选修4—1:几何证明选讲证明:连结AO1,并延长分别交两圆于点E 和点D .连结BD ,CE.因为圆O1与圆O2内切于点A ,所以点O2在AD 上.故AD ,AE 分别为圆O1,圆O2的直径.SjkbsIFcn1从而∠ABD =∠ACE =2π. 所以BD ∥CE ,于是112222r r AB AD AC AE r r ===. 所以AB ∶AC 为定值.B .选修4—2:矩阵与变换解:A2=1121⎡⎤⎢⎥⎣⎦1121⎡⎤⎢⎥⎣⎦=3243⎡⎤⎢⎥⎣⎦. 设α=x y ⎡⎤⎢⎥⎣⎦.由A2α=β,得3243⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=12⎡⎤⎢⎥⎣⎦,从而321,43 2.x y x y +=⎧⎨+=⎩解得x =-1,y =2,所以α=12-⎡⎤⎢⎥⎣⎦.C .选修4—4:坐标系与参数方程解:由题设知,椭圆的长半轴长a =5,短半轴长b =3,从而c4,所以右焦点为(4,0>.将已知直线的参数方程化为普通方程:x -2y +2=0.SjkbsIFcn1故所求直线的斜率为12,因此其方程为1(4)2y x =-,即x -2y -4=0.D .选修4—5:不等式选讲解:原不等式可化为210(21)3x x x -≥⎧⎨+-<⎩或210(21)3x x x -<⎧⎨--<⎩解得1423x ≤<或122x -<<.所以原不等式的解集是4{|2}3x x -<<.22.解:建立如图所示的空间直角坐标系Dxyz.设CM =t(0≤t ≤2>,则各点的坐标为A(1,0,0>,A1(1,0,2>,N(12,1,0>,M(0,1,t>.所以DN =(12,1,0>,DM =(0,1,t>,1DA =(1,0,2>.设平面DMN 的法向量为n1=(x1,y1,z1>,则n1·DN =0,n1·DM =0.即x1+2y1=0,y1+tz1=0,令z1=1,则y1=-t ,x1=2t.所以n1=(2t ,-t ,1>是平面DMN 的一个法向量.SjkbsIFcn1设平面A1DN 的法向量为n2=(x2,y2,z2>,则n2·1DA =0,n2·DN =0.即x2+2z2=0,x2+2y2=0.SjkbsIFcn1令z2=1,则x2=-2,y2=1.所以n2=(-2,1,1>是平面A1DN 的一个法向量.从而n1·n 2=-5t +1.SjkbsIFcn1(1>因为θ=90°,所以n1·n 2=-5t +1=0,解得t =错误!.从而M(0,1,错误!>.所以AM=5.SjkbsIFcn1(2>因为|n1|,|n2|, 所以cos 〈n1,n2〉=1212⋅n n n n. 因为〈n1,n2〉=θ或π-θ,所以=6,解得t =0或t =12.根据图形和(1>的结论可知t =12,从而CM 的长为12. 23.解:(1>点P 的坐标满足条件:1≤b =a -3≤n -3,所以An =n -3.(2>设k 为正整数,记fn(k>为满足题设条件以及a -b =3k 的点P 的个数.只要讨论fn(k>≥1的情形.由1≤b =a -3k ≤n -3k 知fn(k>=n -3k ,且k ≤13n -.SjkbsIFcn1设n -1=3m +r ,其中m ∈N*,r ∈{0,1,2},则k ≤m.所以11()(3)mmn n k k B f k n k ====-∑∑3(1)(233)22m m m n m mn +--=-= 将13n r m --=代入上式,化简得(1)(2)(1)66n n n r r B ---=-.所以3,631263n n n nB n n n (-)⎧⎪⎪=⎨(-)(-)⎪⎪⎩是整数,,不是整数。
2018年高考数学江苏卷(含答案与解析)

数学试卷 第1页(共42页) 数学试卷 第2页(共42页)绝密★启用前江苏省2018年普通高等学校招生全国统一考试数 学本试卷共160分.考试时长120分钟.参考公式:锥形的体积公式13V Sh =,其中S 是椎体的底面积,h 是椎体的高。
一、填空题:本大题共14小题,每小题5分,共计70分. 1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么AB = .2.若复数z 满足i 12i z =+,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()f x =的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数ππsin(2)()22y x ϕϕ=+-<<的图象关于直线π3x =对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线22221(0)x y a b a b-=>>0,的右焦点(,0)F c 到一条渐近线的距离为2,则其离心率的值是 . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,()cos (2)2102x x f x x x π⎧⎪⎪=⎨⎪+⎪⎩0<≤,(-2<≤),,则((15))f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,点(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD =,则点A 的横坐标为 .13.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,120ABC ∠=,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .14.已知集合{21,}A x x n n ==-∈*N ,{2,}n B x x n ==∈*N .将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共42页) 数学试卷 第4页(共42页)二、解答题:本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(Ⅰ)AB ∥平面11A B C ; (Ⅱ)平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知α,β为锐角,4tan 3α=,cos()αβ+=.(Ⅰ)求cos2α的值; (Ⅱ)求tan()αβ-的值.数学试卷 第5页(共42页) 数学试卷 第6页(共42页)17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成,已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求点A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(Ⅰ)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围; (Ⅱ)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点1(F,2F ,圆O 的直径为12F F .(Ⅰ)求椭圆C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若OAB △,求直线l 的方程.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共42页) 数学试卷 第8页(共42页)19.(本小题满分16分)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(Ⅰ)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (Ⅱ)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(Ⅲ)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (Ⅱ)若110a b =>,m ∈*N,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).数学试卷 第9页(共42页) 数学试卷 第10页(共42页)数学Ⅱ(附加题)本试卷均为非选择题(第21题~第23题). 本卷满分40分,考试时间为30分钟.21.【选做题】本题包括A ,B ,C ,D 四小题,请选定其中两小题并作答...........,若多做,则按作答的前两小题评分、解答时应写出文字说明、证明过程或演算步骤。
2018高考真题——数学(江苏卷)+Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1 .本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2 .答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定3 .请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4 •作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5 •如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:锥体的体积Y 其中药是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上1. 已知集合A{叩丄已,pi」血約,那么MU__________________ .【答案】{1 , 8}【解析】分析:根据交集定义■- : :■- - . \ :-\ ■ - .求结果•详解:由题设和交集的定义可知:点睛:本题考查交集及其运算,考查基础知识,难度较小2. 若复数/满足I ■ z M2:,其中i是虚数单位,则z的实部为___________ .【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果1 +2i详解:因为id 1+匸,—:—-2 L,则2的实部为2.I点睛:本题重点考查复数相关基本概念,如复数a亠hLfAbER.}的实部为乩、虚部为tv模为(齐总、对应点为d共轭复数为乞-呼.•3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为9 011(第\题)【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数详解:由苹叶图可知t 5位裁判打出的分数分别为89.90,91,91 ,故平均数为B9 - S9 + 90 + 91 + 91-------- ------------- = 90□be + 3C + + xJ点睛:的平均数为n4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为 ________ .I ------------------------- 1”1!I I門![While 7<6 ;:I十2;:S—2S ;;End While ;;Print S \…〔第WW…【答案】8【解析】分析:先判断i■:二T是否成立,若成立,再计算 .,若不成立,结束循环,输出结果•详解:由伪代码可得■红7总-4 因为,所以结束循环,输出=二|点睛:本题考查伪代码,考查考生的读图能力,难度较小5. 函数2屮曾'的定义域为 _______________ .【答案】[2, +R)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域详解:要使函数「(川有意义,则log2x 110,解得X-2,即函数的定义域为[工点睛:求给定函数的定义域往往需转化为解不等式(组)的问题6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为【答案】10【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率•详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为10点睛:古典概型中基本事件数的探求方法(1) 列举法•(2) 树状图法:适合于较为复杂的问题中的基本事件的探求采用树状图法••对于基本事件有有序”与无序”区别的题目,常(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化⑷排列组合法(理科):适用于限制条件较多且元素数目较多的题目7.已知函数y ■- sin(2x + < P --的图象关于直线对称,则T的值是【答案】【解析】分析:由对称轴得qj - --4 k<k € Z),再根据限制范围求结果•详解:由题意可得:1,所以2 兀丸n +甲■ ■十上旺(p - ― + kz(k毛Z),因为-、 2 6北...-,所以:.点睛:函数厂加诚曲IB (A>0, 3>0 )的性质:(彷唤-2 乞沁厂八I B;(2)最小正周期I(!)冗朮;(3)由厨為I业■,+求对称轴;(4)由斥+ ]也冬3咒+屮冬;斗求增区间;2 223x兀JX 、由_ + 2kjt ——■+ 2kx(k € £.i求减区间•8.在平面直角坐标系中,若双曲线-=iu >o)的右焦点到一条渐近线的距离为,则其离心率的值是_________ •【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率详解:因为双曲线的焦点F(c.O)到渐近线y = ± :热即bx ±av= 0的距离为聲寻=7= 0所以b = yc ,因此『=c2-b? = c2-|c?= f a = ^c#e = 2.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为 a.(cos—,0 < x < 2,9.函数[侃满足+ 4) - «x.KxeR),且在区间(W]上,f(刃二:贝他⑸)的值为|x - - 2 <x< 0h【答案】2【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果•详解:由、•门2得函数世対的周期为4,所以I.讥iH) F I L - \ ',因此.. .1 兀 Qt(f(l5)) = f(^) = cos- = —点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现|;m:的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围•10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 _______________ •(第10®)【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,| l r 4所以该多面体的体积为2 —1、〔a -点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.若函数I: . . I ::_:在•内有且只有一个零点,则:在|上的最大值与最小值的和为【答案】-【解析】分析:先结合三次函数图象确定在隐-閱上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由- 0得—0^ ■:,因为函数啦•在0亠「珂上有且仅有一个零点且f(0)],所以一品从而函数須在[上单调递增,在[H'J上单调递减,所以轨《.阿躯也・曲诃[-1)血)}7可,附心+姻)丄・| D- 1-4--3.点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件•从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线族■:制上在第一象限内的点,|哄淇;|,以AB为直径的圆C与直线I交于另一点D •若AB 00 = (',则点A的横坐标为_____________ •【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果亂+ 5详解:设|A(aJa)(a >0),则由圆心C为.中点得C(——Q易得|OC.(x-5)(x a)-hyiy-2a) o|,与y■■毀联立解 2得点D的横坐标£ - I」所以疥、聞.所以p I厂遊颅上J上二2-克| £1 + 5 r由.输■ CD = 0得15-a)( 1—-—) + (^2aX2_a) - 0用^2a 3 ■ 0,a ■ 3或a ■ - 1 ,因为Im】,所以£ - |点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法•13. 在|二阳也:中,角km所对的边分别为k"l,m m •心:的平分线交于点D,且.m,则碾::的最小值为__________ •【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值详解:由题意可知,渝込-仏加口+ S ABCL,由角平分线性质和三角形面积公式得ncsinl 20" - ■ I - + 1sin60°,化简得ac " a + + - = I ,因此|2 2 2 A c] [ (T 4a |cWa + c = (4a + + -) = 5-i >5 + 2 h1— - 9,a c a. c * e当且仅当匚J.i 2时取等号,则!(.的最小值为目.点睛:在利用基本不等式求最值时,要特别注意拆、拼、凑”等技巧,使其满足基本不等式中正”即条件要求中字母为正数卜定”不等式的另一边必须为定值)、等”等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合A ■仪恢■ 2n—l,n €N }, B ■凶%■ E N } •将AUB(的所有兀素从小到大依次排列构成一个数列何J.记S:为数列他丿的前n项和,则使得S n> I2a-—成立的n的最小值为_____________ •【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,贝U -Q- i —w十--十住芒--:;■]占+ 十2(1-右_ 尹七小_22 1-2由驚》也.十]得尹'+ 屮"012(21£+]人少¥-20(2* \T4AQ210 l> :\k>6所以只需研究是否有满足条件的解,此时\ = [(21-1)十(2 V—I)十…十门叶打]十十于十…十刃[J + f 2, %+1-加+ 1 , m为等差数列项数,且序-化由' ‘I !- 1. ■' r- I ■得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常二、解答题:本大题共 6小题,共计90分•请在答题卡指定区域.内作答,解答时应写出文字说明、证明过 程或演算步骤.15.在平行六面体 I ' ■- \1'_' J .中, 一";I '求证:(1) d 訂..\: (2)平面1 平面AiBC . 【答案】答案见解析【解析】分析:(1 )先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB I A I ,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后 根据面面垂直判定定理得结论 详解:证明:(1)在平行六面体 ABCD-A I B I C I D I 中,AB // A I B I .因为 AB 平面 A 1B 1C , A 1B 1;平面 A 1B 1C , 所以AB //平面A 1B 1C .(2)在平行六面体 ABCD-A 1B 1C 1D 1中,四边形 ABB 1A 1为平行四边形.见类型主要有分段型(如如需需蠶),符号型(如备十曲),周期型(如埠喑)又因为AA I =AB ,所以四边形 ABB i A i 为菱形, 因此AB i 丄A I B .又因为 AB i 丄 B i C i , BC // B 1C 1, 所以AB i 丄BC .又因为 A I B Q BC=B , A I B 平面 A i BC , BC 平面 A i BC , 所以AB i 丄平面A i BC . 因为AB i :二平面ABB i A i , 所以平面ABB i A i 丄平面A i BC .点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误, 如柱体的概念中包含两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角 线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明 i6.已知为锐角, ,^35(i )求卜芯领的值; (2 )求• 的值.°7 【答案】 (i )■加osPT -25lan2a-tan(tt + B) 2 (2)1 + un2atan(<i 十卩) 11【解析】分析:先根据同角三角函数关系得 帚抄』,再根据二倍角余弦公式得结果; 公式得 ,再利用两角差的正切公式得结果(2)因为k 加为锐角,所以(■: -:-又因为 costa+ p )= - ,所以 $in (a + p ) = Ji - 卩)因此"U42Lum24 因为 lana,所以 un2a、 -31 - tan 3a丁因此,tan2a - Un (a + 阳 2(2)先根据二倍角正切详解:解:4sinatana =- , t^na3COS<1因为ccsTi 1,所以 因此,3曲"■烷(i )因为,所以吨邛)-网"3卩)]■门融亦卩1 5点睛:应用三角公式解决问题的三个变换角度(1) 变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是 配凑”.(2) 变名:通过变换函数名称达到减少函数种类的目的,其手法通常有切化弦”、升幕与降幕”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有: 换”、逆用变用公式”、通分约分”、分解与组合”、配方与平方”等• 17.某农场有一块农田,如图所示,它的边界由圆0的一段圆弧if ( P 为此圆弧的中点)和线段MN 构成.已 知圆0的半径为40米,点P 到MN 的距离为50米•现规划在此农田上修建两个温室大棚,大棚I 内的地 块形状为矩形 ABCD ,大棚H 内的地块形状为 HF ,要求卢制均在线段上, 均在圆弧上.设 0C 与MN 所成的角为耳(第门题)(1 )用卜分别表示矩形 忙益时和■■■■■■ 的面积,并确定林嗟的取值范围; (2)若大棚I 内种植甲种蔬菜,大棚n 内种植乙种蔬菜, 且甲、乙两种蔬菜的单位面积年产值之比为岂胡.求当 为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】 (1)矩形ABCD 的面积为800 (4sin 9cos &+cos B)平方米,△ CDP 的面积为【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公 式得结果,最后根据实际意义确定阪的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根 据单调性确定函数最值取法 •常值代1600 (cos B —in 0cos 9) , sin 1)(2)当详解:解:(1)连结PO并延长交MN于H,贝U PH丄MN,所以OH=10.过O 作OE 丄BC 于E,贝U OE // MN,所以/ COE= 0,故OE=40cos 0 EC=40sin 0,则矩形ABCD 的面积为2><4Ocos0( 40sin0+1O) =800 (4sin 0cos 0+cos 0), △ CDP 的面积为1X2 X40cos 0 (40 -40sin 0) =1600 (cos 0-sin 0cos 0).过N作GN丄MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10 .I gr令/ GOK= 0,则sin 0= , (0,).4 6r兀当0€ [ 0,-)时,才能作出满足条件的矩形ABCD ,所以sin0的取值范围是[,1).4答:矩形ABCD的面积为800 (4sin0cos 0+cos 0平方米,△ CDP的面积为11600 (cos 0-in 0cos 0) , si n0 的取值范围是[,1).]4(2)因为甲、乙两种蔬菜的单位面积年产值之比为 4 : 3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k (k>0),则年总产值为4k >800 (4si n0cos0+cos0) +3kX1600 (cos 0-si n 0cos 0)=8000k (sin 0cos 0+cos 0) , 0€ [ 00,).设 f ( 0) = sin 0cos0+cos 0, 0€ [ 0, “),则卜覚=「屣憑-涂蛙理心=-划用2心H=-加z -斗ii:兀令f⑹0,得0-,当0€ ( 0,)时,,所以f ( 0)为增函数;当0€ (,)时,];;/:*所以f ( 0)为减函数,因此,当0=时,f ( 0)取到最大值.p7C答:当匸时,能使甲、乙两种蔬菜的年总产值最大.6点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题•18. 如图,在平面直角坐标系koy中,椭圆C过点屁',焦点F1(曲切皿新0),圆O的直径为F』』.(1)求椭圆C及圆O的方程;(2)设直线I与圆O相切于第一象限内的点P.①若直线I与椭圆C有且只有一个公共点,求点P的坐标;②直线I与椭圆C交于两点.若的面积为工,求直线I的方程.7i【答案】(1)椭圆C的方程为- +[;圆O的方程为耳(2)①点P的坐标为;②直线I的方程为];•=,【解析】分析:(1 )根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得即得椭圆方程;(2 )第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标•第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程•详解:解:(1 )因为椭圆C的焦点为.:•,所以a2 4b2,解得a" - ~ 3,因此,椭圆C的方程为F十严=1・因为圆O的直径为儿叫,所以其方程为宀 f(2)①设直线I与圆O相切于,则,% 3所以直线1的方程为V =-上& -心+ y0,即y=-—X +a,b,可设椭圆C的方程为’-一=l(a ■' b ■■■ O'.又点『b2(黒)在椭圆C上,点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用+ - ?帰 + 36 - 4y 02 0-( *)因为直线I 与椭圆C 有且只有一个公共点,所以鸟=.羽叼卩-4(%' yf )(茹_ %?)=地代J ・2) = o| • 因为陥% - °,所以鮭■百矿】• 因此,点P 的坐标为匕:.办『②因为三角形OAB 的面积为•,所以丄需■设卜念「■.; :/:•.:「::由(* )得2% 士(4%丫好一2)(吋+泊所以总”广=十:_“「因为 ,所以解得 (^2^)2 49,5瓜■: 血-20舍去),则yf [,因此P 的坐标为 »)设而不求”思想求解;由综上,直线I 的方程为因此,f (x )与g (x )不存在“ S ”点.(2)函数『3I TTK ,则 fCx) -2ax, g R (x)--.x设 x o 为 f (x )与 g (x )的“ S'点,由 f (x o )与 g (x o )且 f ' (x o )与 g (x o ),得,即得 Inxo---甘八则1 ea . --------- ■ ■T1 2 2(/ ¥当垃■时,--=、满足方程组(*),即k 为f ( X )与g (X )的“ s’点. ^0芒因此,a 的值为I二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的 情况•19•记分别为函数f(x).g(x)的导函数.若存在K ,满足Rg 以血且l (K 』・g 〔加,则称为函数「(X ) 与|券:的一个“ S 点”. (1)证明:函数血r.与 不存在“ S 点”;(2) 若函数- ax 3-l.与Inx 存在“ S 点”,求实数a 的值;(3) 已知函数”闆■」缸,皐代^骂. 对任意a *0,判断是否存在b >0 ,使函数心)与g (心在区间(0*亠上)内x 存在“ S 点”,并说明理由. 【答案】(1)证明见解析 (2) a 的值为(3)对任意a>0,存在b>0,使函数f (x )与g (x )在区间(0, +8)内存在“ S 点” 【解析】分析:(1 )根据题中S 点”的定义列两个方程,根据方程组无解证得结论; (2)同(1)根据S 点的定义列两个方程,解方程组可得 a 的值;(3)通过构造函数以及结合S 点”的定义列两个方程,再判断方程组是否有解即可证得结论 •详解:解:(1)函数 f (x ) =x , g (x ) =x 2+2x-2,贝V f' (x ) =1 , g' (x ) =2x+2 . 由 f (x ) =g (x )且 f' (x ) = g' (x ),得 (x = X' + 2x - 2 (1 = 2x + 2 ,此方程组无解,(3)对任意 a>0,设+乩. 因为1. j I |.L _ 1.,且h (x )的图象是不间断的,be"f(x) = - x 2+ a . g(x)=——由 f (x )与 g (x )且 f' (x )与 g' (x ),得be -+ a -——Xbe y(x - 1)所以存在(0, 1),使得h(%)0,令匕= ,则 b>0.函数 则 f(x) = - 2x ,, g'lx}be\x - 1 j,即(** )此时, 满足方程组(** ),即是函数f (x )与g (x )在区间(0, 1)内的一个"S 点”因此, 对任意a>0,存在b>0,使函数f (x )与g (x )在区间(0, +〜内存在"S 点”点睛: 涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单 调性、 最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底 还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路 20.设卜丿是首项为 ,公差为d 的等差数列,|代是首项为,公比为q 的等比数列. (1)设」.j2,若% bjub ]对:i 12〃均成立,求d 的取值范围;(2)若 =b 1>0,m€N".c]G(l.V -l ,证明:存在乙;K ,使得'"r - 对-I 均成立,并求旧的取值范围(用% E 兀表示).【答案】(1) d 的取值范围为 D与2(2) d 的取值范围为MEM 0 ------- •—Im m,证明见解析。
2018年江苏高考数学考试说明(含最新试题)

2018年江苏高考数学考试说明(含最新试题)掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题. 具体考查要求如下:1.必做题部分2.附加题部分三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例A.必做题部分1. 设复数i满足(34)|43|i z i-=+(i是虚数单位),则z的虚部为_____【解析】本题主要考查复数的基本概念,基本运算.本题属容易题.【答案】452. 设集合}1{aaA=B若,则实数a的值为_AB},,={3},+2,1{2=【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题.3. 右图是一个算法流程图,则输出的本题属容易题.【答案】54. 函数ln(1)()1x f x x +=-的定义域为【解析】本题主要考查对数函数的单调性,本题属容易题. 【答案】(1,1)(1,)-⋃+∞5.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根 棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题. 【答案】657. 已知函数)0)(2sin(cos πϕ<≤+==x x y x y 与,它们的图像有一个横坐标为3π的交点,则ϕ的值是________.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题.8.在各项均为正数的等比数列{}n a 中,若64682,,1a a a a a 则+==的值是______. 【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.9.在平面直角坐标系xOy 中,双曲线1322=-y x 的右准线与它的两条渐近线分别交于Q P ,,其焦点是1F ,2F ,则四边形Q PF F 21的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.本题属中等难度题. 【答案】3210.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm3.【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力.本题属容易题. 【答案】6.11.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln 21-.12.设)(x f 是定义在R 上且周期为2的函数,在区间)1,1[-上,,,1001,,|52|)(<≤<≤-⎪⎩⎪⎨⎧-+=x x x a x x f 其中R a ∈.若)29()25(f f =-,则)5(a f 的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题.D ABC1C 1D 1A 1B13.如图,在ABC ∆中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4=⋅CA BA ,1-=⋅CF BF ,则CE BE ⋅的值是 . 【解析】本题主要考查平面向量的概念、平面向量的运算以及平面向量的数量积等基础知识,考查数形结合和等价转化的思想,考查运算求解能力.本题属难题. 【答案】87.14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 . 【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解决问题的能力.本题属难题. 【答案】[,7]e 二、解答题15.在ABC ∆中,角c b a C B A ,,,,的对边分别为.已知.2623A B b a ===,, (1)求A cos 值; (2)求c 的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)在ABC ∆中,因为A B b a 2623===,,, 故由正弦定理得A A 2sin 62sin 3=,于是362sin cos sin 2=A A A . 所以36cos =A .(2)由(1)得36cos =A .所以33cos 1sin 2=-=A A .又因为A B 2=,所以311cos 22cos cos 2=-==A B . 从而322cos 1sin 2=-=B B . 在π=++∆C B A ABC 中,因为,所以935sin cos cos sin )sin(sin =+=+=B A B A B A C . 因此由正弦定理得5sin sin ==ACa c .16.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.17.如图,在平面直角坐标系xOy 中,椭圆10:>>2222x y +=(a b )a bE 的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.本题属中等难度题. 【参考答案】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为(77. 18. 如图:为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求,新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处,(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力..【参考答案】 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy . 由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43.又因为AB ⊥BC ,所以直线AB 的斜率k AB =34.设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=-解得a =80,b=120. 所以BC150=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 19. 设函数ax e x g ax x x f x -=-=)(,ln )(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论. 【解析】本题主要考查函数的单调性、最值、零点等基础知识,考查灵活运用数形结合、分类讨论等数学思想方法进行探索、分析与解决问题的能力.本题属难题. 【参考答案】解:(1)令f ′(x )=11axa xx--=<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1. 结合上述两种情况,有a ≤e -1.①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a -a e a =a (1-e a )<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x >0时,f ′(x )=1x-a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a ≤e -1时,令f ′(x )=1x-a =0,解得x =a -1.当0<x <a -1时,f ′(x )>0,当x >a -1时,f ′(x )<0,所以,x =a -1是f (x )的最大值点,且最大值为f (a -1)=-ln a -1.当-ln a -1=0,即a =e -1时,f (x )有一个零点x =e. 当-ln a -1>0,即0<a <e -1时,f (x )有两个零点.实际上,对于0<a <e -1,由于f (e -1)=-1-a e -1<0,f (a -1)>0,且函数f (x )在[e -1,a -1]上的图象不间断,所以f (x )在(e -1,a -1)上存在零点. 另外,当x ∈(0,a -1)时,f ′(x )=1x-a >0,故f (x )在(0,a -1)上是单调增函数,所以f (x )在(0,a -1)上只有一个零点.下面考虑f (x )在(a -1,+∞)上的情况.先证f (e a -1)=a (a -2-e a -1)<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x -x 2,则h ′(x )=e x -2x ,再设l (x )=h ′(x )=e x -2x ,则l ′(x )=e x -2. 当x >1时,l ′(x )=e x -2>e -2>0,所以l (x )=h ′(x )在(1,+∞)上是单调增函数.故当x >2时,h ′(x )=e x -2x >h ′(2)=e 2-4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时, h (x )=e x -x 2>h (e)=e e -e 2>0.即当x >e 时,e x >x 2.当0<a <e -1,即a -1>e 时,f (e a -1)=a -1-a e a -1=a (a -2-e a -1)<0,又f (a -1)>0,且函数f (x )在[a -1,e a -1]上的图象不间断,所以f (x )在(a -1,e a -1)上存在零点.又当x >a -1时,f ′(x )=1x-a <0,故f (x )在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当a ≤0或a =e -1时,f (x )的零点个数为1, 当 0<a <e -1时,f (x )的零点个数为2.20. 设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n mS a =,则称{}na 是“H 数列”.(1)若数列{}na 的前n 项和2()nn S n *=∈N ,证明:{}na 是“H 数列”;(2)设{}na 是等差数列,其首项11a=,公差0d <.若{}n a 是“H数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()n n n a b c n *=+∈N 成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当2n ≥时,111222n n n nn n aS S ---=-=-=当1n =时,112a S ==∴1n =时,11Sa =,当2n ≥时,1n n S a +=∴{}na 是“H 数列” (2)1(1)(1)22nn n n n Sna d n d --=+=+ 对n *∀∈N ,m *∃∈N 使nm S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}na 的公差为d令111(1)(2)nba n a n a =--=-,对n *∀∈N ,11n nb b a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)nn n bc a nd a +=+-=,且{}{}n n b c ,为等差数列{}n b 的前n 项和11(1)()2nn n Tna a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使nm Tb =成立,即{}n b 为“H数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N 即对n *∀∈N ,都可找到m *∈N ,使得nm Rc =成立,即{}n c 为“H 数列”因此命题得证.B .附加题部分1.选修14- 几何证明选讲如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交AB 的延长线于点C ,若DC DA =,求证:.2BC AB =【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力.本题属容易题.【参考答案】连结BD OD ,,因为AB 是圆O 的直径,所以OB AB ADB 2,90=︒=∠因为DC 是圆O 的切线,所以︒=∠90CDO ,又因为.DC DA =所以.C A ∠=∠于是ADB ∆≌.CDO ∆从而.CO AB =即.2BC OB OB +=得.BC OB =故.2BC AB =2.选修24-矩阵与变换已知矩阵1002A -⎡⎤=⎢⎥⎣⎦,1206B ⎡⎤=⎢⎥⎣⎦,求1A B -. 【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.本题属容易题. 【参考答案】设A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,故1a =-,0b =,0c =,12d =,从而A 的逆矩阵为110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,所以,11012121060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 3.选修44-坐标系与参数方程在极坐标中,已知圆C 经过点()4P π,,圆心为直线sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。
2018年普通高等学校招生全国统一考试(江苏卷) 数学试题及详解 精校精编版

2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B =I ▲ .1.【答案】{}1,8【解析】由题设和交集的定义可知,{}1,8A B =I .2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为 ▲ .2.【答案】2【解析】因为i 12i z ⋅=+,则12i2i iz +==-,则z 的实部为2.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .3.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为8989909191905++++=.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .4.【答案】8【解析】由伪代码可得3I =,2S =;5I =,4S =;7I =,8S =;因为76>,所以结束循环,输出8S =.5.函数()f x =的定义域为 ▲ .5.【答案】[)2,+∞【解析】要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[)2,+∞.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .6.【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . 7.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近,则其离心率的值是 ▲ .8.【答案】2【解析】因为双曲线的焦点(),0F c 到渐近线by x a=±即0bx ay ±=的距离为bcb c ==,所以2b =, 因此2222223144a c b c c c =-=-=,12a c =,2e =.9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为 ▲ .9.【答案】2【解析】由()()4f x f x +=得函数()f x 的周期为4,所以()()()11151611122f f f =-=-=-+=, 因此()()115cos 2π42f f f ⎛⎫=== ⎪⎝⎭.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .10.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,2142133⨯⨯⨯=.11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .11.【答案】3-【解析】由()2620f x x ax '=-=得0x =,3ax =,因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以03a >,03a f ⎛⎫= ⎪⎝⎭,因此3221033a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,3a =,从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0f x f =,()()(){}()min min 1,11f x f f f =-=-,()()()()max min 01143f x f x f f +=+-=-=-.12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为 ▲ .12.【答案】3【解析】设()(),20A a a a >,则由圆心C 为AB 中点得5,2a C a +⎛⎫⎪⎝⎭, 易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1D x =,所以()1,2D .所以()5,2AB a a =--u u u r ,51,22a CD a +⎛⎫=-- ⎪⎝⎭u u u r , 由0AB CD ⋅=u u u r u u u r 得()()()5512202a a a a +⎛⎫--+--= ⎪⎝⎭,2230a a --=,3a =或1a =-,因为0a >,所以3a =.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为 ▲ .13.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,111a c+=,因此()11444559c a a c a c a c a c ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当23c a ==时取等号,则4a c +的最小值为9.14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .14.【答案】27【解析】设=2k n a ,则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦L L()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k k k k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解,此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦L L ,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥, 得满足条件的n 最小值为27.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.15.【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C . (2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥. 又因为1A B BC B =I ,1A B ⊂平面1A BC ,BC ⊂平面1A BC , 所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=(1)求cos2α的值;(2)求tan()αβ-的值.16.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos 22cos 125αα=-=-.(2)因为α,β为锐角,所以()0,παβ+∈.又因为()5cos 5αβ+=-,所以()()225sin 1cos 5αβαβ+=-+=, 因此()tan 2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,()()()()tan 2tan 2tan tan 21tan 2tan 11ααβαβααβααβ-+-=-+==-⎡⎤⎣⎦++. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围; (2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.17.【答案】(1)1,41⎡⎫⎪⎢⎣⎭;(2)当π6θ=时,能使甲、乙两种蔬菜的年总产值最大. 【解析】(1)连结PO 并延长交MN 于H ,则PH MN ⊥,所以10OH =. 过O 作OE BC ⊥于E ,则OE MN ∥,所以COE θ∠=, 故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为()()240cos 40sin 108004sin cos cos θθθθθ⨯+=+,CDP △的面积为()()1240cos 4040sin 1600cos sin cos 2θθθθθ⨯⨯-=-.过N 作GN MN ⊥,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==.令0GOK θ∠=,则01sin 4θ=,0π0,6θ⎛⎫∈ ⎪⎝⎭.当0π2,θθ⎡⎫∈⎪⎢⎣⎭时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1,41⎡⎫⎪⎢⎣⎭.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4:3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为()30k k >, 则年总产值为()()48004sin cos cos 31600cos sin cos k k θθθθθθ⨯++⨯-()8000sin cos cos k θθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭.设() sin cos cos f θθθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭,则()()()()222cos sin sin 2sin sin 12sin 1sin 1f θθθθθθθθ'=--=-+-=--+.令()=0f θ',得π6θ=,当0π6,θθ⎛⎫∈ ⎪⎝⎭时,()>0f θ',所以()f θ为增函数; 当ππ,62θ⎛⎫∈ ⎪⎝⎭时,()<0f θ',所以()f θ为减函数,因此,当π6θ=时,()f θ取到最大值.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.18.【答案】(1)椭圆C 的方程为2214x y +=;圆O 的方程为223x y +=;(2)①点P 的坐标为)2,1;②直线l 的方程为532y x =+.【解析】(1)因为椭圆C 的焦点为()13,0F -,)23,0F ,可设椭圆C 的方程为()222210x y a b a b +=>>.又点13,2⎫⎪⎭在椭圆C 上,所以222231143a ba b +=-=⎧⎪⎨⎪⎩,解得2241a b ==⎧⎨⎩,因此,椭圆C 的方程为2214x y +=. 因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于()()00000,,0P x y x y >>,则22003x y +=, 所以直线l 的方程为()000x y x x y y =--+,即0003x y x y y =-+.由22000143x y x y x y y ⎧⎪⎪⎨+==-+⎪⎪⎩,消去y ,得()222200004243640x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以()()()()22222200000024443644820x x y y y x ∆=--+-=-=. 因为0x ,00y >,所以0x 01y =. 因此,点P的坐标为).②因为三角形OAB,所以12AB OP ⋅=,从而AB =. 设()11,A x y ,()22,B x y ,由(*)得1200x =,所以()()()()2222200201212222200048214y x x AB x x y y y x y -⎛⎫=-+-=+⋅ ⎪⎝⎭+. 因为22003x y +=, 所以()()2022216232491x AB x-==+,即42002451000x x -+=, 解得2052x =(2020x =舍去),则2012y =,因此P的坐标为2⎫⎪⎪⎝⎭. 综上,直线l的方程为y =+.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.19.【答案】(1)见解析;(2)a 的值为e 2; (3)对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.【解析】(1)函数()f x x =,()222g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x =+-=+⎧⎨⎩,此方程组无解,因此,()f x 与()g x 不存在“S ”点.(2)函数()21f x ax =-,()ln g x x =,则()2f x ax '=,()1g x x'=. 设0x 为()f x 与()g x 的“S ”点,由()0f x 与()0g x 且()0f x '与()0g x ', 得200001ln 12ax x ax x ⎧-==⎪⎨⎪⎩,即200201ln 21ax x ax -==⎧⎨⎩,(*) 得01ln 2x =-,即120e x -=,则2121e e 22a -==⎛⎫⎪⎝⎭. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S ”点.因此,a 的值为e2.(3)对任意0a >,设()323h x x x ax a =--+.因为()00h a =>,()11320h a a =--+=-<,且()h x 的图象是不间断的,所以存在()00,1x ∈,使得()00h x =,令()03002e 1x x b x =-,则0b >.函数()2f x x a =-+,()e xb g x x =,则()2f x x '=-,()()2e 1x b x g x x -'=.由()()f x g x =且()()f x g x ''=,得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1xx x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**), 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间()0,1内的一个“S 点”.因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示).20.【答案】(1)d 的取值范围为75,32⎡⎤⎢⎥⎣⎦;(2)d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦,证明见解析. 【解析】(1)由条件知:()1n a n d =-,12n n b -=.因为1n n a b b -≤对1n =,2,3,4均成立, 即()1121n n d ---≤对1n =,2,3,4均成立, 即11≤,13d ≤≤,325d ≤≤,739d ≤≤,得7532d ≤≤. 因此,d 的取值范围为75,32⎡⎤⎢⎥⎣⎦.(2)由条件知:()11n a b n d =+-,11n n b b q -=.若存在d ,使得1n n a b b -≤(2n =,3,L ,1m +)成立, 即()11111n b n d b q b -+--≤(2n =,3,L ,1m +),即当2n =,3,L ,1m +时,d 满足1111211n n q q b d b n n ---≤≤--.因为(q ∈,则112n m q q -<≤≤, 从而11201n q b n --≤-,1101n q b n ->-,对2n =,3,L ,1m +均成立. 因此,取0d =时,1n n a b b -≤对2n =,3,L ,1m +均成立.下面讨论数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值和数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值(2n =,3,L ,1m +).①当2n m ≤≤时,()()()1112222111n n nn n n n n n q q q q q nq q nq n n n n n n -----+----+-==---, 当112mq <≤时,有2n m q q ≤≤,从而()120n n n n q q q ---+>.因此,当21n m ≤≤+时,数列121n q n -⎧⎫-⎨⎬-⎩⎭单调递增,故数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值为2m q m -. ②设()()21x f x x =-,当0x >时,()()ln 21ln 220x f x x =--<', 所以()f x 单调递减,从而()()01f x f <=.当2n m ≤≤时,()111112111nn n q q n n f q n n n n --⎛⎫⎛⎫=≤-=< ⎪ ⎪⎝⎭⎝⎭-,因此,当21n m ≤≤+时,数列11n q n -⎧⎫⎨⎬-⎩⎭单调递减,故数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值为mq m . 因此,d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦.数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内...................作答...若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.A .【答案】2【解析】连结OC ,因为PC 与圆O 相切,所以OC PC ⊥. 又因为23PC =,2OC =,所以224OP PC OC =+=. 又因为2OB =,从而B 为Rt OCP △斜边的中点,所以2BC =.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标.B .【答案】(1)12312A --⎡⎤=⎢⎥-⎣⎦;(2)()3,1-. 【解析】(1)因为2312A ⎡⎤=⎢⎥⎣⎦,()det 221310A =⨯-⨯=≠, 所以A 可逆,从而12312A --⎡⎤=⎢⎥-⎣⎦. (2)设(),P x y ,则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x A y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,因此点P 的坐标为()3,1-.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.C .【答案】直线l 被曲线C 截得的弦长为23 【解析】因为曲线C 的极坐标方程为4cos ρθ=, 所以曲线C 的圆心为()2,0,直径为4的圆.因为直线l 的极坐标方程为sin 2π6ρθ⎛⎫-= ⎪⎝⎭,则直线l 过()4,0A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则π6OAB ∠=.连结OB ,因为OA 为直径,从而π2OBA ∠=,所以4cos 236πAB ==l 被曲线C 截得的弦长为23D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.D .【答案】4【解析】由柯西不等式,得()()()222222212222x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =,所以222x y z ++的最小值为4.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.22.【答案】(1)31020;(2)55. 【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11A C 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以{}1,,OB OC OO u u u r u u u r u u u u r为基底,建立空间直角坐标系O xyz -.因为12AB AA ==, 所以()01,0A -,,)B,()0,1,0C ,()10,1,2A -,)12B ,()10,1,2C .(1)因为P 为11A B的中点,所以1,,222P ⎛⎫- ⎪ ⎪⎝⎭,从而1,222BP ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,()10,2,2AC =u u u ur ,故111cos ,BP AC BP AC BP AC ⋅<>===⋅u u u r u u u u r u u u r u u u u r u u u r u u u u r. 因此,异面直线BP 与1AC所成角的余弦值为20. (2)因为Q 为BC的中点,所以1,02Q ⎫⎪⎪⎝⎭,因此3,02AQ ⎫=⎪⎪⎝⎭u u u r ,()10,2,2AC =u u u ur ,()10,0,2CC =u u u u r .设(),,x y z =n 为平面1AQC 的一个法向量,则100AQ AC ⎧=⋅=⎨⎪⋅⎪⎩u u u r u u u u r n n即302220x y y z +=+=⎪⎩,不妨取)1,1=-n ,设直线1CC 与平面1AQC 所成角为θ,则111sin cos ,CC CC CC θ⋅=<>===⋅u u u u r u u u u r u u u u rn n n, 所以直线1CC 与平面1AQC23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i L ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i L 的一个逆序,排列12n i i i L 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).23.【答案】(1)2,5;(2)5n ≥时,()2222n n n f --=.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有()123=0τ,()132=1τ,()213=1τ,()231=2τ,()312=2τ,()321=3τ,所以()301f =,()()33122f f ==.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,()()()()433322105f f f f =++=.(2)对一般的()4n n ≥的情形,逆序数为0的排列只有一个:12n L , 所以()01n f =.逆序数为1的排列只能是将排列12n L 中的任意相邻两个数字调换位置得到的排列,所以()11n f n =-.为计算()12n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置.因此,()()()()()122102n n n n n f f f f f n +=++=+.当5n ≥时,()()()()()()()()11254422222222n n n n n f f f f f f f f ---=-+-++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦L()()()24212422n n n n f --=-+-+++=L ,因此,5n ≥时,()2222n n n f --=.。
最新江苏高考数学考试说明(含最新试题)

2018年江苏省高考说明-数学科一、命题指导思想2018年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲》,结合江苏省普通高中课程标准教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.试卷保持较高的信度、效度以及必要的区分度和适当的难度.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,支撑学科知识体系的重点内容在试卷中要占有较大的比例.注重知识内在联系的考查,不刻意追求知识的覆盖面.注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造适合的数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够发现问题、提出问题,综合与灵活地运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有初步的、感性的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题. 具体考查要求如下:1.必做题部分2.附加题部分三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例A.必做题部分1. 设复数i满足(34)|43|i z i-=+(i是虚数单位),则z的虚部为_____【解析】本题主要考查复数的基本概念,基本运算.本题属容易题.【答案】452. 设集合}1{aaA若,则实数a的值为_=BA IB3,={},},+2,1{2=【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题.3. 右图是一个算法流程图,则输出的k【解析本题属容易题.【答案】54. 函数ln(1)()1x f x x +=-的定义域为【解析】本题主要考查对数函数的单调性,本题属容易题. 【答案】(1,1)(1,)-⋃+∞5.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根 棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题. 【答案】657. 已知函数)0)(2sin(cos πϕ<≤+==x x y x y 与,它们的图像有一个横坐标为3π的交点,则ϕ的值是________.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题.8.在各项均为正数的等比数列{}n a 中,若64682,,1a a a a a 则+==的值是______.【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.9.在平面直角坐标系xOy 中,双曲线1322=-y x 的右准线与它的两条渐近线分别交于Q P ,,其焦点是1F ,2F ,则四边形Q PF F 21的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.本题属中等难度题. 【答案】3210.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为cm 3.【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力.本题属容易题. 【答案】6.11.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln 21-.12.设)(x f 是定义在R 上且周期为2的函数,在区间)1,1[-上,,,1001,,|52|)(<≤<≤-⎪⎩⎪⎨⎧-+=x x x a x x f 其中R a ∈.若)29()25(f f =-,则)5(a f 的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题.DABC 1C 1D1A1B13.如图,在ABC ∆中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4=⋅,1-=⋅,则⋅的值是 . 【解析】本题主要考查平面向量的概念、平面向量的运算以及平面向量的数量积等基础知识,考查数形结合和等价转化的思想,考查运算求解能力.本题属难题. 【答案】87.14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则b a的取值范围是 . 【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解决问题的能力.本题属难题. 【答案】[,7]e 二、解答题15.在ABC ∆中,角c b a C B A ,,,,的对边分别为.已知.2623A B b a ===,, (1)求A cos 值; (2)求c 的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)在ABC ∆中,因为A B b a 2623===,,, 故由正弦定理得A A 2sin 62sin 3=,于是362sin cos sin 2=A A A . 所以36cos =A .(2)由(1)得36cos =A .所以33cos 1sin 2=-=A A .又因为A B 2=,所以311cos 22cos cos 2=-==A B . 从而322cos 1sin 2=-=B B . 在π=++∆C B A ABC 中,因为,所以935sin cos cos sin )sin(sin =+=+=B A B A B A C . 因此由正弦定理得5sin sin ==ACa c . 16.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD I 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =I ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.17.如图,在平面直角坐标系xOy 中,椭圆10:>>2222x y +=(a b )a bE 的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.本题属中等难度题. 【参考答案】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=, 解得2,1a c ==,于是223b a c =-=因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00473777x y ==;220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P 的坐标为77(77. 18. 如图:为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求,新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处,(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力..【参考答案】 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy . 由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=- 解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 19. 设函数ax e x g ax x x f x -=-=)(,ln )(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论. 【解析】本题主要考查函数的单调性、最值、零点等基础知识,考查灵活运用数形结合、分类讨论等数学思想方法进行探索、分析与解决问题的能力.本题属难题. 【参考答案】解:(1)令f ′(x )=11axa xx--=<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1.结合上述两种情况,有a ≤e -1.①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a -a e a =a (1-e a )<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x >0时,f ′(x )=1x-a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a ≤e -1时,令f ′(x )=1x-a =0,解得x =a -1.当0<x <a -1时,f ′(x )>0,当x >a -1时,f ′(x )<0,所以,x =a -1是f (x )的最大值点,且最大值为f (a -1)=-ln a -1. 当-ln a -1=0,即a =e -1时,f (x )有一个零点x =e. 当-ln a -1>0,即0<a <e -1时,f (x )有两个零点.实际上,对于0<a <e -1,由于f (e -1)=-1-a e -1<0,f (a -1)>0,且函数f (x )在[e -1,a -1]上的图象不间断,所以f (x )在(e -1,a -1)上存在零点.另外,当x ∈(0,a -1)时,f ′(x )=1x-a >0,故f (x )在(0,a -1)上是单调增函数,所以f (x )在(0,a -1)上只有一个零点.下面考虑f (x )在(a -1,+∞)上的情况.先证f (e a -1)=a (a -2-e a -1)<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x -x 2,则h ′(x )=e x -2x ,再设l (x )=h ′(x )=e x -2x ,则l ′(x )=e x -2.当x >1时,l ′(x )=e x -2>e -2>0,所以l (x )=h ′(x )在(1,+∞)上是单调增函数.故当x >2时,h ′(x )=e x -2x >h ′(2)=e 2-4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时, h (x )=e x -x 2>h (e)=e e -e 2>0.即当x >e 时,e x >x 2.当0<a <e -1,即a -1>e 时,f (e a -1)=a -1-a e a -1=a (a -2-e a -1)<0,又f (a -1)>0,且函数f (x )在[a -1,e a -1]上的图象不间断,所以f (x )在(a -1,e a -1)上存在零点.又当x >a -1时,f ′(x )=1x-a <0,故f (x )在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当a ≤0或a =e -1时,f (x )的零点个数为1, 当 0<a <e -1时,f (x )的零点个数为2.20. 设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n mS a =,则称{}na 是“H 数列”.(1)若数列{}na 的前n 项和2()nn S n *=∈N ,证明:{}na 是“H 数列”;(2)设{}na 是等差数列,其首项11a=,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()n n n a b c n *=+∈N 成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当2n ≥时,111222n n n nn n aS S ---=-=-=当1n =时,112a S ==∴1n =时,11Sa =,当2n ≥时,1n n S a +=∴{}na 是“H 数列” (2)1(1)(1)22nn n n n Sna d n d --=+=+ 对n *∀∈N ,m *∃∈N 使nm S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}na 的公差为d令111(1)(2)nba n a n a =--=-,对n *∀∈N ,11n nb b a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)nn n bc a nd a +=+-=,且{}{}n n b c ,为等差数列{}n b 的前n 项和11(1)()2nn n Tna a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使nm Tb =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N 即对n *∀∈N ,都可找到m *∈N ,使得nm Rc =成立,即{}n c 为“H 数列”因此命题得证.B .附加题部分1.选修14- 几何证明选讲如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交AB 的延长线于点C ,若DC DA =,求证:.2BC AB =【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力.本题属容易题.【参考答案】连结BD OD ,,因为AB 是圆O 的直径,所以OB AB ADB 2,90=︒=∠因为DC 是圆O 的切线,所以︒=∠90CDO ,又因为.DC DA =所以.C A ∠=∠于是ADB ∆≌.CDO ∆从而.CO AB =即.2BC OB OB +=得.BC OB =故.2BC AB =2.选修24-矩阵与变换 已知矩阵1002A -⎡⎤=⎢⎥⎣⎦,1206B ⎡⎤=⎢⎥⎣⎦,求1A B -. 【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.本题属容易题. 【参考答案】 设A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,故1a =-,0b =,0c =,12d =,从而A 的逆矩阵为110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,所以,11012121060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 3.选修44-坐标系与参数方程在极坐标中,已知圆C 经过点()24P π,,圆心为直线3sin 32ρθπ⎛⎫-=- ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江苏省高考说明-数学科一、命题指导思想2018年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲》,结合江苏省普通高中课程标准教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.试卷保持较高的信度、效度以及必要的区分度和适当的难度.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,支撑学科知识体系的重点内容在试卷中要占有较大的比例.注重知识内在联系的考查,不刻意追求知识的覆盖面.注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造适合的数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够发现问题、提出问题,综合与灵活地运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有初步的、感性的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题.具体考查要求如下:1.必做题部分2.附加题部分三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1. 四、典型题示例 A.必做题部分1. 设复数i 满足(34)|43|i z i -=+(i 是虚数单位),则z 的虚部为_____ 【解析】本题主要考查复数的基本概念,基本运算.本题属容易题. 【答案】452. 设集合}1{},3,{},2,1{2=+==B A a a B A 若,则实数a 的值为_【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题. 【答案】1.3. 右图是一个算法流程图,则输出的k 的值是 . 【解析】本题主要考查算法流程图的基础知识, 本题属容易题. 【答案】54. 函数ln(1)()1x f x x +=-的定义域为【解析】本题主要考查对数函数的单调性,本题属容易题. 【答案】(1,1)(1,)-⋃+∞5.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤结束k ←k +1开始 k ←1k 2-5k +4>0 N输出k Y维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根 棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题. 【答案】657. 已知函数)0)(2sin(cos πϕ<≤+==x x y x y 与,它们的图像有一个横坐标为3π的交点,则ϕ的值是________.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题. 【答案】6π.8.在各项均为正数的等比数列{}n a 中,若64682,,1a a a a a 则+==的值是______.【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.9.在平面直角坐标系xOy 中,双曲线1322=-y x 的右准线与它的两条渐近线分别交于Q P ,,其焦点是1F ,2F ,则四边形Q PF F 21的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.本题属中等难度题. 【答案】3210.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm3.【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力.本题属容易题. 【答案】6.11.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln 21-.12.设)(x f 是定义在R 上且周期为2的函数,在区间)1,1[-上,,,1001,,|52|)(<≤<≤-⎪⎩⎪⎨⎧-+=x x x a x x f 其中R a ∈.若)29()25(f f =-,则)5(a f 的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题. 【答案】52-13.如图,在ABC ∆中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4=⋅,1-=⋅,则⋅的值是 .【解析】本题主要考查平面向量的概念、平面向量的运算以及平面向量的数量积等基础知识,考查数形结合和等价转化的思想,考查运算求解能力.本题属难题. 【答案】87.DABC 1C 1D1A1B14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 .【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解决问题的能力.本题属难题. 【答案】[,7]e 二、解答题15.在ABC ∆中,角c b a C B A ,,,,的对边分别为.已知.2623A B b a ===,, (1)求A cos 值; (2)求c 的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)在ABC ∆中,因为A B b a 2623===,,, 故由正弦定理得A A 2sin 62sin 3=,于是362sin cos sin 2=A A A . 所以36cos =A . (2)由(1)得36cos =A .所以33cos 1sin 2=-=A A .又因为A B 2=,所以311cos 22cos cos 2=-==A B . 从而322cos 1sin 2=-=B B . 在π=++∆C B A ABC 中,因为,所以935sin cos cos sin )sin(sin =+=+=B A B A B A C . 因此由正弦定理得5sin sin ==ACa c . 16.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.17.如图,在平面直角坐标系xOy中,椭圆10:>>2222x y +=(a b )a bE 的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. (1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.本题属中等难度题. 【参考答案】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=, 解得2,1a c ==,于是b ==因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为001y x -.因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解.因此点P 的坐标为4737. 18. 如图:为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求,新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处,(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.. 【参考答案】 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=- 解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 19. 设函数ax e x g ax x x f x -=-=)(,ln )(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论. 【解析】本题主要考查函数的单调性、最值、零点等基础知识,考查灵活运用数形结合、分类讨论等数学思想方法进行探索、分析与解决问题的能力.本题属难题. 【参考答案】解:(1)令f ′(x )=11axa xx--=<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1. 结合上述两种情况,有a ≤e -1.①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a -a e a =a (1-e a )<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x >0时,f ′(x )=1x-a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a ≤e -1时,令f ′(x )=1x -a =0,解得x =a -1.当0<x <a -1时,f ′(x )>0,当x >a -1时,f ′(x )<0,所以,x =a -1是f (x )的最大值点,且最大值为f (a -1)=-ln a -1.当-ln a -1=0,即a =e -1时,f (x )有一个零点x =e. 当-ln a -1>0,即0<a <e -1时,f (x )有两个零点.实际上,对于0<a <e -1,由于f (e -1)=-1-a e -1<0,f (a -1)>0,且函数f (x )在[e -1,a -1]上的图象不间断,所以f (x )在(e -1,a -1)上存在零点.另外,当x ∈(0,a -1)时,f ′(x )=1x-a >0,故f (x )在(0,a -1)上是单调增函数,所以f (x )在(0,a -1)上只有一个零点.下面考虑f (x )在(a -1,+∞)上的情况.先证f (e a -1)=a (a -2-e a -1)<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x -x 2,则h ′(x )=e x -2x ,再设l (x )=h ′(x )=e x -2x ,则l ′(x )=e x -2.当x >1时,l ′(x )=e x -2>e -2>0,所以l (x )=h ′(x )在(1,+∞)上是单调增函数.故当x >2时,h ′(x )=e x -2x >h ′(2)=e 2-4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时, h (x )=e x -x 2>h (e)=e e -e 2>0.即当x >e 时,e x >x 2.当0<a <e -1,即a -1>e 时,f (e a -1)=a -1-a e a -1=a (a -2-e a -1)<0,又f (a -1)>0,且函数f (x )在[a -1,e a -1]上的图象不间断,所以f (x )在(a -1,e a -1)上存在零点.又当x >a -1时,f ′(x )=1x-a <0,故f (x )在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当a ≤0或a =e -1时,f (x )的零点个数为1, 当 0<a <e -1时,f (x )的零点个数为2.20. 设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}na 是“H 数列”.(1)若数列{}na 的前n 项和2()nn S n *=∈N ,证明:{}na 是“H 数列”;(2)设{}na 是等差数列,其首项11a=,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()n n n a b c n *=+∈N 成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当2n ≥时,111222n n n nn n aS S ---=-=-=当1n =时,112aS ==∴1n =时,11Sa =,当2n ≥时,1n n S a +=∴{}na 是“H 数列” (2)1(1)(1)22nn n n n Sna d n d --=+=+ 对n *∀∈N ,m *∃∈N 使nm S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}na 的公差为d令111(1)(2)nba n a n a =--=-,对n *∀∈N ,11n nb b a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)nn n bc a nd a +=+-=,且{}{}n n b c ,为等差数列{}n b 的前n 项和11(1)()2nn n Tna a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使nm Tb =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N 即对n *∀∈N ,都可找到m *∈N ,使得nm Rc =成立,即{}n c 为“H 数列”因此命题得证.B .附加题部分1.选修14- 几何证明选讲如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交AB 的延长线于点C ,若DC DA =,求证:.2BC AB =【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力.本题属容易题.【参考答案】连结BD OD ,,因为AB 是圆O 的直径,所以OB AB ADB 2,90=︒=∠因为DC 是圆O 的切线,所以︒=∠90CDO ,又因为.DC DA =所以.C A ∠=∠于是ADB ∆≌.CDO ∆从而.CO AB =即.2BC OB OB +=得.BC OB =故.2BC AB =2.选修24-矩阵与变换 已知矩阵1002A -⎡⎤=⎢⎥⎣⎦,1206B ⎡⎤=⎢⎥⎣⎦,求1A B -. 【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.本题属容易题. 【参考答案】设A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,故1a =-,0b =,0c =,12d =,从而A 的逆矩阵为110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,所以,11012121060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 3.选修44-坐标系与参数方程 在极坐标中,已知圆C 经过点()24P π,,圆心为直线3sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。