(完整版)算法导论复习要点

合集下载

算法导论复习资料

算法导论复习资料

算法导论复习资料一、选择题:第一章的概念、术语。

二、考点分析:1、复杂度的渐进表示,复杂度分析。

2、正确性证明。

考点:1)正确性分析(冒泡,归并,选择);2)复杂度分析(渐进表示O,Q,©,替换法证明,先猜想,然后给出递归方程)。

循环不变性的三个性质:1)初始化:它在循环的第一轮迭代开始之前,应该是正确的;2)保持:如果在循环的某一次迭代开始之前它是正确的,那么,在下一次迭代开始之前,它也应该保持正确;3)当循环结束时,不变式给了我们一个有用的性质,它有助于表明算法是正确的。

插入排序算法:INSERTION-SORT(A)1 for j ←2 to length[A]2 do key ←A[j]3 ▹Insert A[j] into the sorted sequence A[1,j - 1].4 i ←j - 15 while i > 0 and A[i] > key6 do A[i + 1] ←A[i]7 i ←i - 18 A[i + 1] ←key插入排序的正确性证明:课本11页。

归并排序算法:课本17页及19页。

归并排序的正确性分析:课本20页。

3、分治法(基本步骤,复杂度分析)。

——许多问题都可以递归求解考点:快速排序,归并排序,渐进排序,例如:12球里面有一个坏球,怎样用最少的次数找出来。

(解:共有24种状态,至少称重3次可以找出不同的球)不是考点:线性时间选择,最接近点对,斯特拉算法求解。

解:基本步骤:一、分解:将原问题分解成一系列的子问题;二、解决:递归地解各子问题。

若子问题足够小,则直接求解;三、合并:将子问题的结果合并成原问题的解。

复杂度分析:分分治算法中的递归式是基于基本模式中的三个步骤的,T(n)为一个规模为n的运行时间,得到递归式T(n)=Q(1) n<=cT(n)=aT(n/b)+D(n)+C(n) n>c附加习题:请给出一个运行时间为Q(nlgn)的算法,使之能在给定的一个由n个整数构成的集合S和另一个整数x时,判断出S中是否存在有两个其和等于x的元素。

算法基本知识点总结

算法基本知识点总结

算法基本知识点总结一、算法的基本概念1. 算法的定义算法是用来解决特定问题的有限步骤的有序集合。

算法是一种计算方法,可以描述为一系列清晰的步骤,用来解决特定问题或执行特定任务。

2. 算法的特性(1)有穷性:算法必须在有限的步骤内结束。

(2)确定性:对于相同输入,算法应该产生相同的输出。

(3)可行性:算法必须可行,即算法中的每一步都可以通过已知的计算机能力来执行。

3. 算法的设计目标(1)正确性:算法应该能够解决给定的问题。

(2)可读性:算法应该易于理解和解释。

(3)高效性:算法应该能在合理的时间内完成任务。

二、算法的复杂度分析1. 时间复杂度算法的时间复杂度表示算法执行所需的时间长度,通常用“大O记法”表示。

时间复杂度反映了算法的运行时间与输入规模之间的关系。

常见的时间复杂度包括:(1)O(1):常数时间复杂度,表示算法的运行时间与输入规模无关。

(2)O(logn):对数时间复杂度,表示算法的运行时间与输入规模的对数成正比。

(3)O(n):线性时间复杂度,表示算法的运行时间与输入规模成正比。

(4)O(nlogn):线性对数时间复杂度,表示算法的运行时间与输入规模和对数成正比。

(5)O(n^2):平方时间复杂度,表示算法的运行时间与输入规模的平方成正比。

(6)O(2^n):指数时间复杂度,表示算法的运行时间与输入规模的指数成正比。

2. 空间复杂度算法的空间复杂度表示算法执行所需的内存空间大小。

常见的空间复杂度包括:(1)O(1):常数空间复杂度,表示算法的内存空间与输入规模无关。

(2)O(n):线性空间复杂度,表示算法的内存空间与输入规模成正比。

三、常见的算法设计思想1. 贪心算法贪心算法是一种选取当前最优解来解决问题的算法。

贪心算法的核心思想是从问题的某一初始解出发,通过一系列的局部最优选择,找到全局最优解。

2. 动态规划动态规划是一种将原问题分解成子问题来求解的方法。

动态规划通常适用于具有重叠子问题和最优子结构性质的问题。

算法导论(第三版)-复习-第六部分图论22-26[转]

算法导论(第三版)-复习-第六部分图论22-26[转]

算法导论(第三版)-复习-第六部分图论22-26[转]22习题22.1-5 有向图G(V, E)的平⽅图。

链表表⽰时,对每结点u的Adj[u]中所有v加⼊队列,后边出队边将Adj[v]加⼊Adj[u]中。

矩阵表⽰时,若w[i, j]、w[j, k]同时为1则将w[i, k]置1.习题22.1-6 O(V)的时间寻找通⽤汇点。

汇点的特征是邻接矩阵的第j列除[j, j]外所有元素为1. 可将每⾏调整[j ,j]后作为⼀个整数,所有整数与运算,为1的位是汇点。

习题22.1-7 有向⽆环图的关联矩阵B,BB’每个元素C[i, j]=∑B[i, k]*B’[k, j]=∑B[i, k]*B[j, k],即同时进i, j两结点与同时出i, j的结点总数-⼀进⼀出i, j两结点的结点总数。

习题22.2-7 类似BFS,d mod2为0则标为B(娃娃脸),d mod2为1则标为H(⾼跟鞋)。

但若有边连接相同类的结点,则⽆法划分。

wrestler(G){for each u in G{(u,v)=Adj[u];if(v.mark==u.mark){throw error;}if(v.d==NIL) {v.d=u.d+1; v.mark=v.d mod 2;}}}习题22.2-8 任意点之间的最短路径。

重复的Dijktra算法或Floyd-Warshall算法习题22.2-9 ⽆向图扩展为有向图。

问题变成要遍历所有边⼀次。

访问结点u时,将u的⼦结点v的其他边都可视为⼦集v,问题等价于u到v,访问v的集合,v到u。

u标为visiting⼊列,然后访问v,v标为visiting⼊列,然后访问v的后继结点,访问过的边标为visited,返回到visiting的点时,如果该点所有连接的边都标为visited只剩⼀条返回上级的边,则返回上级结点并将点标为visited,v出列,访问u的其他⼦结点,最终u出列。

全部结点出列后达到遍历所有边⼀次。

《算法导论(第二版)》(中文版)课后答案

《算法导论(第二版)》(中文版)课后答案

5
《算法导论(第二版) 》参考答案 do z←y 调用之前保存结果 y←INTERVAL-SEARCH-SUBTREE(y, i) 如果循环是由于y没有左子树,那我们返回y 否则我们返回z,这时意味着没有在z的左子树找到重叠区间 7 if y≠ nil[T] and i overlap int[y] 8 then return y 9 else return z 5 6 15.1-5 由 FASTEST-WAY 算法知:
15
lg n
2 lg n1 1 2cn 2 cn (n 2 ) 2 1
4.3-1 a) n2 b) n2lgn c) n3 4.3-4
2
《算法导论(第二版) 》参考答案 n2lg2n 7.1-2 (1)使用 P146 的 PARTION 函数可以得到 q=r 注意每循环一次 i 加 1,i 的初始值为 p 1 ,循环总共运行 (r 1) p 1次,最 终返回的 i 1 p 1 (r 1) p 1 1 r (2)由题目要求 q=(p+r)/2 可知,PARTITION 函数中的 i,j 变量应该在循环中同 时变化。 Partition(A, p, r) x = A[p]; i = p - 1; j = r + 1; while (TRUE) repeat j--; until A[j] <= x; repeat i++; until A[i] >= x; if (i < j) Swap(A, i, j); else return j; 7.3-2 (1)由 QuickSort 算法最坏情况分析得知:n 个元素每次都划 n-1 和 1 个,因 为是 p<r 的时候才调用,所以为Θ (n) (2)最好情况是每次都在最中间的位置分,所以递推式是: N(n)= 1+ 2*N(n/2) 不难得到:N(n) =Θ (n) 7.4-2 T(n)=2*T(n/2)+ Θ (n) 可以得到 T(n) =Θ (n lgn) 由 P46 Theorem3.1 可得:Ω (n lgn)

算法导论Chapter 17

算法导论Chapter 17
2)操作序列的总代价是序列长度的函数,而 不是输入量规模的函数
7
Ch.17 平摊分析
平摊分析特点
3)不仅是分析方法,也是设计算法和数据结 构的一种思维方法 因为设计算法与分析时间性能紧密相关, 所以通过平摊分析可优化算法设计,加深对 算法所操作的数据结构特性的认识,从而设 计出时空性能更优的数据结构
操作
Push(S, x): O(1)
Pop(S):
O(1)
MultiPop(S, k): O(min(|S|, K)) 弹出min(|S|, K)个对象
10
17.1 合计法
栈上操作序列的时间分析 通常分析方法得不到紧确界 设 有 n 个 Push , Pop 和 Multipop 操 作 构 成 的序列作用在初值为空的栈S上。 一次Multipop的最坏时间为O(n),因为|S| ≤n,K=O(n); 最坏情况下可能有O(n)个Multipop。 因此,该序列最坏时间为O(n2)
14
if i<length[A] then //i位上为0,且x<2k -1
A[i] 1;
//将进位加到第i位上
//否则x=2k -1,加1后A[0..k-1]=0
}
15
17.1 合计法
执行过程: 初值为0,做n次增量操作
调用 A中值 A[7] … A[2] A[1] A[0] 总成本 本次成 本
执行次 0
0

0
0
0
0
0

1
1
0

0
0
1
1
1
2
2
0

0
1
0
3
2
3
3

算法知识点归纳总结

算法知识点归纳总结

算法知识点归纳总结什么是算法?算法是解决问题的一系列步骤或规则。

在计算机科学中,算法是指计算机程序解决问题的方法。

算法可以用来解决各种问题,比如搜索、排序、数据压缩等。

算法的特点算法具有以下几个特点:1. 有穷性:算法必须在有限的步骤内结束。

2. 确定性:对于给定的输入,算法必须在每一步都有确定的行为。

3. 输入:算法必须有零个或多个输入。

4. 输出:算法必须有一个或多个输出。

5. 可行性:算法的每一步都必须是可行的。

常见的算法分类1. 搜索算法搜索算法主要用于在给定的数据集中查找特定的元素。

常见的搜索算法包括线性搜索、二分搜索、深度优先搜索和广度优先搜索。

2. 排序算法排序算法用于将给定的数据集按照特定的顺序排列。

常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

3. 图算法图算法主要用于解决与图相关的问题,比如最短路径、最小生成树等。

常见的图算法包括Dijkstra算法、Prim算法、Kruskal算法等。

4. 字符串匹配算法字符串匹配算法用于在一个文本中寻找特定的字符串。

常见的字符串匹配算法包括朴素字符串匹配算法、KMP算法、Boyer-Moore算法等。

5. 动态规划算法动态规划算法用于解决具有重叠子问题和最优子结构的问题。

常见的动态规划算法包括背包问题、最长公共子序列问题等。

6. 贪心算法贪心算法是一种使用贪心策略来求解问题的算法。

常见的贪心算法包括最小生成树算法、最短路径算法等。

常见算法的具体内容1. 线性搜索算法线性搜索算法是一种简单的搜索算法,它通过逐个比较给定的元素和目标元素来查找目标元素的位置。

线性搜索算法的时间复杂度为O(n)。

2. 二分搜索算法二分搜索算法是一种高效的搜索算法,它通过逐步缩小搜索范围来查找目标元素的位置。

二分搜索算法的时间复杂度为O(logn)。

3. 冒泡排序算法冒泡排序算法是一种简单的排序算法,它通过多次比较和交换来将给定的数据集排序。

算法初步知识点

算法初步知识点

高中数学必修3知识点总结第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

算法导论答案 (4)

算法导论答案 (4)

算法导论答案第一章:算法概述啊算法的定义算法是一系列解决问题的明确指令。

它是一个有穷步骤集,其中每个步骤或操作由确定性和可行性特征。

算法是通过将预期的输入转换为输出来解决问题的工具。

第二章:插入排序插入排序的思想插入排序是一种简单直观的排序算法,其基本思想是将待排序的序列分为已排序和未排序两部分,每次从未排序的部分中取出一个元素,并将其插入到已排序部分的正确位置,直到所有元素都被排序。

插入排序的算法实现以下是插入排序的伪代码:INSERTION-SORT(A)for j = 2 to A.lengthkey = A[j]// Insert A[j] into the sorted sequence A[1.. j-1].i = j - 1while i > 0 and A[i] > keyA[i + 1] = A[i]i = i - 1A[i + 1] = key插入排序的时间复杂度插入排序的时间复杂度为O(n^2),其中n是排序的元素个数。

虽然插入排序的最坏情况下的复杂度很高,但是对于小规模的数据集,插入排序是一种较快的排序算法。

第三章:分治策略分治策略的基本思想分治策略是一种解决问题的思想,它将问题的规模不断缩小,直到问题足够小而可以直接解决。

然后将子问题的解合并起来,得到原问题的解。

分治策略的应用实例一种经典的应用分治策略的算法是归并排序。

归并排序将待排序的序列划分为两个子序列,分别排序后再将两个有序子序列合并为一个有序序列。

以下是归并排序的伪代码:MERGE-SORT(A, p, r)if p < rq = floor((p + r) / 2)MERGE-SORT(A, p, q)MERGE-SORT(A, q + 1, r)MERGE(A, p, q, r)MERGE(A, p, q, r)n1 = q - p + 1n2 = r - qlet L[1..n1+1] and R[1..n2+1] be new arraysfor i = 1 to n1L[i] = A[p + i - 1]for j = 1 to n2R[j] = A[q + j]L[n1 + 1] = infinityR[n2 + 1] = infinityi = 1j = 1for k = p to rif L[i] <= R[j]A[k] = L[i]i = i + 1elseA[k] = R[j]j = j + 1分治策略的时间复杂度归并排序的时间复杂度为O(nlogn),其中n是待排序序列的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基础知识部分
1. 算法的复杂性有时间复杂性和空间复杂性之分。

2. 算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质。

3. 快速排序算法是基于分治策略的一种排序算法。

4. 矩阵连乘问题的算法可由动态规划设计实现。

5、算法是指解决问题的一种方法或一个过程。

6、从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法。

7、问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。

8、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。

9. 贪心算法的基本要素是贪心选择质和最优子结构性质。

10. 动态规划算法的两个基本要素是最优子结构性质和重叠子问题性质。

11、合并排序算法是利用(A )实现的算法
A、分治策略
B、动态规划法
C、贪心法
D、回溯法
12、下列不是动态规划算法基本步骤的是( A )。

A、找出最优解的性质
B、构造最优解
C、算出最优解
D、定义最优解
13.下列算法中通常以自底向上的方式求解最优解的是( B )。

A、备忘录法B动态规划法C、贪心法D回溯法
14. 备忘录方法是那种算法的变形。

(B )
A、分治法B动态规划法C、贪心法D回溯法
15.最长公共子序列算法利用的算法是( B )。

A、分支界限法B动态规划法C贪心法D回溯法16.贪心算法与动态规划算法的主要区别是( B )。

A、最优子结构
B、贪心选择性质
C、构造最优解
D、定义最
优解
17. (D )是贪心算法与动态规划算法的共同点。

A、重叠子问题
B、构造最优解
C、贪心选择性质D最优子结构性质
18. 矩阵连乘问题的算法可由(B )设计实现。

A、分支界限算法 B 、动态规划算法C、贪心算法D、回溯算法19、使用分治法求解不需要满足的条件是( A )。

A 子问题必须是一样的
B 子问题不能够重复
C 子问题的解可以合并
D 原问题和子问题使用相同的方法解
20.下列是动态规划算法基本要素的是( D )。

A、定义最优解B构造最优解C、算出最优解D子问题重叠性质
二、分析解答部分
1 、堆的高度与元素个数之间的关系
2、散列表技术中碰撞的定义与解决方法是什么
3、平摊分析的方法有哪些?重点是势能法的应用。

例、对某个数据结构执行一个n 个操作的序列。

如果i 为2的整数次幂,则第i 个操作的代价为i ,否则为 1.请用势能分析来确定每次操作的平摊代价。

解:不妨设i 2j k,其中k和j均为非负整数,且j取满足等式最大的整数。

定义第i个操作D i的势能函数为 (DJ 2k,下面分析第i个操作D i的平摊代价。

当k0时,第i个操作D i的实际代价C i i,从而
(?C i [ (D i) (D i 1)]
i[0 2(2j 1 2j 1)]
i i
[2j(2 1) 2] i 2
当k0时,第i个操作D i的实际代价C i1,从而
C C i [ (
D i) (D i 1)]
1 [2k 2(k 1)]
3
所以第i个操作D i的平摊代价总为(1)。

4、贪心算法的应用,参考书上的0-1背包问题和部分背包问题的例子。

5、作图说明利用合并排序算法将输入数组A (3,7,12,32,5,20,16,28)按从小到大排序的执行过程。

&作图说明利用堆排序(HEAPSORT将数组A (2,8,17,4,11,14)从小到大排序的执行过程,注意包含建最大堆(BUILD-MAX-HEAP的执行过程。

7、用主方法求解递归式紧确的渐进界,比如
(1) T(n) 6T(》n; (2) T(n) 6T(f) n3; (3) T(n) 6T(》n4;
8、写出利用动态规划解矩阵链乘问题的最小代价的递归式,并由此给出维数序列为A (35,15,5,10,20)的最优加全括号的方案。

9、会写出利用动态规划解最长公共子序列(LCS问题的最大长度的递归式,并
由此确定 A (1, 0, 0, 1, 0, 1, 0, 1)和 B (0, 1, 0, 1, 1, 0, 1, 1, 0)
的最长公共子序列。

10、对某个数据结构执行一个n个操作的序列。

如果i为2的整数次幕,则第i个操作的代价为i,否则为1.请用聚集分析来确定每次操作的平摊代价。

11、猜测下列递归式的良好渐进界,并用代换法证明你的猜测:
(1). T(n) 4T(-) n 的解为(n2) ;(2). T(n) 2T( - ) n 的解为O(nlg n)。

2 2
12、给出红黑树的定义,并由此证明:(1)从根到叶子的最长的可能路径不多于最短
的可能路径的两倍长。

(2) 一棵有n个内节点的红黑树的高度至多为llg( n+1) 13、给出渐进记号©记号、Q记号和0记号的定义,并证明:对任意实常数a
和b,其中b>0,(n (n))
,提示:当n足够大时,
n a 2n。

相关文档
最新文档