什么叫失效模式及后果分析(fmea)

合集下载

FMEA(失效模式与影响分析)简介

FMEA(失效模式与影响分析)简介

没有影响;事件发生的频率要记录特定的失效原因和机理多长时间发生一次以及发生的几率。

如果为10,则表示几乎肯定要发生,工艺能力为0.33或者ppm大于10000。

5.2检测等级是评估所提出的工艺控制检测失效模式的几率,列为10表示不能检测,1表示已经通过目前工艺控制的缺陷检测。

5.3计算风险优先数RPN(riskprioritynumber)。

RPN是事件发生的频率、严重程度和检测等级三者乘积,用来衡量可能的工艺缺陷,以便采取可能的预防措施减少关键的工艺变化,使工艺更加可靠。

对于工艺的矫正首先应集中在那些最受关注和风险程度最高的环节。

RPN最坏的情况是1000,最好的情况是1,确定从何处着手的最好方式是利用RPN的pareto图,筛选那些累积等级远低于80%的项目。

推荐出负责的方案以及完成日期,这些推荐方案的最终目的是降低一个或多个等级。

对一些严重问题要时常考虑拯救方案,如:一个产品的失效模式影响具有风险等级9或10;一个产品失效模式/原因事件发生以及严重程度很高;一个产品具有很高的RPN值等等。

在所有的拯救措施确和实施后,允许有一个稳定时期,然后还应该对修订的事件发生的频率、严重程度和检测等级进行重新考虑和排序。

在设计和制造产品时,通常有三道控制缺陷的防线:避免或消除故障起因、预先确定或检测故障、减少故障的影响和后果。

FMEA正是帮助我们从第一道防线就将缺陷消灭在摇篮之中的有效工具。

FMEA是一种可靠性设计的重要方法。

它实际上是FMA(故障模式分析)和FEA(故障影响分析)的组合。

它对各种可能的风险进行评价、分析,以便在现有技术的基础上消除这些风险或将这些风险减小到可接受的水平。

及时性是成功实施FMEA的最重要因素之一,它是一个"事前的行为',而不是"事后的行为'。

为达到最佳效益,FMEA必须在故障模式被纳入产品之前进行。

FMEA实际是一组系列化的活动,其过程包括:找出产品/过程中潜在的故障模式;根据相应的评价体系对找出的潜在故障模式进行风险量化评估;列出故障起因/机理,寻找预防或改进措施。

FMEA潜在失效模式及后果分析概念介绍

FMEA潜在失效模式及后果分析概念介绍

FMEA潜在失效模式及后果分析概念介绍1、FMEA概述潜在失效模式及后果分析( Potential Failure Mode and Effect Analysis,FMEA)是一门事前预防的定性分析技术,自设计阶段开始,就通过分析,预测设计,过程中潜在的失效,研究失效的原因及其后果,并采取必要的预防措施,以避免或减少这些潜在的失效,从而提高产品、过程的可靠性。

FMEA,是从可靠性的角度对所做的设计、过程进行详细评价。

AIAG(美国汽车工业行动集团)的《潜在失效模式及后果分析》手册主要从设计FMEA( DFMEA)和过程FMEA( PFMEA)两个方面讲述FMEA。

注意:1)失效( Failure):指产品丧失规定功能的状态,又译为故障。

2)失效模式( Failure Mode):产品失效的表现形式。

例如,线路短路等。

3)潜在失效模式( Potential Failure Mode):指可能发生,但不一定非得发的失效模式,也即平常所说的“可能存在的隐患”4)潜在失效后果( Potential Effect of Failure):指潜在失效模式会给客外部顾客、内部顺客)带来的后果。

通俗地讲,失效模式是指没有达到设计要求的不良现象,失效后果是指影客的不良现象。

某些情况下,失效后果就是失效模式本身5)后果分析( Effect Analysis):研究潜在失效模式发生后给顺客带来的危性有多大。

危害性可用三个方面来衡量:失效模式所产生后果的严重度、失模式起因发生的频度、失效模式起因不可探测的程度。

6)后果(Eeat)又译为“影响"。

所以“失效模式及后果分析”又称为模式及影响分析”2、DFMEA(设计FMEA)没计FMEA是在设计过程中果用的一种FMEA技术,用以保证已充分地考虑和指明设计中各种潜在的失效模式及其相关的起因/机理,并就此在设计上采用取必要的预防措施。

2.1、DFMEA的特征1)以产品的元件或系统为分析对象,用表格的形式,从低层次开始逐步向高层次分析。

FMEA失效模式和效果分析

FMEA失效模式和效果分析

FMEA失效模式和效果分析FMEA(Failure Mode and Effects Analysis,失效模式和效果分析)是一种常用的风险评估工具,用于识别和评估系统、产品或过程中可能出现的失效模式及其可能的后果。

它通过系统地分析和评估潜在的失效模式,帮助组织预测和防范风险,以减少事故和次品的发生。

本文将详细介绍FMEA的定义、步骤和应用。

首先,FMEA的定义是指一种系统性的、分析性的方法,用于识别和评估系统、产品或过程中可能出现的失效模式及其可能的后果。

它通过将失效模式和可能的影响进行系统分析,以确定影响最大的失效模式和可能的原因,并提出预防和纠正措施,从而减少潜在风险的发生。

FMEA的步骤一般包括确定团队、定义过程、识别失效模式、评估失效后果、确定风险等级、制定纠正措施、实施并验证改进措施。

以下是对每个步骤进行详细解读:1.确定团队:确定一个多学科和有代表性的团队,包括设计、工程、制造、质量等各个相关领域的专业人员。

团队成员应具备丰富的经验和专业知识。

2.定义过程:确定要进行FMEA分析的系统、产品或过程。

明确所需评估的范围和目标。

3.识别失效模式:通过团队的讨论和头脑风暴,识别可能存在的失效模式。

失效模式是指系统、产品或过程在特定条件下失效的方式或形式。

4.评估失效后果:对于每个失效模式,评估其可能造成的后果和影响。

这包括安全影响、产品质量、客户满意度等方面的影响。

5.确定风险等级:根据失效模式的后果和可能性,评估其风险等级。

通常使用风险矩阵来划分风险等级,以帮助确定重要性和优先级。

6.制定纠正措施:针对高风险等级的失效模式,制定相应的纠正措施。

这包括预防措施来防止失效的发生,以及纠正措施来解决已经发生的失效。

7.实施并验证改进措施:根据纠正措施的计划,执行相应的改进措施,并进行验证和确认。

确保改进措施的有效性和可行性。

FMEA具有广泛的应用领域。

它可以用于设计过程中的设计FMEA,用于评估产品的可靠性和安全性;也可以用于制造过程中的制造FMEA,用于识别和评估可能导致产品质量问题的制造过程;同时,FMEA还可以用于服务过程中的服务FMEA,用于评估可能影响服务质量和客户满意度的过程。

失效模式和后果分析

失效模式和后果分析

失效模式和后果分析失效模式和后果分析(Failure Mode and Effects Analysis,FMEA)是一种系统性的风险评估工具,用于识别和评估系统、设计、过程或设备中可能发生的失效模式及其潜在后果。

它通过对潜在风险进行评估和控制,帮助组织预防和减少质量问题和事故的发生。

FMEA通常由跨职能团队进行,在项目的早期阶段实施,并随着项目进展进行更新和完善。

它通常包括以下步骤:1.确定风险:确定系统、设计、过程或设备中的所有可能的失效模式,并将其列出。

这些失效模式可以是机械失效、电气故障、材料错误等。

2.评估风险:对每个失效模式进行评估,包括失效发生的可能性、严重性和检测能力。

通常使用1到10的评分系统,其中1表示较低的风险,而10表示较高的风险。

3.优先处理:根据评估的结果,确定需要优先处理的失效模式。

通常优先处理那些评分较高的失效模式,因为它们可能会对安全、质量或生产能力产生较大的影响。

4.实施修复措施:为每个优先处理的失效模式制定修复措施。

修复措施可以包括改进设计、更换零件、增加检测或监控程序等。

5.重新评估风险:在实施修复措施后,重新评估每个失效模式的风险,以确定修复措施的有效性。

FMEA的主要目标是识别和降低风险,提高系统或过程的可靠性和质量。

通过在项目早期识别和处理潜在的风险,可以减少产品或过程失效带来的成本和风险。

FMEA的应用范围广泛,包括汽车、电子、医疗器械、航空航天、制药等行业。

在汽车行业中,FMEA被广泛用于对汽车设计和生产过程进行质量控制,以减少故障和事故的发生。

在制药行业中,FMEA用于识别和处理可能导致产品污染或不合格的因素。

FMEA的优势在于它的系统性和针对性。

它可以帮助组织集中精力和资源处理最重要的风险,并制定相应的修复措施。

此外,FMEA还可以促进跨职能团队的合作和沟通,以共同解决风险和问题。

然而,FMEA也有一些局限性。

首先,FMEA侧重于识别和处理已知的失效模式,而可能会忽视未知的或新的失效模式。

FMEA潜在失效模式及后果分析

FMEA潜在失效模式及后果分析

FMEA潜在失效模式及后果分析FMEA(Failure Mode and Effects Analysis)即潜在失效模式及后果分析,是一种常用的风险管理工具,用于识别和评估系统、产品或过程中潜在的失效模式及其可能的后果。

它通过系统性的方法,帮助组织识别潜在的风险,采取预防和纠正措施,以减少失效风险并改善产品或过程的可靠性和品质。

FMEA分析主要包括三个方面:失效模式、失效原因和失效后果。

失效模式是指系统或产品出现失效的方式或形式,它可以是故障、缺陷、损坏等。

失效原因是导致失效模式出现的根本原因,包括设计、制造、运营、环境等方面的因素。

失效后果是指失效模式可能带来的影响和后果,包括安全风险、质量问题、客户满意度下降等。

FMEA分析的步骤一般包括:1.确定分析的对象:确定需要进行FMEA分析的系统、产品或过程。

2.建立团队:组建一个跨部门的团队来进行FMEA分析,包括设计、制造、质量、供应链等相关部门的代表。

3.识别失效模式:对系统、产品或过程进行全面的分析和评估,识别可能出现的所有失效模式。

4.确定失效原因:对每个失效模式进行深入的分析,确定导致该失效模式出现的根本原因。

5.评估失效后果:对每个失效模式的可能后果进行评估,包括影响范围、严重程度、频率、可能性等。

6.确定风险优先级:根据失效后果的评估结果,为每个失效模式确定一个相应的风险优先级。

7.提出改进措施:根据风险优先级,制定相应的改进措施,包括预防措施、检测措施和纠正措施。

8.实施改进措施:将制定的改进措施付诸实施,并监控其有效性。

9.评估改进效果:评估实施改进措施后的效果,以判断改进措施是否有效,是否需要进一步优化。

FMEA分析具有许多优点,包括:1.早期预防:FMEA可以在产品设计和开发阶段开始进行,发现和解决潜在的风险和问题,避免在后期造成更大的损失和成本。

2.风险管理:FMEA可以帮助组织识别已知和未知的风险,评估其严重程度和可能性,制定相应的控制措施,以降低风险。

风险评估技术-失效模式和效应分析(FMEA)及失效模式、效应和危害度分析(FMECA)

风险评估技术-失效模式和效应分析(FMEA)及失效模式、效应和危害度分析(FMECA)

失效模式和效应分析(FMEA及失效模式、效应和危害度分析(FMECA)1 概述失效模式和效应分析(Failure Mode and Effect Analysis ,简称FMEA)是用来识别组件或系统未能达到其设计意图的方法。

FMEA 用于识别:•系统各部分所有潜在的失效模式(失效模式是被观察到的是失误或操作不当);•这些故障对系统的影响;• 故障原因;• 如何避免故障及 /或减弱故障对系统的影响。

失效模式、效应和危害度分析(Failure Mode and Effect and Criticality Analysis ,简称 FMECA)拓展了 FMEA 的使用范围。

根据其重要性和危害程度,FMECA 可对每种被识别的失效模式进行排序。

这种分析通常是定性或半定量的,但是使用实际故障率也可以定量化。

2 用途FMEA 有几种应用:用于部件和产品的设计(或产品) FM EA ;用于系统的系统FMEA ;用于制造和组装过程的过程 FMEA ;服务FMEA和软件FMEA。

FMEA/ FMECA 可以在系统的设计、制造或运行过程中使用。

然而,为了提高可靠性,改进在设计阶段更容易实施。

FMEA/ FMECA 也适用于过程和程序。

例如,它被用来识别潜在医疗保健系统中的错误和维修程序中的失败。

FMEA/FMECA 可用来:•协助挑选具有高可靠性的替代性设计方案;•确保所有的失效模式及其对运行成功的影响得到分析;•列出潜在的故障并识别其影响的严重性;•为测试及维修工作的规划提供依据;• 为定量的可靠性及可用性分析提供依据。

它大多用于实体系统中的组件故障,但是也可以用来识别人为失效模式及影响。

FMEA 及 FMECA 可以为其他分析技术,例如定性及定量的故障树分析提供输入数据。

3 输入数据FMEA 及 FMECA 需要有关系统组件足够详细的信息,以便对各组件出现故障的方式进行有意义的分析。

信息可能包括:• 正在分析的系统及系统组件的图形,或者过程步骤的流程图;• 了解过程中每一步或系统组成部分的功能;• 可能影响运行的过程及环境参数的详细信息;• 对特定故障结果的了解;• 有关故障的历史信息,包括现有的故障率数据。

潜在失效模式及后果分析(FMEA)

潜在失效模式及后果分析(FMEA)
潜在失效模式及后果分析 FMEA (第四版)
廖俊华
1
第一章:FMEA通用指南
2
一.失效定义
失效 : 实体全部或部分 失去了完成其功能和性能。
其中实体是指产品、过程或系统。
潜在失效:有可能发生有可能不发 生的失效。
模式:表现的现象
3
质量的代价
不符合的代价: 索赔 重新设计 返工、报废 召回车辆 官司 销售丢失市场 失去工作 符合的代价 培训 测试 设计评审、验证、确认 实验设计 失效模式分析
6
三、FMEA在APQP中的地位和作用
顾客的要求 初始特殊特性清单
作业指导书
DFMEA
控制计划
特殊特性清单
PFMEA
过程流程图
7
四、FMEA定义
潜在失效模式及后果分析(Potential Failure Mode and Effects Analysis)是一种系统化的可靠性 定性分析方法。通过对产品/过程各组成部分进行事前分
《系统可靠性分析技术,失效模式和效应分析(FMEA)程序》
5
QS-9000 质量体系要求 —美国汽车工业行动集团(AIAG) VDA6.1 质量体系审核 —德国汽车汽车工业联合会(VDA)
ISO/TS 16949质量管理体系要求—国际汽车特别工作组
(IATF)均将进行FMEA分析作为质量管理体系的重要内容。
DFMEA的概述
DFMEA针对设计意图并假定该设计将按照此
意图进行生产和装配。
制造过程中的潜在失效模式将在后续PFMEA
中进行考虑和分析。
18
第三章:DFMEA
其它工具和信息源
其它工具和信息源可以帮助小组解决定义设计要求,包括 示意图、图纸等 材料清单(BOM) 关联矩阵图法 接口矩阵 质量功能展开(KDF) 质量与可靠性历史 这些工具的使用,是受到工程经验和历史数据的支持。 它们可以帮助综合定义要求和功能。 现在,可以填写DFMEA表格了!

质量管理五大核心工具之FMEA

质量管理五大核心工具之FMEA

质量管理五大核心工具之FMEA一、什么是FMEA:潜在的失效模式与后果分析(Potential Failure Mode and Effects Analysis),简称为FMEA,是一种定性的具有工程实用价值的可靠性分析方法。

使用这种方法,可以发现和评价产品/过程中一切潜在的失效模式,及早地指出根据经验判断出的弱点和可能发生的缺陷,并分析导致的失效后果和风险,最后在决策过程中找到能够避免或减少这些潜在失效发生的措施,并将这样一组系统化活动的整个过程文件化。

所有FMEA的重点在于设计,无论是用在设计产品或过程。

1、FMEA的由来:FMEA最早由美国航天工业于上世纪60年代所发展出来的一套信赖度分析工具。

北美福特公司于1972年发展信赖度训练计划时将FMEA包括与内。

发展至今,已被汽车工业界广为采用,并对提高汽车工业产品的可靠性卓有成效。

现在,无论在ISO/TS16949:2002体系标准中,还是在汽车行业顾客对供应商的质量能力评审中,都已明确规定必须采用FMEA。

2、FMEA的优点:由于FMEA是一种定性的分析方法,因此与定量的分析方法相比,FMEA就显得简便易懂,且较直观,易于被人们掌握并运用。

尤其是在一些不能用定量的可靠性数字说明问题的工程关键阶段,FMEA就更为适用。

3、FMEA的实施l 减少减少潜在的隐忧——使用FMEA作为专门的技术应用、以识别并减少潜在的隐患;——全面实施FMEA能够避免许多车辆抱怨事件的发生。

l 适时性是成功实施FMEA的最重要因素之一——是”事发前”的行为,要求FMEA必须在设计或过程失效模式被无意纳入产品或过程之前进行;——事先花时间完成FMEA分析,能更容易并低成本地对产品/过程进行修改,从而减轻事后修改的危机;.—— FMEA能够减少或消除因进行预防/纠正而带来更大损失的机会。

l FMEA适用场合——新设计、新技术或新过程。

该FMEA的领域是完成设计、技术或过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
QS9000, ISO9000
类型
DFMEA PFMEA
6
PFMEA 表格
潜在的失效模式及后果分析
项目名称: 产品类型: 核心小组:
过程 功能
潜在失 效模式
要求
过程责任部门: 关键日期:
FMEA编号:
页码:第 页 共 页 编制者: FMEA日期(编制):
潜在失效
严 重

潜在失效

现行预防
潜在失效模式及后果分析 Failure Mode Effects Analysis
(FMEA)
失效
什么是失效模式
失效模式是指系统、子系统或零件有可能未达致到设计/加工意图 的形式。 失效分类:一般的、严重的、灾难性的
失效产生的原因
原因分类:普通原因和特殊原因 普通原因:生产工艺、材料、设备等固有的不足 特殊原因:操作错误、设备损坏、材料用错等非正常因素
(修订)
措施结果
采取的措施
严频探S R
重度测* P

度O N
从失效模式开始,失 效模式的后果是什么 ?在这些后果中,最 坏的情况是什么?
列举失效模式而不是失效 后果的所有发生原因。 每
一个原因发生的几率有多 大?
列举针对每一原因的所有工 序控制点。 我们防止这些 原因发生或找出它的后果/ 失效模式的信心是什么?
确定关键特性. 对设计和生产中的不足进行评定及排序. 确定用于消除或减少潜在失效的措施以防止发生或到达客
户手中. 工序文件化.
5
FMEA 的发展及类型
发展
50’ 60’ 70’ 80’ 90’
用于战斗机的设计 Apollo (阿波罗)计划 汽车及医疗设备 微电子
后果
度 类 起因/机理 度 过程控制
S
O
现行 探测 过程 控制
风 险 控顺 测序 度数 D R. P. N
建 议 措 施
责 任 和 目 标 完 成 日 期
措施执行结果

R
取 的 措
严 重 度
频 度
探 测 度
. P .

N
7
PFMEA 工作流程
成立功能小组
确定工序
详述 失效模式
原因 失效后果
计算风险值
绘制柏拉图
开展纠正措施
22
PFMEA 工作流程
开展纠正措施 针对少数的最重要的失效模式,制定并执行纠正措施。
23
PFMEA 工作流程
功能小组的成立
确定工序
详述 失效模式
原因 失效后果
计算风险值
绘制柏拉图
开展纠正措施
24
PFMEA 工作流程
详述 失效模式
原因 失效后果
计算风险值
绘制柏拉图
开展纠正措施
绘制柏拉图
一个用来描述严重度的排序 一个用来描述 “严重度” X “频度”的排序 一个用来风险值(RPN)的排序
绘制柏拉图
确定最重要的少数几个失效模式。
也可以用金钱的可能损失来决定失效模式的重要性
21
PFMEA 工作流程
功能小组的成立
确定工序
详述 失效模式
原因 失效后果
计算风险值
13
发生可能性评定
频度
频度是一失效模式在没有任何的监控措施的情况下发生的几率。
发生的可能性
几乎是不可能 很少很少 很少 很低 低 中等 有点高 高 很高 几乎肯定
频度
1
1
2
3
4
4
5
6
7
7
8
9
9
10 10
Cpk 失效几率
备注
Cpk 1.67 5.0 1 / 1,500,000 失效几乎是不可能发生的.
2
失效的发生情况
Questions?
3
FMEA 的目标
消除失效发生的原因
…如果这不可能的话 减少失效发生的频次 提高发现失效的能力,在失效到达客户之前发现它
4
FMEA
FMEA的主要活动 为达到以下的目的而进行的一组系统活动:
确认产品或工序的潜在失效模式及这些失效的后果的严重 度.
*Could be time based e.g. Takes x minutes or days to detect a failure.
15
PFMEA 工作流程
功能小组的成立
确定工序
详述 失效模式
原因 失效后果
计算风险值
绘制柏拉图
开展纠正措施
16
PFMEA 工作流程
用头脑风暴法找出失效模式.
5
现有的控制方法找出过程失效模式的可能性低。
6 7
现有的控制方法找出过程失效模式的可能性小。 7 现有的控制方法找出过程失效模式的可能性很小。
8 9
现有的控制方法找出过程失效模式的பைடு நூலகம்能性微小。 9 现有的控制方法找出过程失效模式的可能性微乎其微。
10 10 几乎可能肯定现有的控制方法不能找出失效模式。
计算风险值
计算几一个失效模式的风险值(RPN)
RPN = severity x occurrence x detection. 风险值=严重度 X 频度 X 探测度
19
PFMEA 工作流程
功能小组的成立
确定工序
详述 失效模式
原因 失效后果
计算风险值
绘制柏拉图
开展纠正措施
20
PFMEA 工作流程
过程功 能要求
潜在失效 模式
潜在失效 后果
严 级 潜在失效起 重 别 因/机理 度
频 现行过程控 探 S R
度制
测* P 度O N
建议的措施
区域/责任及目 标完成日期
措施结果
采取的措施
严频探S R
重度测* P

度O N
1 列举工序步骤
6 是什么原因导致出错? 10 计算严重度与探测度的乘积
14 实际完成的措施
Cpk 1.50 4.5 1 / 150,000 失效发生的几率微乎其微.
Cpk 1.33 4.0 1 / 15,000 失效发生的几率很小.
Cpk 1.17 3.5 1 / 2000 失效发生的几率较小.
Cpk 1.00 3.0
1 / 400
失效偶尔发生.
Cpk 0.83 2.5
1 / 80
12
严重度评定
严重度
严重度是根据地一潜在失效模式的影响的严重性来评定的。
没有影响 很轻微 轻微 很低 低 中等 高 严重 很严重 很危险
1 1 对系统、出货质量或后工序没有影响.
2
客户很难发现,客户不会介意
3
出货产品功能轻微损失。客户有轻微不满, 使用时有异响。
4 4 生产线破坏不严重,产品功能有小的影响,客户容易发现。
设备破损 7
安全隐患 10
28
FMEA 总结
识别潜在的失效模式
失效后果
确定严重性
产生的原因 确定频度
确定现在的控制方法 决定可探测度
计算风险值
持续改善的行动措施
29
FMEA 优点
一种系统的解决问题的方法 集中有限的资源,优先解决重大风险项目 为控制计划找出工序中不足的地方 以事实为依据 – 避免主观主义 为后面的风险和资源管理提供现场的文件 是过程/产品知识积累、公司的知识库 提升生产力 减少浪费 节省成本
详述 失效模式
原因 失效后果
选取并确认对关键特性有冲击的失效模式。
识别出根本原因。
确定失效模式的影响。
确定失效模式出现的几率。
确认现有的控制方法找出失效模式的可能性。
17
PFMEA 工作流程
功能小组的成立
确定工序
详述 失效模式
原因 失效后果
计算风险值
绘制柏拉图
开展纠正措施
18
PFMEA 工作流程
评估纠正措施完成后对于失效模式的“严重度”、“ 探测度”和“频度”的影响。
重新计算该风险值(RPN)。
现次工序优化,再次执行上面的循环。
25
PFMEA 表格的填写
工序/项目: 车间: 核心小组:
过程责任部门: 关键日期: FMEA 编号:
页码: 编制者: FMEA 日期 (编制)
(修订)
绘制柏拉图
开展纠正措施
8
PFMEA 工作流程
功能小组的成立
确定工序
详述 失效模式
原因 失效后果
计算风险值
绘制柏拉图
开展纠正措施
9
PFMEA 工作流程
功能小组的成立
跨部门多功能小组
由操作员、技术员、工程师和部门主管组成 指定小组组长
建议为工序责任人
应有足够的授权以便开展工作 必要时,应有专家级人物参加 开始时,由少数人组成的核心小组可能更有利于制定一个框
几乎是肯定的 很高
对于一类似产品或工序,现有的监控方法非常可靠,几
1 1 乎可以肯定能找出失效模式。
2
现有的控制方法找出过程失效模式的可能性很高。
高 中等偏高 中等 低 较少 很少 微乎其微 几乎是不可能
3
现有的控制方法找出过程失效模式的可能性高。
4 4 现有的控制方法找出过程失效模式的可能性中等偏上。
失效经常发生.
Cpk 0.67 2.0
1 / 20
失效频繁地发生.
Cpk 0.51 1.5
1/7
失效发生的几率高.
Cpk 0.33 1.0
1/ 3
失效发生的几率非常高
Cpk0.33 1
相关文档
最新文档