泊松分布
泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。
中文名泊松分布外文名poisson distribution 分类数学时间1838年台译卜瓦松分布提出西莫恩·德尼·泊松目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。
泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。
这个分布在更早些时候由贝努里家族的一个人描述过。
分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。
通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。
事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。
应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
泊松分布表

计算概率
根据查找到的概率值计算所需事件的概率。例如,如果需要计算平均值为λ的标准正态分布下,距离平均值2个标准差范围内的概率,可以通过查找λ值对应的概率,然后将其与标准正态分布曲线下的面积相乘得到概率值。
确定参数
首先需要确定所需的置信水平和所需的样本数量n。置信水平通常选择95%或99%,样本数量n则根据实际情况而定。
对于具有依赖性和集群性的事件,可以考虑使用更复杂的模型,如负二项式分布、帕累托分布等,以更好地描述事件的发生。
使用更复杂的模型
为了处理事件发生的时空变化,可以考虑引入时变参数,根据时间、地点等因素的变化来调整参数值。
引入时变参数
可以结合其他理论或方法,如聚类分析、关联规则等,以更全面地考虑事件发生的影响因述了服务台前顾客到达的次数。
排队论
保险精算
自然灾害
在保险精算中,泊松分布被用来计算在一定时间段内发生特定事件(如死亡、理赔等)的概率。
在预测自然灾害(如地震、洪水等)的频率时,泊松分布也具有应用价值。
03
02
01
$f(k) = \frac{{e^{- \lambda}\lambda^{k}}}{k!}$
累积分布函数
泊松分布的累积分布函数表现为一条从0开始缓慢上升的曲线,随着λ的增加,曲线逐渐变得陡峭。这条曲线与横轴之间的面积表示事件发生的概率。
泊松分布的数学推导
03
VS
f(k) = λ^k * e^(-λ) / k!
泊松分布的概率质量函数
p(k) = λ^k * e^(-λ) / k!
泊松分布的概率密度函数
常见用途
泊松分布在自然和社会科学中都有广泛的应用,如人口统计学、生物统计学、经济学等。通过使用泊松分布表,可以方便地查询和计算在给定参数下的概率分布。
泊松分布

0
1 2 3 4 合计
27.90
42.50 32.37 16.44 6.26
26
40 38 17 7
0.1294
0.1474 0.9775 0.0191 0.0872 1.3606
自由度=组数-1-1=5-2=3
一个放射性物体5分钟测得脉冲数为200次, 这两种物体混合后估计5分钟脉冲数的总体 平均数及标准差是多少?
140+200=340
340 18.44
二、泊松分布的图形
泊松分布的特征只决定于平均数 ,不同的参数对应
不同的Poisson分布,即的大小决定了Poisson分布 的图形特征
x1 ( 38 29 36) / 3 34.33 x 2 ( 25 18) / 2 21.50 u 34.33 21.50 2.732 34.33 / 3 21.50 / 2
u
X1 X 2 X1 X 2 n1 n2
P<0.01,拒绝H0接受H1
用泊松分布对聚集性的研究
例
在室内不同位置放置6个平皿,隔一定时间后进行培
养,得葡萄球菌落数分别为21,26,22,18,19, 32,问细菌在室内不同位置的分布是否随机?
x 23
5.91 6 1 5
2 2 0 .05(5) 11.07 2 2 0 .05(5) , p 0.05
泊松分布资料的差异显著性检验
(三)泊松分布资料的差异显著性检验
1. 样本均数与总体均数比较: 直接计算概率法 例 8-10
例8-11
泊松分布的概念及表和查表方法

目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。
泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。
这个分布在更早些时候由贝努里家族的一个人描述过。
分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。
通常当n≧20,p≦时,就可以用泊松公式近似得计算。
事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。
应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。
应用示例泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。
如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。
泊松分布的计算

泊松分布的计算
一、泊松分布的计算
泊松分布是随机事件在一个固定时间段内发生的概率分布,其中每个事件的发生是相互独立的,且发生概率不受其他事件发生的影响。
泊松分布的参数是一个独立的,由全体可能事件的概率总和决定的形态。
计算泊松分布的公式为:
P(x) = ((λ^x)* e^(-λ))/x!
其中,λ是每个事件发生的期望值,x是事件发生的次数,e是
自然常数,x!是x的阶乘。
二、通过泊松分布计算概率
例如,若给定一个λ=4,计算在一个可能事件中发生两次的概率。
在这种情况下,x=2,因此可以将上面的公式应用于此:
P(x) = ((4^2) * e^(-4))/2!
P(x) = (16 * 0.018315638) / 2
P(x) = 0.2945
因此,在一个有可能的事件中发生两次的概率为0.2945。
- 1 -。
泊松分布的概率分布

泊松分布的概率分布泊松分布是概率论中一种重要的离散型概率分布,它描述了在一定时间或空间范围内,某一事件发生的次数的概率分布情况。
泊松分布常被用来描述单位时间内某事件发生的次数,例如在单位时间内电话接到的次数、某个网站每天收到的访问次数等。
本文将从泊松分布的定义、特点、应用等方面进行介绍。
一、泊松分布的定义泊松分布是一种离散型概率分布,它表示在一个固定时间或空间内,某事件发生的次数的概率分布情况。
泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,X为事件发生的次数,k为非负整数,λ为单位时间或空间内事件的平均发生次数,e为自然对数的底。
二、泊松分布的特点1. 独立性:泊松分布假设事件的发生是相互独立的,即一个事件的发生不会影响到其他事件的发生。
2. 稀有性:泊松分布适用于事件发生的概率较小的情况,即当λ很小时,泊松分布可以近似描述事件的发生情况。
3. 均值和方差相等:泊松分布的均值和方差都等于λ,即E(X) = Var(X) = λ。
三、泊松分布的应用1. 电话呼叫中心:泊松分布可以用来描述电话呼叫中心在单位时间内接到的呼叫次数。
通过分析呼叫的泊松分布,可以确定合理的客服人员数量,以满足客户的需求。
2. 网络流量:泊松分布可以用来描述网络上的数据包到达的情况。
通过分析网络流量的泊松分布,可以预测网络负载,优化网络性能。
3. 事故发生:泊松分布可以用来描述事故发生的次数。
例如,在某个工厂每月发生的事故次数符合泊松分布,可以通过对泊松分布的分析,制定相应的安全措施,减少事故发生的概率。
4. 遗传突变:泊松分布可以用来描述遗传突变的发生情况。
通过对遗传突变的泊松分布进行分析,可以研究突变的规律,为相关疾病的治疗提供理论依据。
四、泊松分布的优缺点1. 优点:泊松分布具有简单、易于计算的特点,适用于描述稀有事件的发生情况。
在实际应用中,泊松分布通常用来近似描述一些复杂的实际问题。
泊松分布

……
是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除 去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量, 因此就意味着全部死亡的概率。
分布特点
泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随 机事件发生的次数。 泊松分布的期望和方差均为 特征函数为
关系
泊松分布与二项分布 泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当 n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。
推导
泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在 一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。
为方便记,设所观察的这段时间为[0,1),取一个很大的自然数n,把时间段[0,1)分为等长的n段: 我们做如下两个假定: 1.在每段内,恰发生一个事故的概率,近似的与这段时间的长成正比,可设为。当n很大时,很小时,在这 么短暂的一段时间内,要发生两次或者更多次事故是不可能的。因此在这段时间内不发生事故的概率为。 2.各段是否发生事故是独立的 把在[0,1)时段内发生的事故数X视作在n个划分之后的小时段内有事故的时段数,则按照上述两个假定,X应 服从二项分布。于是,我们有 注意到当取极限时,我们有 因此 从上述推导可以看出:泊松分布可作为二项分布的极限而得到。
泊松分布 超几何分布

泊松分布超几何分布泊松分布和超几何分布是概率论中常见的两种离散概率分布,它们在实际问题中具有广泛的应用。
本文将分别介绍泊松分布和超几何分布的定义、特点以及应用领域。
一、泊松分布泊松分布是一种描述单位时间内随机事件发生次数的概率分布。
它的定义如下:在单位时间内随机事件发生的次数服从泊松分布,如果事件发生的概率在不同时间段内相等,并且相互独立。
泊松分布的特点是只有一个参数λ,表示单位时间内事件平均发生的次数。
泊松分布的概率质量函数为:P(X=k)=e^(-λ)*(λ^k)/k!,其中e为自然对数的底数。
泊松分布的应用非常广泛。
例如,在电话交换机的研究中,可以使用泊松分布来描述单位时间内呼叫到达的次数;在客流量预测中,可以使用泊松分布来描述单位时间内到达某个地点的人数;在信号传输中,可以使用泊松分布来描述单位时间内出现的误码数等。
二、超几何分布超几何分布是描述从有限总体中抽取固定数量样本中成功次数的概率分布。
它的定义如下:从总体中随机抽取n个样本,其中包含m 个成功的样本和N-m个失败的样本,那么超几何分布表示样本中成功次数的概率分布。
超几何分布的特点是有三个参数:总体中成功的样本数m,总体中失败的样本数N-m,以及抽取的样本数量n。
超几何分布的概率质量函数为:P(X=k)=(C(m,k)*C(N-m,n-k))/C(N,n),其中C(a,b)表示从a个元素中选取b个元素的组合数。
超几何分布的应用也非常广泛。
例如,在质量控制中,可以使用超几何分布来描述从一批产品中抽取固定数量的样本中不合格品的数量;在样本调查中,可以使用超几何分布来描述从总体中抽取一定数量的样本中满足某个条件的样本数量等。
泊松分布和超几何分布在实际问题中的应用是相互补充的。
泊松分布适用于描述单位时间内事件发生的次数,而超几何分布适用于描述从有限总体中抽取样本中成功次数。
在实际问题中,可以根据具体情况选择使用泊松分布还是超几何分布来建立概率模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D { N (t )} = E [ N (t )] − ⎡ ⎣ E { N (t )}⎤ ⎦ = λt
2
{
}
自相关函数
⎧λ t + λ 2t1t2 R (t1 , t2 ) = E { N (t1 ) N (t2 )} = ⎨ 2 2 ⎩ λ t1 + λ t1t2
假设 t1 < t2 ,有
t1 ≥ t2 t1 ≤ t2
2
= λt1 + λt1 ⋅ λt2
总结起来,有
E{N (t1 ) N (t2 )} = λ ⋅ min [t1 , t2 ] + λt1 ⋅ λt2
自协方差函数
C (t1 , t2 ) = E { N (t1 ) N (t2 )} − E { N (t1 )} E { N (t2 )} = λ min(t1 , t2 ) = λ t1U (t2 − t1 ) + λ t2U (t1 − t2 )
2 泊松过程的基本概念
定义,设有一个计数过程{N(t), t>0}满足下列假设,称为泊松过程, 1. 在 t=0 时,N(t)=0; 2. 该过程是独立增量计数过程; 3. 该过程是平稳增量计数过程; 4. 在(t, t+Δt)内出现一个事件的概率为 λΔt + 0(Δt),λ为一常数,在(t, t+Δt) 内出现两个或两个以上事件的概率为 0(Δt),即 P{ N(t+Δt) - N(t)>1}=0(Δt)
P { N (t ) = n + k / N ( s ) = k } = P { N (t ) − N ( s ) = n / N ( s ) = k} = P { N ( s + Δt ) − N ( s ) = n} = Pn (t ) = (λ ⋅ Δt ) n − λ ⋅Δt e n!
3. 泊松分布的统计特征
⎡ d d ⎤ ⎡ d d ⎤ = ⎢ z z Φ ( z ) ⎥ = ⎢ z z e − λt (1− z ) ⎥ ⎣ dz dz ⎦ z =1 ⎣ dz dz ⎦ z =1 d 2 zλ te − λt (1− z ) ⎤ =z ⎡ = ⎡ zλ te − λt (1− z ) + z 2 ( λ t ) e− λt (1− z ) ⎤ ⎣ ⎦ z 1 = ⎣ ⎦ z =1 dz = λt + ( λt )
泊松过程
计数过程 泊松过程的基本概念 泊松过程的统计特征 泊松分布的几个问题 非齐次泊松过程 泊松过程的和、差 复合泊松过程 泊松过程举例
1 计数过程
定义,在(0, t)内出现事件 A 的总数所组成的过程{N(t), t>0}称为计数过程。 计数过程{N(t), t>0}满足下列条件: N(t)>0; N(t)是一个正整数; 如果有两个时刻 s, t,且 s<t,则 N(s)< N(t); 如果有两个时刻 s, t,且 s<t,则 N(t)-N(s)代表时间间隔(s, t)内事件 A 出现的次 数。 独立增量计数过程, 在不相交的时间间隔内出现事件 A 的次数是相互统计独立的。 平稳(齐次)增量计数过程, 在时间间隔(t, t+s)内出现事件 A 的次数[N(t+s)-N(t)]仅与 s 有关而与 t 无关。
λ se −λ s ⋅ e −λ (t − s ) s = = t λ te −λ t
相应在时间间隔(0,t)内事件发生的概率密度是 1/t。 结论:如果已知在(0,t)内发生 n 次事件,则 n 次事件的发生时间是 n 个独立同分布的随 机变量的顺序序列,每一随机变量均匀分布于(0,t)内。
时间间隔(0,t2)内发生 n 个事件时, (0,t1<t2)内发生 k 次事件的概率
∞
∫ dxλ ⋅e
1 0
−λ 1 x
⋅ e− λ2 x + λ 2 )e − ( λ 1 + λ 2 ) x
∞ λ1 ⋅ = ⋅ dx ⋅(λ (λ 1 + λ 2 ) ∫ 0 λ1 ⋅ = ⋅ (λ 1 + λ 2 )
1
第一个过程的第 k 个事件先于第二个过程的第一个事件的概率
有两个相互独立的泊松过程{N1(t), t>0}及{N2(t), t>0}, 它们在单位时间内出现事件的平 均数分别是λ1,λ2,设 t1k,t21,分别是两个过程出现第一次事件的时刻,求第一个过程的 第 k 个事件先于第二个过程的第一个事件的概率,即 Pr{ t1k < t21}。 首先考虑第一个过程第 k 个事件在时刻(x+dx)发生,而第二个过程在(0,x)时间内不发 生任何事件的概率密度,再考虑 x 从 0 到∞的积分。
泊松分布的母函数,
(λ t ) n − λ t e n!
Ψ ( z ) = ∑ Pn z n = ∑
n =0
∞
(λ t ) n − λ t n e z = e − λ t (1− z ) n ! k =0
∞
对于给定的时刻 s、t,且 s<t, t = s + Δt ,以及相应的 N(s)、N(t),转移概率分布为,
∞
∫ dxλ1 ⋅
0
(λ 1 x) k −1 − λ 1 x − λ2 x e ⋅e (k − 1)! ⎞ ⎟ (λ 2 ⎠ ⎞ ⎟ 2 ⎠
k k 1 + λ 2 ) ⋅ ∫ dx ⋅ 0 ∞
⎛ λ1 ⋅ =⎜ ⎝ λ 1 +λ ⎛ λ1 ⋅ =⎜ ⎝ λ 1 +λ
[(λ
1
+ λ 2 ) x]k −1 − ( λ 1 + λ 2 ) x e (k − 1)!
考虑条件概率, P [ N (t1 ) = k | N (t2 ) = n ] ,
t1 ≤ t2 , k = 0,1," , n
P { N (t1 ) = k | N (t2 ) = n} = =
P { N (t1 ) = k , N (t2 ) = n} P { N (t2 ) = n}
P { N (t1 ) = k , N (t2 − t1 ) = n − k} P { N (t2 ) = n}
(λ τ ) n −1 − λ τ f (τ ) = λ ⋅ e (n − 1)!
时间间隔(0,t)内发生一个事件,事件发生时间的概率密度
泊松过程{N(t), t>0}在(0,t)内有一个事件出现,它的到达时间 s 的概率密度分布
P[ N ( s ) = 1 / N (t ) = 1] =
P[ N ( s ) = 1] ⋅ Pr [ N (t ) = N ( s )] P[ N (t ) = 1]
Pn (t + Δt ) = Pn (t ) P0 (Δt ) + Pn −1 (t ) P n ≥1 1 ( Δt ) + ∑ P k (t ) P n − k ( Δt ),
k =0
n−2
即: Pn (t + Δt ) = Pn (t )(1 − λ Δt ) + Pn −1 (t )λ Δt + 0(Δt ), 整理上述
第一个过程的第一个事件先于第二个过程的第一个事件的概率
有两个相互独立的泊松过程{N1(t), t>0}及{N2(t), t>0}, 它们在单位时间内出现事件的平 均数分别是λ1,λ2,设 x,y,分别是两个过程出现第一次事件的时刻,求第一个过程的第一 个事件先于第二个过程的第一个事件的概率,即 Pr{ x<y}, 首先考虑第一个过程第 1 个事件在时刻(x+dx)发生,而第二个过程在(0,x)时间内不发 生任何事件的概率密度,再考虑 x 从 0 到∞的积分。
5 非齐次泊松过程
定义,计数过程{N(t), t>0}满足下列条件,称它为非齐次泊松过程, 1. 在 t=0 时,N(t)=0; 2. 该过程{N1(t), t>0}是独立增量计数过程; 3. P{ N(t+Δt) - N(t)>1}=0(Δt); 4. P{ N(t+Δt) - N(t)=1}=λ(t) Δt + 0(Δt)。 递推微分方程,
⎡d ⎤ = ⎢ e − λt (1− z ) ⎥ = λt ⎣ dz ⎦ z =1
方差:
E [ N (t ) ] = ∑ k 2 P ( N (t ) = k )
2 k =0
{
}
∞
= ∑ k 2 P( N (t ) = k ) ⋅z k
k =0
∞
z =1
=z
d d ⎡∞ ⎤ z ⎢ ∑ P( N (t ) = k ) ⋅z k ⎥ dz dz ⎣ k =0 ⎦ z =1
E{N (t1 ) N (t2 )} = E{N (t1 ) N (t1 ) + N (t1 ) [ N (t2 ) − N (t1 ) ]} = E{N (t1 ) N (t1 )} + E{N (t1 )} ⋅ E{[ N (t2 ) − N (t1 ) ]} = λt1 + ( λt1 ) + λt1 ⋅ λ ( t2 − t1 )
Pn (t ) = Pr [N (t ) − N (0) = n]
泊松过程的递推微分方程: 令 Pn (t ) = P [ N (t ) − N (0) = n ] 表示在间隔 t 的时间内发生 n 次事件的概率。 对于泊松过程,在(0,t+Δt)内不出现事件,等价于在(0,t)间隔内不出现事件以及在
均值:
E { N (t )} = ∑ n ⋅ pn (t ) = λt
n=0
∞
∞
E { N (t )} = ∑ kP( N (t ) = n) = ∑ nP( N (t ) = n) ⋅z n
n=0 n=0
∞
z =1