矩阵合同变换

合集下载

矩阵的合同变换

矩阵的合同变换

矩阵的合同变换矩阵的合同变换摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。

在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。

关键词:矩阵 秩 合同 对角化定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ≅定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap-=,则称A 和B 相似A B :定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B=那么就说,在数域F 上B 与A 合同。

以上三个定义,都具有自反性、传逆性、对称性、 性。

定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12mP Q Q Q =L 。

此时711T T Tm n PQ Q Q -=L 边为一系列初等矩阵的乘积若111TTT T mn mB P AP Q QQ AQ Q -==L L 则B 由A 经过一系列初等变换得到。

所以A B ≅,从而知合同变换是等价变换。

定理2:合同变换与相似变换,不改变矩阵从而111()PQQP ---=又由于1111()()()QP QP T QP P TQT ----= 1()T T QP P TQ -=T QQ =1QQ -=E = 1QP -∴为正交矩阵 所以A B :且A B ≅定时5:两合同矩阵,若即PTAP B =,若A 为对称矩阵,则B 为对称阵,而两相似矩阵则不一定有些性质证明:A B ≅即TP AP B =,若对称阵,则TAA=()T T TB P AP =T T P A P=TP AP = B =所以B 边为对称阵[注]:相似矩阵对此结论不具有一般性,它在什么情况下成立呢?引理6:对称矩阵相似于对角阵⇔A 的每一个特征根λ有秩||I A n s λ-=-,S 为λ的重数.证明:任给对称的n 阶矩阵A 一个特征根λ,以其重数以秩||I A r λ-=,则||r n s n r s I A λ=-⇔-=⇔-12000n x x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M ,线性无关的解向量个数为n r -个,即5个又因属不同特征根的特征向量线性无关⇔n 阶对称阵A 有n 个线性无关的特征向量 ⇔n 阶对称阵可对角化从定理5,引理6中我们发现了合同在应用中的侧重点,如对二次型应用例 求一非线性替换,把二次型123122313(,,)262f x x x x x x x x x =-+二次型`23(,,)f x x x 矩阵为011103130A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦对A 相同列与行初等变换,对矩阵E ,施行列初等变换212103230A -⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦→200020006⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦100111110111001101E ⎡⎤⎡⎤⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦112233113111001x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦可把二次型化为标准型222123123(,,)226f x x x y y y =-+解法(2)212103230A -⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦210102022⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦2001022022⎡⎤⎢⎥⎢⎥→--⎢⎥⎢⎥--⎣⎦2001002006⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎣⎦此时2221231231(,,)262f x x x zz z =-+此时非线性退化替换为11223311321112001x z x z x z ⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦发现在注[1]:任意对称阵合同的对角阵及其变换阵不是唯一确定的特性1:在合同变换中具有变换和结果的多样性[注]:在对角阵上元素相等及其它元素元素边相等情况下又有哪些性质呢?例3.用可逆性变换化二次型222123123123123(,,)(2)(2)(2)f x x x x x x x x x x x x =-+++-+++-解:222112132233:666666f xx x x x x x x x --+-+对二次型矩阵为633363336A --⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥⎣⎦10060060001099963300000022236399000336012216118100111121010102211801010102100100118A E ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎥⎣⎦⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢⎣⎦⎣⎦⎣⎦E B ⎡⎤=⎢⎥⎣⎦⎥⎥⎥标准形2212f yy =+,则1122331618011801x y x y x y ⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦PTA B=[注]当P 改变两行的位置交换后,发现00016186 3 3100036310101818618336000001111⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤⎡⎤⎥⎥⎢⎥⎢⎥--=⎢⎥⎥⎢⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦定理2:在A 为对角线上元素相等,其余元素也相等,则若有TP AP B =,则调整P 的任意两行,对角阵形式不变。

矩阵的合同变换

矩阵的合同变换

矩阵的合同变换矩阵的合同变换是一种矩阵变换,它保持矩阵的本征值和本征向量不变。

在讨论矩阵的合同变换之前,我们先来了解一下矩阵的本征值和本征向量。

矩阵的本征值和本征向量是线性代数中非常重要的概念。

给定一个n阶矩阵A,如果存在一个非零向量x,使得Ax = λx,其中λ为一个常数,那么λ就是矩阵A的一个本征值,相应的x就是对应于λ的一个本征向量。

矩阵的本征值和本征向量可以用于解决线性方程组、矩阵对角化等问题。

现在我们来讨论矩阵的合同变换。

设A和B是两个n阶矩阵,如果存在一个非奇异矩阵P,使得B = P^(-1)AP,那么称矩阵B是矩阵A的合同变换。

合同变换保持矩阵的本征值和本征向量不变。

接下来我们来证明这一结论。

假设x是矩阵A的一个本征向量,对应的本征值为λ,即Ax = λx。

那么根据矩阵的合同变换定义,我们有Bx = P^(-1)APx = P^(-1)λx = λP^(-1)x。

由于P是非奇异矩阵,所以P^(-1)也是非奇异矩阵,因此λP^(-1)x也是矩阵B的一个本征向量,对应的本征值也是λ。

所以合同变换保持矩阵的本征值和本征向量不变。

矩阵的合同变换可以通过矩阵的相似变换来理解。

如果矩阵A 和B相似,即存在一个非奇异矩阵P,使得B = P^(-1)AP,那么矩阵B是矩阵A的合同变换。

相似变换也保持矩阵的本征值和本征向量不变。

矩阵的合同变换有一些重要的特性。

首先,合同变换保持矩阵的对称性。

如果矩阵A是对称矩阵,即A = A^T,那么矩阵A 的任意合同变换B也是对称矩阵。

其次,合同变换保持矩阵的正定性。

如果矩阵A是正定矩阵,即对于任意非零向量x,都有x^TAx > 0,那么矩阵A的任意合同变换B也是正定矩阵。

最后,合同变换可以用于化简矩阵的计算。

通过矩阵的合同变换,我们可以将矩阵化为更简单的形式,从而方便进行计算。

总结起来,矩阵的合同变换是一种保持矩阵的本征值和本征向量不变的矩阵变换。

合同变换可以通过矩阵的相似变换来理解,并且保持矩阵的对称性和正定性。

矩阵的合同变换.doc

矩阵的合同变换.doc

矩阵的合同变换.doc
在线性代数中,矩阵的合同变换是一种特殊的变换,它主要是指对于一个矩阵A进行相似变换,通过左乘或右乘一个可逆矩阵,得到一个新的矩阵B,B= PAP^-1 或 B= P^-1 AP,其中P是可逆矩阵。

矩阵的合同变换也是线性代数中研究的重要内容之一,对于理解其它线性代数概念和理论,有着重要的启示和作用。

1. 矩阵合同的定义
根据矩阵的合同定义,可以得出矩阵合同的性质:
(1)合同变换是矩阵的等价关系,即同一矩阵和相似矩阵彼此合同。

(2)矩阵的合同不改变矩阵的秩、特征值和行列式。

(4)矩阵的合同等价于斯密特标准形的转换。

矩阵合同变换和线性变换密切相关,它们都能用矩阵来表达。

通过矩阵乘法,可以将线性变换转化为矩阵运算,从而得到新的矩阵表示。

相应地,矩阵的合同变换可以看作是对矩阵所表示的线性变换进行变换。

矩阵的合同变换在实际应用中也有着非常广泛的应用,比如在计算机视觉领域,对图像进行合同变换可以实现图像处理和增强等一系列操作。

另外,在信号处理、通信系统设计等方面也是一个重要的概念。

总之,矩阵合同变换是矩阵相似变换的一种特殊情况,具有很多重要的性质,并且在实际应用中也有着广泛的应用。

通过深入了解矩阵的合同,可以帮助我们更好地理解线性代数中的许多重要概念及其应用,提高我们的数学素养和解决实际问题的能力。

合同变换不改变矩阵的正定性证明

合同变换不改变矩阵的正定性证明

合同变换不改变矩阵的正定性证明要讲这题,先给大家普及一下什么是“正定矩阵”。

别急,不要皱眉头!其实正定矩阵就是那种看起来很稳,永远不会崩的矩阵。

你可以理解成它就像是个靠谱的朋友,无论你什么时候找它,它都会给你一个正面的、稳定的答案。

像什么做事稳扎稳打,永远不出问题那种。

不过这里说的“正定性”指的不是它的性格,而是它的数学性质。

就是说,如果你对它做一些操作,它总能保持“好”的状态,不会变坏。

那今天我们要聊的呢,是一种叫做“合同变换”的操作。

这操作听起来高大上,其实就是你对矩阵做一些小小的改变,想看看它是否还会保持正定性。

咋办呢?就像你拿个朋友去理发,想看看他是不是依然稳得住。

说实话,合同变换这东西就像是对矩阵做个修修补补、换个发型,目标就是让矩阵在改变后依然能继续“稳稳当当”下去。

其实要证明“合同变换不改变矩阵的正定性”并不复杂。

首先我们得弄明白,什么是合同变换。

简单来说,合同变换就是用一个可逆的矩阵去左乘或者右乘原矩阵。

大家千万不要被这些数学名词吓到,其实它就相当于把矩阵做个“换装”——给矩阵换个衣服,但它本质上不会改变它的“内在”。

换句话说,你给一个有正面性格的矩阵换上新衣服,它依然会保持那个好性格,不会变坏。

比如你有个矩阵A,如果它是正定矩阵,说明无论你怎么“试探”它——比如随便拿个向量x去做矩阵乘法,它都会给你一个正数。

那时候,如果你对A做合同变换,比如用一个矩阵P去左右乘A(P是可逆的),那么你试图用新的向量P乘x去检验时,你依然会得到一个正数。

这就像是把一个靠谱的朋友换了个新发型,你仍然能信任他,依然能看到他那股稳重的样子。

要证明这个,我们就得从头开始分析。

合同变换的核心就是乘一个可逆矩阵。

这里的“可逆矩阵”就像是一个万能钥匙,它不但能打开矩阵的所有门,还能保证每次操作都不会破坏原本的特性。

正定性要求你给一个向量x做内积时,必须得到一个大于零的结果。

假设我们对矩阵A做了一个合同变换,得到了一个新矩阵B = P^(1) * A * P。

矩阵ab合同的定义

矩阵ab合同的定义

#矩阵合同的定义在数学的线性代数分支中,矩阵合同是一个基本且重要的概念。

它涉及到两个矩阵通过相似变换(或称为合同变换)能够达到相同形式的性质。

具体而言,如果存在一个可逆矩阵P,使得当A和B为两个方阵时,满足( P^TAP = B ),那么称矩阵A与矩阵B是合同的。

矩阵合同的性质1. 保持正负惯性指数不变:矩阵A与合同矩阵B具有相同的正负惯性指数。

这是矩阵合同的一个核心性质,意味着它们在某种意义上是等价的。

2. 相似变换下的性质保持:相似变换不改变矩阵的特征值,但合同变换则关注矩阵的正负特征值的个数(即正负惯性指数),而不改变特征值本身。

3. 对角化:任何矩阵都可以通过合同变换被转化为一个对角矩阵(或Jordan标准形),这一过程称为矩阵的合同对角化。

4. 实对称矩阵的合同对角化:对于实对称矩阵,存在一个正交矩阵P,使得( P^TAP )为对角矩阵。

这意味着实对称矩阵不仅可以合同对角化,还可以正交对角化。

合同矩阵的应用- 二次型的标准形:在研究二次型时,通过合同变换可以将二次型转化为标准形,从而简化问题。

- 动力系统稳定性分析:在动力系统理论中,通过合同变换可以分析系统的稳定性。

- 数值分析中的误差估计:在数值分析中,合同变换有助于估计算法的数值稳定性和误差范围。

- 图论中的邻接矩阵:在图论中,合同变换可以帮助确定图的某些性质,如连通性。

结论矩阵合同不仅是线性代数中的一个基本概念,它还在多个数学及其应用领域中扮演着重要角色。

理解并掌握矩阵合同的概念,对于深入理解线性代数以及相关领域的知识有着重要的意义。

通过合同变换,我们可以将复杂的矩阵问题转化为更易处理的形式,从而在理论和应用层面上获得洞见和解决方案。

矩阵的合同变换

矩阵的合同变换

矩阵的合同变换介绍矩阵的合同变换是线性代数中的一个重要概念,在实际应用中有着广泛的应用。

本文将从理论基础、矩阵相似性和合同变换的性质等方面进行全面、详细、完整且深入地探讨矩阵的合同变换。

理论基础1. 矩阵的定义在线性代数中,矩阵是由数按照矩形排列的矩形阵列。

一个m×n 矩阵是由 m 行n 列的矩形排列数字所组成的矩阵,其中每一个数字叫作矩阵的元素。

2. 矩阵的相似性矩阵的相似性是矩阵理论中的重要概念。

对于两个n×n 矩阵 A 和 B,如果存在一个n×n 矩阵 P 使得 PAP^-1 = B,那么称 A 和 B 是相似的,P 是相似变换矩阵。

•相似变换矩阵 P 是可逆矩阵,即存在矩阵 P^-1,使得 P^-1 P = PP^-1 = I,其中 I 是单位矩阵。

•相似的矩阵具有相同的特征值和特征向量。

3. 矩阵的合同变换矩阵的合同变换是另一个重要的矩阵变换。

对于两个n×n 矩阵 A 和 B,如果存在一个可逆矩阵 P 使得 P^TAP = B,那么称 A 和 B 是合同的,P 是合同变换矩阵。

合同变换和相似变换的不同之处在于,合同变换是在矩阵 A 的转置上进行的。

矩阵的合同变换的性质矩阵的合同变换具有一些重要的性质,下面将对这些性质进行详细介绍:1. 合同变换的保持特征值的性质如果 A 和 B 是合同矩阵,即存在一个可逆矩阵 P 使得 P^TAP = B,则 A 和 B具有相同的特征值。

这个性质与矩阵的相似性保持特征值的性质是相似的。

2. 合同变换的保持矩阵的秩的性质如果 A 和 B 是合同矩阵,即存在一个可逆矩阵 P 使得 P^TAP = B,则 A 和 B的秩相等。

这一性质保证了合同变换不改变矩阵的秩。

3. 合同变换的保持正定性和半正定性的性质如果 A 和 B 是合同矩阵,即存在一个可逆矩阵 P 使得 P^TAP = B,则 A 和 B的正定性和半正定性保持不变。

矩阵的合同定义

矩阵的合同定义

矩阵的合同定义一、概述矩阵是线性代数中的重要工具,它在各个领域中都有着广泛的应用。

矩阵的合同定义是研究矩阵间等价关系的一种方法,通过合同定义可以刻画出矩阵的相似性和等价性。

本文将深入探讨矩阵的合同定义及其相关概念,对其进行全面、详细、完整的分析。

二、合同定义的概念2.1 矩阵的合同关系合同是一种等价关系,对于两个矩阵A和B,如果存在一个可逆矩阵P,使得A = PBP^(-1),则称A与B合同。

合同关系是一种等价关系,具有自反性、对称性和传递性。

即对于任意矩阵A,有A与自身合同;若A与B合同,则B与A合同;若A 与B合同,B与C合同,则A与C合同。

2.2 合同关系的性质假设A与B为n阶方阵,则合同关系具有以下性质: - 矩阵的合同关系是一种等价关系。

- 对矩阵的运算保持合同关系,即若A与B合同,则cA与cB合同,A+B 与B+C合同。

- 矩阵的合同关系保持行列式的值相等,即若A与B合同,则|A| = |B|。

- 矩阵的合同关系保持矩阵的秩不变,即若A与B合同,则rank(A) = rank(B)。

三、合同关系的应用3.1 相似矩阵相似矩阵是合同关系的一种特殊情形,当可逆矩阵P为对角矩阵时,矩阵A与B相似。

相似矩阵具有一些重要的性质,如有相同的特征值、迹、行列式等。

相似矩阵的概念在线性代数中有着广泛的应用。

3.2 矩阵的标准型对于一个合同类中的矩阵,可以通过合同变换将其变换为一种标准形式,这种标准形式称为矩阵的标准型。

矩阵的标准型可以提取出矩阵的重要特征,便于进一步研究和应用。

常见的矩阵标准型有Jordan标准型和Rational标准型等。

3.3 矩阵的相似不变量矩阵的相似不变量是指在矩阵相似变换下不变的性质。

相似不变量可以通过合同变换求得,这些不变量对于描述矩阵的特征和性质具有重要意义。

例如,矩阵的迹、行列式、秩等都是矩阵的相似不变量。

四、合同关系与线性变换矩阵的合同关系与线性变换之间存在密切的联系。

矩阵合同条件

矩阵合同条件

矩阵合同条件矩阵的合同(congruent)是指两个矩阵之间存在某种线性变换,使得它们具有相同的二次型。

设A和B是n阶方阵,则称A与B是合同的,记作A∼B,如果存在非奇异矩阵P,使得A=P^TBP。

其中“∼”表示合同的关系,P^T表示矩阵P的转置。

矩阵的合同关系具有如下性质:1. 反射性:对于任何n阶方阵A,有A∼A。

这是因为可以取P=E,即单位矩阵。

2. 对称性:如果A∼B,则B∼A。

3. 传递性:如果A∼B,B∼C,则A∼C。

根据合同的定义,可以得出合同矩阵具有相同的秩、迹、特征值和特征多项式。

具体来说:1. 秩:合同矩阵具有相同的秩。

证明如下:设A∼B,则存在非奇异矩阵P,使得A=P^TBP。

由于P是非奇异矩阵,所以行空间和列空间都不变,而秩是行空间和列空间的维数,因此A和B的秩相等。

2. 迹:合同矩阵具有相同的迹。

证明如下:设A∼B,则存在非奇异矩阵P,使得A=P^TBP。

由于迹是主对角线元素之和,所以迹的值不会因为变换而改变。

3. 特征值:合同矩阵具有相同的特征值。

证明如下:设A∼B,则存在非奇异矩阵P,使得A=P^TBP。

设λ是A的特征值,x是对应的特征向量,则有Ax=λx,等式两边同时左乘P^T,得到P^TAP(P^Tx)=λ(P^Tx),记P^Tx=y,则有(By=λy),即B具有特征值λ且对应的特征向量y。

所以A和B具有相同的特征值。

4. 特征多项式:合同矩阵具有相同的特征多项式。

特征多项式是通过特征值求得的,上面已经证明了合同矩阵具有相同的特征值,所以它们的特征多项式也相同。

总结起来,合同矩阵在矩阵性质上具有很多相同的特点,比如秩、迹、特征值和特征多项式等。

这使得合同矩阵在矩阵理论和应用中有着重要的地位,例如在二次型的正定性、相似变换中的对角化等方面的应用。

同时,在实际问题中,如果我们能够找到合同变换,可以通过变换将一个矩阵转化为另一个具有更简单特性的矩阵,从而更好地研究和处理问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵的合同变换摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。

在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。

关键词:矩阵 秩 合同 对角化定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ≅定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B =那么就说,在数域F 上B 与A 合同。

以上三个定义,都具有自反性、传逆性、对称性、 性。

定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12m P Q Q Q =。

此时711T TT m n P Q Q Q -=边为一系列初等矩阵的乘积若111T T TT mn m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。

所以A B ≅,从而知合同变换是等价变换。

定理2:合同变换与相似变换,不改变矩阵的秩证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1AB B P AP -=1||det ||del I B I P AP λλ--=-又因为I λ为对称矩阵所以11det ||||||I P AP P I A P λλ---=- 1||||||P I A P λ-=-||I A λ=-注①合同不一定有相同特征多项式定理4:如果A 与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12,n λλλ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵,,Q P 使得112[]Q AQ λλ-=11[]n P BP λλ-=从而有11Q AQ P BP--=11PQ AQP B -=由11Q Q E PP E --==从而有1111PQ QP PEP PP E ----=== 从而111()PQ QP ---=又由于1111()()()QP QP T QP P TQT ----= 1()T T QP P TQ -= T QQ = 1QQ -=E =1QP -∴为正交矩阵所以A B 且A B ≅定时5:两合同矩阵,若即PTAP B =,若A 为对称矩阵,则B 为对称阵,而两相似矩阵则不一定有些性质证明:A B ≅即T P AP B =,若对称阵,则T A A =()T T T B P AP =T T P A P =T P AP = B =所以B 边为对称阵[注]:相似矩阵对此结论不具有一般性,它在什么情况下成立呢?引理6:对称矩阵相似于对角阵⇔A 的每一个特征根λ有秩||I A n s λ-=-,S 为λ的重数.证明:任给对称的n 阶矩阵A 一个特征根λ,以其重数以秩||I A r λ-=,则||r n s n r s I A λ=-⇔-=⇔-12000n x x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,线性无关的解向量个数为n r -个,即5个又因属不同特征根的特征向量线性无关⇔n 阶对称阵A 有n 个线性无关的特征向量 ⇔n 阶对称阵可对角化从定理5,引理6中我们发现了合同在应用中的侧重点, 如对二次型应用例 求一非线性替换,把二次型123122313(,,)262f x x x x x x x x x =-+二次型`23(,,)f x x x 矩阵为011103130A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦对A 相同列与行初等变换,对矩阵E ,施行列初等变换212103230A -⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦→200020006⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦100111110111001101E ⎡⎤⎡⎤⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦112233113111001x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦可把二次型化为标准型222123123(,,)226f x x x y y y =-+解法(2)212103230A -⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦210102022⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦2001022022⎡⎤⎢⎥⎢⎥→--⎢⎥⎢⎥--⎣⎦2001002006⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎣⎦此时2221231231(,,)262f x x x z z z =-+ 此时非线性退化替换为11223311321112001x z x z x z ⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦发现在注[1]:任意对称阵合同的对角阵及其变换阵不是唯一确定的特性1:在合同变换中具有变换和结果的多样性[注]:在对角阵上元素相等及其它元素元素边相等情况下又有哪些性质呢? 例3.用可逆性变换化二次型222123123123123(,,)(2)(2)(2)f x x x x x x x x x x x x =-+++-+++-解:222112132233:666666f x x x x x x x x x --+-+对二次型矩阵为633363336A --⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥⎣⎦1006006000109996330000002223639900033601221100111121010102210101010201001001A E ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎥⎢⎥---⎢⎥⎢⎥=→→→⎥⎢⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎥⎣⎦⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢⎣⎦⎣⎦⎣⎦E B ⎡⎤=⎢⎥⎣⎦⎥⎥⎥标准形2212f y y =+,则11223310101x y x y x y ⎤⎥⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦PTA B =[注]当P 改变两行的位置交换后,发现00016 3 310003631010336000001111⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤⎡⎤⎥⎥⎢⎥⎢⎥--=⎥⎥⎢⎥⎢⎥⎥⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦定理2:在A 为对角线上元素相等,其余元素也相等,则若有T P AP B =,则调整P 的任意两行,对角阵形式不变。

证明:设初等变换的对调变换矩阵为J ,显然T T T J J E J AJ JAJ A ===于是有()()()()()()t T T T T T T T B P AP P EAEP P J J A J J P JP JA JP JP A JP =====而P 与JP 相比仅是行的排列顺序不同, 因此任意调整P 的行,所得对角阵相同。

[注]以上为特殊条件下成立,如果在一般情况下呢?例4.求实对称矩阵220212020A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦求可逆阵P 使得T P AP 为对角阵 322121322222020020212012010020020004100110112010010012001001001c c c c r r r r A E -++--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤=−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 1112400112010001002T P P AP BB -⎡⎤⎡⎤⎢⎥⎢⎥=-==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦121121100P -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦我们得到11TP AP B = 定理7:设,T P AP B A = 对称矩阵,B 为对角矩阵,若要调换B 对角线上任意两个元素的位置得到1B ,则只要调控B 中对左的两列,可得到P ,使得11TP AP B =,即P 的列与B 中元素的对应性。

证明:初等调换矩阵为J ,显然T J J =1111()()T T T T B J BJ J P APJ PJ A PJ P AP ====P ∴与1P 相比,只是列的排列顺序发生了改变 P ∴的列与B 的对角线上元素具有对应性自己写例定理8:如果对角线上的元素分别扩大22212,,n C C C -得2B ,则不要将P 中对应的对应角线元素扩大11C ,即可得到2P 使得222T P AP B =证明:设初等变换的倍乘变换矩阵为2J (2J 对角线上第J 个元素1C )形1221C J C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则有22222()T T B J BJ J J ==2222211()T T T TB J P PJ PJ J APJ P AP ===2B ∴中第J 个元素为B 的21C 倍而22P PJ =,且其2P 中对角线J 个元素是P 中对角线元素CJ 倍。

例:已知对称矩阵1211211311311310A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥--⎣⎦求可逆矩阵P ,使T P AP 且对角形式解10111001031103111131012211101120A --⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥--⎢⎥⎢⎥----⎣⎦⎣⎦1000100010000301030003117770001220003330121700030113⎡⎤⎡⎤⎢⎥⎡⎤--⎢⎥⎢⎥-⎢⎥⎢⎥---⎢⎥⎢⎥→→→⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦---⎢⎥⎣⎦⎢⎥⎣⎦对单位阵E 进行相应列初等变换得11223101030011001E P ⎡⎤--⎢⎥⎢⎥⎢⎥-→=⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦则有1313733T P AP ⎡⎤⎢⎥-⎢⎥==⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦ 141111B E ⎡⎤⎢⎥-⎢⎥==⎢⎥⎢⎥⎣⎦则此时有111223100300100P ⎡⎤--⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎢⎢⎣得111T P AP B = 综上所述合同变换不仅与相似变换有着某千丝万缕的联系,而且其本身也有着变换矩阵多样多样,和结果的不确性,在对其特 性与性质的联系中带来许多解题更多思路与方法。

主要参考文献[1]北大数学系,高等代数第二版[2]上海交大线性代数编写。

线性代数(第三版)[M] [3]张禾瑞 高等代数[M][4]付立志《对称矩阵对角化相似变换模型》 [5]王晓玲《矩阵三种关系问联系》[6] Brickell EF A Few Results in message Autheutication congress Numerantium 1984 43 141-154矩阵的合同变换及性质定义:设A ,B 是数域F 上两个阶矩阵,如果存在一个阶可逆矩阵P 使得T B P AP =成立,那么 B 与A 合同特性:合同变换具有模型化,程序化的简便性。

相关文档
最新文档