矩阵的秩变换、相似变换与合同变换的联系

合集下载

矩阵相似与合同

矩阵相似与合同

矩阵相似与合同引言在线性代数中,矩阵是一个重要概念,它在各个领域都有广泛的应用。

在研究矩阵时,我们经常会遇到矩阵相似和矩阵合同这两个概念。

本文将介绍矩阵相似和矩阵合同的定义、性质和应用。

矩阵相似矩阵相似是一种关系,用来描述两个矩阵之间的某种变换关系。

两个矩阵相似,意味着它们可以通过一个相似变换相互转化。

具体来说,对于给定的两个n阶矩阵A和B,如果存在一个可逆矩阵P,使得P-1AP = B,则称矩阵A和B相似。

相似关系具有以下性质:1.相似关系是一种等价关系,即自反性、对称性和传递性成立。

2.相似矩阵具有相同的特征值。

3.相似矩阵具有相同的秩、行列式、迹等性质。

矩阵相似在实际应用中具有重要意义。

例如,在线性代数中,我们经常需要对矩阵进行对角化处理,而矩阵相似关系可以帮助我们找到相似矩阵来简化计算。

矩阵合同矩阵合同是另一种矩阵之间的关系。

与矩阵相似不同,矩阵合同是通过正交变换来定义的。

对于给定的两个n阶矩阵A和B,如果存在一个正交矩阵P,使得PTAP = B,则称矩阵A和B合同。

合同关系具有以下性质:1.合同关系是一种等价关系,即自反性、对称性和传递性成立。

2.合同矩阵具有相同的正惯性指数和负惯性指数。

矩阵合同在实际应用中也具有重要意义。

例如,在数值计算中,我们经常需要将矩阵进行对称化处理,而矩阵合同关系可以帮助我们找到合同矩阵来简化计算。

相似与合同的关系矩阵相似和矩阵合同之间存在着一定的联系。

具体来说,如果两个矩阵相似,则它们一定是合同的。

这是因为如果矩阵A和B相似,即存在可逆矩阵P,使得P-1AP = B,那么我们可以取正交矩阵Q等于P-1,则有QTAQ = B,即A和B是合同的。

然而,矩阵合同并不一定意味着矩阵相似。

换句话说,合同关系是相似关系的一个子集。

这是因为矩阵相似要求相似变换是可逆的,而矩阵合同要求正交变换是可逆的。

正交矩阵是一类特殊的矩阵,其逆矩阵等于其转置矩阵,因此正交变换一定是可逆的。

矩阵等价、相似、合同的区别与联系

矩阵等价、相似、合同的区别与联系

商贸教育现代商贸工业2021年第4期138㊀㊀矩阵等价、相似、合同的区别与联系李伯忍(东莞理工学院计算机科学与技术学院,广东东莞523000)摘㊀要:矩阵的等价㊁相似与合同在线性代数课程教学中占据非常关键的地位,但是学生学习过程中对这一部分的内容往往很难准确把握.为此,本文针对它们之间的区别和联系进行探讨,为学生对这些概念的理解提供一定的帮助.关键词:等价;相似;合同中图分类号:G 4㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀d o i :10.19311/j .c n k i .1672G3198.2021.04.065㊀㊀«线性代数»是大学数学中的一门非常重要的必修基础课程.学好这一门课程,不仅有利于对学生的理解和逻辑推理能力的培养与训练,而且对其后续专业课程的学习也发挥着极其重要的支撑作用.本文将就线性代数课程矩阵之间的非常重要的关系:矩阵的等价㊁相似与合同进行讨论,着重探讨三者之间的区别与联系,为学生对这些概念的理解提供一定的支持.1㊀基本概念矩阵等价定义:假定矩阵A 和B 为同型矩阵,若存在可逆的矩阵P ,Q ,满足P A Q =B ,那么称A 和B 是等价的.矩阵相似定义:假定矩阵A 和B 均为n 阶方阵,若存在可逆的矩阵P ,满足P -1A P =B ,那么称A 和B 是相似的.矩阵合同定义:假定矩阵A 和B 均为n 阶方阵,若存在可逆的矩阵P ,满足P TA P =B ,那么称A 和B 是合同的.2㊀区别和联系(1)矩阵的等价只是要求矩阵A 和B 是具有相同的行和列的矩阵,不要求必须是方形矩阵,但是相似和合同则要求矩阵A 和B 必定是同阶的方形矩阵.(2)等价的矩阵㊁相似的矩阵以及合同的矩阵均是同可逆或者同为不可逆.(3)等价的矩阵㊁相似的矩阵以及合同的矩阵均满足反身性㊁对称性和传递性.(4)矩阵的等价㊁相似以及矩阵合同实际上均是矩阵和矩阵之间进行初等变换,只是初等变换的要求有些区别.详细的说明展示如下:依据可逆矩阵的充要条件,n 阶方形矩阵阵A 是可逆的⇔矩阵A 等于一系列初等矩阵的乘积.故矩阵A 和B 等价的条件P A Q =B 可转化成:存在m 阶初等矩阵P 1,P 2, P s 和n 阶初等矩阵Q 1,Q 2, Q t ,使得P s P 2P 1A Q 1Q 2 Q t =B .相似的条件P -1A P =B 可转化成:存在n 阶初等矩阵P 1,P 2, P s 使得P s -1 P 2-1P 1-1A P 1P 2 P s =B .合同的条件P T A P =B 可转化成:存在n 阶初等矩阵P 1,P 2, P s 使得P s T P 2T P 1TA P 1P 2 P s =B .可见等价变换是对矩阵作一系列的有限次初等行或列变换;相似变换和合同变换也是作一系列的有限次初等行或列变换,但行变换的次数与列变换的次数是相同的,而且矩阵行变换与矩阵列变换的变换方式是相对应的;相似变换要求作一次矩阵列变换,相应的也要求作一次矩阵逆行变换;合同变换要求作一次矩阵列变换,也相应的作一次相同的矩阵行变换.3㊀文氏关系图图1㊀矩阵等价㊁相似㊁合同的区别与联系4㊀如何判定矩阵与矩阵之间的相互关系在判定矩阵的等价关系㊁相似以及合同关系时,满足矩阵等价㊁矩阵相似或者矩阵合同的两个矩阵的秩都必定相等,再适当的利用特征值与正负惯性指数来判定矩阵相似或者矩阵合同.(1)矩阵A 与B 等价⇔R (A )=R (B ).(2)判定矩阵相似的四个必要条件:①A 与B 的秩相等;②A 与B 的特征值相同;③A 与B 的特征多项式相等;④A 与B 的行列式相等.假定满足上述的必要性,我们还不可以判定矩阵是相似的,如何判别两个一般矩阵的相似,一般考试大纲不做要求,但如果矩阵A 和B 均与一个对角阵相似,那么可由相似矩阵满足传递性,可以知道A 和B 是相似的.(3)对实对称矩阵,有一些非常重要的结论,可用于判断矩阵是相似的或者是合同的:①A 与B 均是实对称矩阵并且是相似的⇔矩阵A 和B 的特征值相同;②A 与B 均是实对称矩阵并且是合同的⇔二次型x T A x 和x T B x 的正负惯性指数是相同的;③A 与B 均是实对称矩阵并且是相似的⇒A 与B 必定是合同的.矩阵的合同主要应用于二次型,故判定矩阵是否合同的前提主要是在实对称矩阵的前提下进行,所以实对称矩阵A 和B 是否合同,只需要判定矩阵A 与B 的特征值符号是否一样;矩阵相似是指两个矩阵的特征值相同;矩阵等价是指两个矩阵的秩相等.5㊀矩阵的等价㊁相似以及合同关系,有下面的几个结论(1)矩阵A 和B 是相似的,则矩阵A 和B 一定是等价的,反之不一定成立.(2)矩阵A 和B 是合同的,则矩阵A 和B 一定是等价的,反之不一定成立.(3)若矩阵A 和B 均是实对称矩阵且相似,则矩阵A 和B 一定是合同的,反之则不一定成立.参考文献[1]同济大学数学系.工程数学线性代数[M ].北京:高等教育出版社,2016.[2]周勇.线性代数[M ].北京:北京大学出版社,2018.[3]孙瑶,杜润梅.线性代数中两个矩阵相似㊁合同㊁等价的关系[J ].教育,2015,(46):251.。

矩阵合同变换

矩阵合同变换

矩阵的合同变换摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。

在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。

关键词:矩阵 秩 合同 对角化定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ≅定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B =那么就说,在数域F 上B 与A 合同。

以上三个定义,都具有自反性、传逆性、对称性、 性。

定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12m P Q Q Q =。

此时711T T T m n P Q Q Q -=边为一系列初等矩阵的乘积若111T T TT mn m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。

所以A B ≅,从而知合同变换是等价变换。

定理2:合同变换与相似变换,不改变矩阵的秩证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1AB B P AP -=1||det ||del I B I P AP λλ--=-又因为I λ为对称矩阵所以11det ||||||I P AP P I A P λλ---=-1||||||P I A P λ-=-||I A λ=-注①合同不一定有相同特征多项式定理4:如果A 与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12,n λλλ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵,,Q P 使得112[]Q AQ λλ-=11[]n P BP λλ-=从而有11Q AQ P BP --=11PQ AQP B -=由11Q Q E PP E --==从而有1111PQ QP PEP PP E ----=== 从而111()PQ QP ---=又由于1111()()()QP QP T QP P TQT ----= 1()T T QP P TQ -= T QQ =1QQ -=E =1QP -∴为正交矩阵所以A B 且A B ≅定时5:两合同矩阵,若即PTAP B =,若A 为对称矩阵,则B 为对称阵,而两相似矩阵则不一定有些性质证明:A B ≅即T P AP B =,若对称阵,则T A A =()T T T B P AP =T T P A P =T P AP = B =所以B 边为对称阵[注]:相似矩阵对此结论不具有一般性,它在什么情况下成立呢?引理6:对称矩阵相似于对角阵⇔A 的每一个特征根λ有秩||I A n s λ-=-,S 为λ的重数.证明:任给对称的n 阶矩阵A 一个特征根λ,以其重数以秩||I A r λ-=,则||r n s n r s I A λ=-⇔-=⇔-12000n x x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,线性无关的解向量个数为n r -个,即5个又因属不同特征根的特征向量线性无关⇔n 阶对称阵A 有n 个线性无关的特征向量 ⇔n 阶对称阵可对角化从定理5,引理6中我们发现了合同在应用中的侧重点, 如对二次型应用例 求一非线性替换,把二次型123122313(,,)262f x x x x x x x x x =-+二次型`23(,,)f x x x 矩阵为011103130A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦对A 相同列与行初等变换,对矩阵E ,施行列初等变换212103230A -⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦→200020006⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦100111110111001101E ⎡⎤⎡⎤⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦112233113111001x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 可把二次型化为标准型222123123(,,)226f x x x y y y =-+解法(2)212103230A -⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦210102022⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦2001022022⎡⎤⎢⎥⎢⎥→--⎢⎥⎢⎥--⎣⎦2001002006⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎣⎦此时2221231231(,,)262f x x x z z z =-+ 此时非线性退化替换为11223311321112001x z x z x z ⎡⎤-⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦发现在注[1]:任意对称阵合同的对角阵及其变换阵不是唯一确定的 特性1:在合同变换中具有变换和结果的多样性[注]:在对角阵上元素相等及其它元素元素边相等情况下又有哪些性质呢? 例3.用可逆性变换化二次型222123123123123(,,)(2)(2)(2)f x x x x x x x x x x x x =-+++-+++-解:222112132233:666666f x x x x x x x x x --+-+对二次型矩阵为633363336A --⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥⎣⎦1006006000109996330000002223639900033601221100111121010102210100101021001001A E ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎥⎢⎥---⎢⎥⎢⎥=→→→⎥⎢⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎥⎣⎦⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢⎣⎦⎣⎦⎣⎦E B ⎡⎤=⎢⎥⎣⎦⎥⎥⎥标准形2212f y y =+,则11223310101x y x y x y ⎤⎥⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦PTA B =[注]当P 改变两行的位置交换后,发现00016 3 310003631010336000001111⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎡⎤⎡⎤⎥⎥⎢⎥⎢⎥--=⎥⎥⎢⎥⎢⎥⎥⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦定理2:在A 为对角线上元素相等,其余元素也相等,则若有T P AP B =,则调整P 的任意两行,对角阵形式不变。

矩阵的合同变换

矩阵的合同变换

矩阵的合同变换介绍矩阵的合同变换是线性代数中的一个重要概念,在实际应用中有着广泛的应用。

本文将从理论基础、矩阵相似性和合同变换的性质等方面进行全面、详细、完整且深入地探讨矩阵的合同变换。

理论基础1. 矩阵的定义在线性代数中,矩阵是由数按照矩形排列的矩形阵列。

一个m×n 矩阵是由 m 行n 列的矩形排列数字所组成的矩阵,其中每一个数字叫作矩阵的元素。

2. 矩阵的相似性矩阵的相似性是矩阵理论中的重要概念。

对于两个n×n 矩阵 A 和 B,如果存在一个n×n 矩阵 P 使得 PAP^-1 = B,那么称 A 和 B 是相似的,P 是相似变换矩阵。

•相似变换矩阵 P 是可逆矩阵,即存在矩阵 P^-1,使得 P^-1 P = PP^-1 = I,其中 I 是单位矩阵。

•相似的矩阵具有相同的特征值和特征向量。

3. 矩阵的合同变换矩阵的合同变换是另一个重要的矩阵变换。

对于两个n×n 矩阵 A 和 B,如果存在一个可逆矩阵 P 使得 P^TAP = B,那么称 A 和 B 是合同的,P 是合同变换矩阵。

合同变换和相似变换的不同之处在于,合同变换是在矩阵 A 的转置上进行的。

矩阵的合同变换的性质矩阵的合同变换具有一些重要的性质,下面将对这些性质进行详细介绍:1. 合同变换的保持特征值的性质如果 A 和 B 是合同矩阵,即存在一个可逆矩阵 P 使得 P^TAP = B,则 A 和 B具有相同的特征值。

这个性质与矩阵的相似性保持特征值的性质是相似的。

2. 合同变换的保持矩阵的秩的性质如果 A 和 B 是合同矩阵,即存在一个可逆矩阵 P 使得 P^TAP = B,则 A 和 B的秩相等。

这一性质保证了合同变换不改变矩阵的秩。

3. 合同变换的保持正定性和半正定性的性质如果 A 和 B 是合同矩阵,即存在一个可逆矩阵 P 使得 P^TAP = B,则 A 和 B的正定性和半正定性保持不变。

矩阵等价相似合同的关系

矩阵等价相似合同的关系

矩阵等价相似合同的关系等价指的是两个矩阵的秩一样。

合同指的是两个矩阵的正定性一样,也就是说,两个矩阵对应的特征值符号一样。

相似是指两个矩阵特征值一样。

相似必等价,合同必等价。

1.等价矩阵:同型矩阵A,B的秩相等,那么A,B等价,即是随意两个秩相等的同型矩阵通过初等变换都可以相互转化相等与另一个。

2.相似矩阵的定义是:存在可逆矩阵P,使得P--1AP=B,则称B是A的相似矩阵。

原因:A与B相似有一个必要条件就是A与B的特征值相同,即|B-aE|=|A-aE|所以|B-aE|=|P--1||A-aE||P|,所以|B-aE|=|P--1AP-aP--1EP|,即|B-aE|=|P--1AP-aE|所以B=P--1AP3.合同矩阵定义:若存在可逆矩阵C,使得C T AC=B,即A与B合同。

对于合同矩阵要从二次型说起,二次型为:f=X T AX。

可通过X=CY变换,即把X=CY带入,于是f=(CY)T A(CY)=Y T[C T AC]Y,其中令C T AC=B,即A与B合同。

首先相似不一定合同,合同也不一定相似,但是如果相似或者合同则必然等价,而等价却不能反推出相似或者合同,原因是前者只能是对方阵,而后者则只需要同型。

相似合同和等价都具有反身性。

对称性和传递性,合同和相似能推出等价是因为他们的秩相等。

而对于矩阵A只有当他是实对称矩阵时,存在C T AC=C--1AC,即这个时候矩阵合同和相似可以等价,这个时候C是正交矩阵,然而当C 不是正交矩阵时,则只能满足其中一个条件,或者说如果P--1AP=B,即A与B相似,但如果P不是正交矩阵,则不能称A与B合同,如果P T AP=B,即A与B合同,但是PP T≠I,则一样不能推出相似。

相似必合同,合同必等价。

等价就是矩阵拥有相同的r。

矩阵合同,C T AC=B,矩阵乘以可逆矩阵他的r不变,r(B)=r(C T AC)=r(AC)=r(A),等价。

同理两矩阵相似一定等价。

矩阵的等价,规定合同,相似的联系与区别

矩阵的等价,规定合同,相似的联系与区别
定理9如果 与 都是 阶实对称矩阵,且有相同的特征根.则 与 既相似又合同.
证明:设 与 的特征根均为 因为 与 阶实对称矩阵,则一定存在一个 阶正交矩阵Q使得 同理,一定能找到一个正交矩阵 使得 从而有
将上式两边左乘 和右乘 ,得
由于 , ,
有 ,所以, 是正交矩阵,由定理8知 与 相似.
定理10若 阶矩阵 与 中只要有一个正交矩阵,则 与 相似且合同.
反过来,对于矩阵 , 等价,但是 与 并不相似,即等价矩阵未必相似.
定理6对于 阶方阵 ,若存在 阶可逆矩阵 使 ,(即 与 等价),且 ( 为 阶单位矩阵),则 与 相似.
证明:设对于 阶方阵 与 ,若存在 阶可逆矩阵 ,使 ,即 与 等价.又知 ,若记 ,那么 ,也即 ,则矩阵 也相似.
定理7合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵.
(1) 矩阵 与 不仅为同型矩阵,而且是方阵.
(2) 存在数域 上的 阶矩阵 ,
性质2
(1)反身性:任意矩阵 都与自身合同.
(2)对称性:如果 与 合同,那么 也与 合同.
(3)传递性:如果 与 合同, 又与 合同,那么 与 合同.
因此矩阵的合同关系也是等价关系,而且由定义可以直接推得:合同矩阵的秩等.
(7) 相似矩阵有相同的秩,而且,如果 为满秩矩阵,那么 .
即满秩矩阵如果相似,那么它们的逆矩阵也相似.
(8)相似的矩阵有相同的行列式;
因为如果 ,则有:
(9)相似的矩阵或者都可逆,或者都不可逆;并且当它们可逆时,它们的逆矩阵相似;
设 ,若 可逆,则 从而 可逆.且 与 相似.
若 不可逆,则 不可逆,即 也不可逆.
证明:不妨设 是正交矩阵,则 可逆,取 ,有 ,则 与 相似,又知 是正交阵,所以 与 既相似又合同.

判断两矩阵合同的方法(一)

判断两矩阵合同的方法(一)

判断两矩阵合同的方法(一)判断两矩阵合同介绍在矩阵运算中,判断两个矩阵是否合同(congruent)是一种常见的问题。

合同矩阵是指两个矩阵在尺寸和形状上完全相同,并且存在一种线性变换使得它们完全相等。

本文将介绍几种常见的方法来判断两个矩阵是否合同。

方法一:矩阵的秩通过计算两个矩阵的秩来判断它们是否合同。

如果两个矩阵的秩相等,则它们可能是合同的。

然而,这种方法并不一定准确,因为很多合同矩阵的秩并不相等。

方法二:特征值和特征向量特征值和特征向量也可以用来判断两个矩阵是否合同。

对于两个合同矩阵,它们具有相同的特征值和对应的特征向量。

因此,我们可以通过计算两个矩阵的特征值和特征向量来判断它们是否合同。

方法三:奇异值分解奇异值分解(singular value decomposition)是一种常用的矩阵分解方法,也可以用来判断两个矩阵是否合同。

对于两个合同矩阵,它们具有相同的奇异值。

因此,我们可以通过计算两个矩阵的奇异值来判断它们是否合同。

方法四:正交相似变换正交相似变换是一种保持向量长度和角度不变的线性变换。

对于两个合同矩阵,它们之间存在一种正交相似变换,使得它们完全相等。

因此,我们可以通过计算两个矩阵的正交相似变换来判断它们是否合同。

方法五:矩阵的迹和行列式对于两个合同矩阵,它们具有相同的迹(trace)和行列式(determinant)。

因此,我们可以通过计算两个矩阵的迹和行列式来判断它们是否合同。

方法六:相似矩阵相似矩阵是指通过相似变换(similarity transformation)相互转化的矩阵。

对于两个合同矩阵,它们是相似矩阵。

因此,我们可以通过判断两个矩阵是否相似来判断它们是否合同。

结论判断两个矩阵是否合同是一个重要的问题,在数学和工程领域中有广泛的应用。

本文介绍了几种常见的方法来判断两个矩阵是否合同,包括矩阵的秩、特征值和特征向量、奇异值分解、正交相似变换、矩阵的迹和行列式,以及相似矩阵。

矩阵合同和相似

矩阵合同和相似

矩阵合同和相似引言矩阵是线性代数中的重要概念,广泛应用于各个领域。

在线性代数中,矩阵合同和相似是两个常见的关系,它们在矩阵的性质和应用中起到了关键作用。

本文将对矩阵合同和相似进行介绍和讨论。

矩阵合同矩阵合同是指两个矩阵具有相同的秩、特征多项式以及特征值的多重性。

具体而言,设A和B是n阶矩阵,如果存在非奇异矩阵P,使得PTAP = B,则称矩阵A和B是合同的。

矩阵合同的性质矩阵合同具有以下性质: - 对于任意n阶矩阵,矩阵与自身合同。

- 若矩阵A与矩阵B合同,则矩阵B与矩阵A合同。

- 若矩阵A与矩阵B合同,且矩阵B与矩阵C合同,则矩阵A与矩阵C合同。

矩阵合同的应用矩阵合同在实际应用中具有广泛的应用,例如: - 物体的正交变换:在三维几何中,通过正交矩阵对物体进行旋转、平移和缩放等变换。

这些变换可以表示为合同关系,通过合同矩阵可以实现物体的坐标变换。

- 矩阵的相似性:矩阵合同是矩阵相似性的一种特殊情况。

在线性代数中,矩阵相似是一种重要的关系,它描述了矩阵在不同基下的表示和性质。

矩阵相似矩阵相似是指两个矩阵具有相同的特征值。

具体而言,设A和B是n阶矩阵,如果存在非奇异矩阵P,使得P-1AP = B,则称矩阵A和B是相似的。

矩阵相似的性质矩阵相似具有以下性质: - 对于任意n阶矩阵,矩阵与自身相似。

- 若矩阵A与矩阵B相似,则矩阵B与矩阵A相似。

- 若矩阵A与矩阵B相似,且矩阵B与矩阵C相似,则矩阵A与矩阵C相似。

矩阵相似的应用矩阵相似在实际应用中具有广泛的应用,例如: - 矩阵对角化:通过相似变换将矩阵对角化,可以简化矩阵的运算和求解。

对角化后的矩阵具有简洁的形式,更容易研究和分析。

- 矩阵的特征值问题:矩阵相似性与特征值问题密切相关。

通过矩阵相似变换,可以将复杂的特征值问题转化为简化的形式,从而更容易求解。

结论矩阵合同和相似是矩阵理论中的两个重要概念,它们在矩阵的性质和应用中起到了关键作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙源期刊网
矩阵的秩变换、相似变换与合同变换的联系作者:田洋
来源:《计算机光盘软件与应用》2012年第19期
摘要:本文应用理论研究的方法,将矩阵的秩变换、相似变换以及合同变换转换到线性变换当中去,讨论了矩阵的这三种变换之间的联系与区别,并给出证明,对矩阵的秩变换、相似变换以及合同变换的异同点做出一个综述性的描述。

关键词:初等变换;相似变换;合同变换;线性变换
中图分类号:O151.21 文献标识码:A 文章编号:1007-9599 (2012) 19-0000-02
1 绪论
矩阵的秩变换、相似变换以及合同变换是高等代数中的基本概念,也是解决某些问题的重要工具,有着十分广泛的应用领域.而矩阵的每一种变换都对应着一个线性变换,因此,在讨
论矩阵的这三种变换时,将其引入到线性变换当中去,进一步分析讨论三种变换之间的联系与区别,加深对线性变换知识的理解与掌握.本文采取理论研究的方法,将秩变换的问题归结到
初等变换上,并对三种变换之间的联系与区别做一个综述性的描述。

2 矩阵的初等变换
定义1 矩阵的行(列)初等变换即对矩阵施行下列变换:
(1)交换矩阵的两列(行);(2)用一个不等于零的数乘矩阵的某一列(行),也就是用一个不等于零的数乘矩阵的某一列(行)的每个元素;(3)用某一数乘矩阵的某一列(行)后加到另一列(行),也就是用某一数乘矩阵的某一列(行)的每个元素后加到另一列(行)的对应元素上。

定理1 初等变换不改变矩阵的秩。

证明:我们对一个事实先做出一个说明:如果对于一个矩阵实施某一种行或者列初等变
换而得到一个矩阵,那么对矩阵施行同一种初等变换又可以得到矩阵 .在这里我们给出一个命题,把行列式的某一列(行)的元素乘以同一个数后加到另一列(行)的对应元素上,行列式是不变的。

相关文档
最新文档