数学竞赛专题全套

合集下载

高中数学竞赛校本教材【全套共30讲】(原创Word版,含答案,278页)

高中数学竞赛校本教材【全套共30讲】(原创Word版,含答案,278页)

高中数学竞赛校本教材目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。

看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。

例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。

从简单情况考虑,就是一种以退为进的一种解题策略。

九年级数学竞赛专题全套

九年级数学竞赛专题全套

九年级数学竞赛专题 第一讲 因式分解一、选择题1.下列由左边到右边的变形中,其中是因式分解的是( )A .(2a+3)()2a-3)=4a 2-9;B .4m 2-9=(2m+3)(2m-3)C .m 2-16+3m=(m+4)(m-4)+3m;D .2x(y+z)-3(y+z)=2xy + 2xz – 3y – 3z2.下面各式的因式分解中,正确的是( )A .-7ab – 14 + 49aby = 7ab(1- 2x + 7y);B .)3(33111x y y x y x y x n m n m n m +-=+---+C .6)133)((2)(2)(2+--=---b a b a a b b a ;D .xy(x – y ) – x (y – x ) = x (x – y )(y – 1 )3.下面各式的因式分解中,正确的是( )A .)444221)(221()(81223b ab a b a b a b a ++++++-=+-B .)2)(2(4)(222222222xy y x xy y x y x y x -+++=-+C .22)1(4448-=--a a aD .))()(()()(22b a b a y x x y b y x a -+-=-+-4.下面各式的因式分解中,正确的是( )A .ab – a + b + 1 = (a – 1)(b + 1)B .4xy + 1 – 4)21)(21(22y x y x y x ---+=-C .3a – 3b + 3x – bx = (a – b )(3 – x )D .)21)(21(41422y x y x y x xy --++=--+-5.下列因式分解的变形中,正确的是( )A .))(1()1(22a x x a x a x --=++-B .)13)(12(61652++=++m m m m C .))(()(2222222b y a y b a y b a y ++=+⋅++D .)1)(4)(2)(1(8)3(2)3(222-+--=----x x x x x x x x二、填空题1.在代数式164)3(,)2(,144)1(2222++++-n n mn m x x 中是完全平方式的是__________。

全国数学能力竞赛试题及答案

全国数学能力竞赛试题及答案

全国数学能力竞赛试题及答案试题一:代数基础题目:解下列方程组:\[ \begin{cases}x + y = 5 \\2x - y = 1\end{cases} \]答案:将第一个方程乘以2得到 \( 2x + 2y = 10 \),然后将其与第二个方程相加,得到 \( 3x = 11 \),解得 \( x = \frac{11}{3} \)。

将 \( x \) 的值代入第一个方程,解得 \( y = 5 - \frac{11}{3} = \frac{4}{3} \)。

试题二:几何问题题目:在直角三角形ABC中,∠C=90°,AC=5,BC=12,求AB的长度。

答案:根据勾股定理,AB的长度可以通过以下公式计算:\[ AB = \sqrt{AC^2 + BC^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \]试题三:概率统计题目:一个袋子里有5个红球和3个蓝球,随机抽取2个球,求至少有1个红球的概率。

答案:首先计算没有红球的概率,即两个球都是蓝球的概率,为\( \frac{3}{8} \times \frac{2}{7} = \frac{6}{56} \)。

因此,至少有1个红球的概率为 \( 1 - \frac{6}{56} = \frac{50}{56} = \frac{25}{28} \)。

试题四:数列与级数题目:数列 \( \{a_n\} \) 满足 \( a_1 = 1 \) 且 \( a_{n+1} = 2a_n \),求 \( a_5 \) 的值。

答案:根据数列的递推关系,可以依次计算出:\[ a_2 = 2a_1 = 2 \]\[ a_3 = 2a_2 = 4 \]\[ a_4 = 2a_3 = 8 \]\[ a_5 = 2a_4 = 16 \]试题五:组合数学题目:从10个人中选出3个人组成一个委员会,求不同的委员会组合数。

大学数学竞赛讲义(全套)

大学数学竞赛讲义(全套)

大学数学竞赛讲义(全套)目录1. 引言2. 基础知识3. 解题技巧4. 常用公式和定理5. 典型例题分析6. 高级题目解析7. 经典题目选编8. 复与总结9. 参考资料引言本讲义旨在为大学数学竞赛的参与者提供全面且系统的资料,帮助他们更好地理解和应用数学知识,提高解题能力。

针对大学数学竞赛的特点,本讲义注重理论与实践相结合,从基础知识到高级题目的解析,包括了大量的典型例题和经典题目的选编。

基础知识这一部分主要介绍大学数学竞赛中常用的基础知识,包括数列与级数、函数与极限、微积分与微分方程等内容。

通过对基础知识的系统梳理和深入讲解,帮助读者打下扎实的数学基础。

解题技巧解题技巧是参加竞赛的重要因素之一。

本部分将介绍一些解题技巧和策略,包括快速推理、巧妙变形、逆向思维等手段,以帮助读者在竞赛中找到解题的突破口。

常用公式和定理在竞赛中,熟练掌握一些常用的公式和定理可以提高解题速度和准确性。

本部分将列举一些常用公式和定理,并给出简洁的证明,供读者参考和应用。

典型例题分析通过对一些典型例题的分析和解答,帮助读者更好地理解和掌握数学竞赛中的解题思路和技巧。

每个例题分析都将包括题目的背景、解题思路和详细的解答过程。

高级题目解析本部分将涉及一些较为复杂和难度较高的数学题目的解析。

这些题目通常考察更深入的数学理论和技巧,通过对高级题目的解析,读者可以提升自己的数学水平和解题能力。

经典题目选编在这一部分,我们将挑选一些经典的数学竞赛题目进行选编,并给出详细的解答和解题思路。

这些题目可以帮助读者更全面地了解和掌握数学竞赛中常见的题型和解题方法。

复与总结复和总结是巩固和提高知识的关键环节。

本部分将提供一些复和总结的方法和技巧,帮助读者全面回顾已学知识,并进行有效的复和巩固。

参考资料本讲义涵盖了大量的数学知识和解题技巧,但仍然无法穷尽数学竞赛的广度和深度。

推荐一些经典的参考资料,供读者进一步深入研究和研究。

以上为《大学数学竞赛讲义(全套)》的大致目录和简介。

2024年数学竞赛试题

2024年数学竞赛试题

2024年数学竞赛试题一、趣味数字部分1. 小明发现一个神奇的数字规律。

如果一个数除以3余2,除以5余3,除以7余2,这个数最小是多少呢?(提示:这可是古代就有的趣味数学问题哦,就像在数字的迷宫里找宝藏一样。

)2. 有一个四位数,它的各位数字之和是18,且千位数字是个位数字的2倍,百位数字比十位数字多1,这个四位数可能是多少呢?(想象你是一个数字侦探,要根据这些线索找出这个神秘的四位数。

)二、几何趣题1. 一个三角形的三条边分别为5厘米、12厘米和13厘米,现在以这个三角形的三条边为边长向外分别作三个正方形。

请问这三个正方形面积之和是多少平方厘米?(这个三角形可是很特别的哦,它就像一把神秘的钥匙,能打开计算正方形面积之和的大门。

)2. 有一个圆柱形容器,底面半径是5厘米,高是10厘米。

现在容器里装了一半的水,把一个底面半径是3厘米、高是8厘米的圆锥体完全浸入水中,水面会上升多少厘米呢?(就像圆锥体在水里做了一场有趣的“潜水表演”,让我们看看水面会因为它发生怎样的变化。

)三、生活中的数学1. 小王去超市买东西,他买了3袋薯片,每袋价格是5元;2瓶饮料,每瓶价格是4元;还买了1个蛋糕,价格是15元。

他给了收银员50元,收银员应该找给他多少钱呢?(这就像我们平时去购物一样,要算清楚自己的花费和找零哦。

)2. 学校组织植树活动,计划在一条长100米的小路两旁种树,每隔5米种一棵(两端都种)。

一共需要种多少棵树呢?(想象一下,我们要在这条小路上种上一排排绿色的小卫士。

)四、逻辑挑战1. 有A、B、C、D四个同学,他们分别来自不同的城市:北京、上海、广州和深圳。

A同学说:“我不是来自北京和上海。

”B同学说:“我不是来自广州。

”C同学说:“我不是来自深圳。

”D同学说:“我来自北京。

”那么,A、B、C三个同学分别来自哪里呢?(这就像是一场有趣的猜谜游戏,根据同学们的话来找出他们的家乡。

)2. 在一个神秘的岛上,住着两种人:诚实的人和说谎的人。

高数竞赛试题集

高数竞赛试题集

高等数学竞赛一、 填空题⒈ 若5)(cos sin lim0=--→b x ae xx x ,则a = ,b = .⒉ 设2(1)()lim 1n n xf x nx →∞-=+, 则()f x 的间断点为x = .⒊ 曲线y=lnx 上与直线1=+y x 垂直的切线方程为.⒋ 已知xx xe e f -=')(,且f (1) = 0, 则f (x ) = .⒌ 设函数()y x 由参数方程333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值 范围为 . ⒍ 设1ln arctan 22+-=xxxe e e y ,则==1x dx dy.⒎若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .⒏ 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则=-⎰221)1(dx x f . ⒐ 由定积分的定义知,和式极限=+∑=∞→nk n k n n122lim . ⒑1+∞=⎰ . 二、 单项选择题11.把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===0302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是 【 】(A)γβα,,. (B)βγα,,. (C) γαβ,,. (D) αγβ,,.12.设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得 【 】 (A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C )对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .13 . 设()(1)f x x x =-, 则 【 】(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点.(D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.14 .22lim ln (1)n nn→∞+于 【 】(A )221ln xdx ⎰. (B )212ln xdx ⎰. (C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰15 . 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. 【 】(A) (-1 , 0). (B) (0 , 1). (C) (1 , 2). (D) (2 , 3).16 . 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 【 】(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点. (D) g (x )在点x = 0处的连续性与a 的取值有关. 17 . 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是【 】(A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ).(B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.18 . 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则【 】(A) F (x )在x = 0点不连续.(B) F (x )在(-∞ , +∞)内连续,但在x = 0点不可导.(C) F (x )在(-∞ , +∞)内可导,且满足)()(x f x F ='.(D) F (x )在(-∞ , +∞)内可导,但不一定满足)()(x f x F ='.三、解答题19.求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.20.设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式;(Ⅱ)问k 为何值时, ()f x 在0x =处可导.21.设 f (x ),g (x )均在[a , b ]上连续,证明柯西不等式⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡≤⎥⎦⎤⎢⎣⎡⎰⎰⎰ba b a b a dx x g dx x f dxx g x f )()()()(22222.设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-.23曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值;(Ⅱ) ()lim ()t S t F t →+∞.24.设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤babadx x xg dx x xf )()(.25. 某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h表示千米/小时.高等数学竞赛试卷一、单项选择题1、若2lim()01x x ax b x →∞--=+,则(A )1,1a b == (B )1,1a b =-= (C ) 1,1a b ==- (D )1,1a b =-=-2、设(),0()(0),0f x x F x x f x ⎧≠⎪=⎨⎪=⎩ ,其中()f x 在0x =处可导且'(0)0f ≠,(0)0f =,则0x =是()F x 的(A ) 连续点 (B ) 第一类间断点 (C ) 第二类间断点 (D )以上都不是 3、设常数0k >,函数()ln xf x x k e =-+在(0,)+∞内零点的个数为 (A ) 0 (B ) 1 (C ) 2 (D ) 34、若在[0,1]上有(0)(0)0,(1)(1)0f g f g a ====>,且''()0f x >,''()0g x <,则110()I f x dx=⎰,120()I g x dx =⎰,130I ax dx =⎰的大小关系为(A ) 123I I I ≥≥ (B ) 231I I I ≥≥ (C ) 321I I I ≥≥ (D ) 213I I I ≥≥5、由平面图形0,0()a x b y f x ≤≤≤≤≤绕y 轴旋转所成的旋转体的体积为(A )2()b aV xf x dx π=⎰ (B ) 2()b aV f x dx π=⎰(C ) 2()b aV f x dx π=⎰ (D ) ()baV f x dx π=⎰6、(1,3,4)P -关于平面320x y z +-=的对称点是 (A ) (5,1,0)- (B )(5,1,0) (C )(5,1,0)-- (D )(5,1,0)-7、设D 为222x y R +≤,1D 是D 位于第一象限的部分,()f x 连续,则22()Df x y d σ+⎰⎰=(A )128()D f x d σ⎰⎰ (B )0 (C )22()R R RRdx f x y dy --+⎰⎰(D )1224()D f x y d σ+⎰⎰8、a为常数,则级数21sin()n na n ∞=⎡⎢⎣∑ (A ) 绝对收敛(B )发散C ) 条件收敛(D ) 收敛性与a 的取值有关二、填空题1、340tan 2lim(1)1x x x xx e →-=- 。

大学生数学竞赛(数学类)赛前强化训练题集(高代与解几)

全国大学生数学竞赛(数学类)赛前强化训练题集高等代数与解析几何 篇一、向量空间与矩阵1.1 向量空间1.(北大2007).回答下列问题:(1)是否存在n 阶方阵B A ,,满足E BA AB =- (单位矩阵)?又,是否存在n 维线性空间上的线性变换B A ,,满足E A B B A =- (恒等变换)?若是,给出证明;若否,举出例子.(2) n 阶行列式A 各行元素之和为常数c ,则3A 的各行元素之和是否为常数?若是,是多少?说明理由.(3) n m ⨯矩阵秩为r ,取r 个线性无关的行向量,再取r 个线性无关的列向量,组成的r 阶子式是否一定为0?若是,给出证明;否,举出反例.(4) B A ,都是n m ⨯矩阵.线性方程组0=AX 与0=BX 同解,则A 与B 的列向量是否等价?行向量是否等价?若是,给出证明;否,举出反例.(5)把实数域R 看成有理数域Q 上的线性空间, ,23r q p b =这里的r q p ,,是互不相同的素数.判断向量组n n n n b b b 12,,,,1- 是否线性相关?说明理由.2.(北大2010).向量组s ααα,,,21 线性无关,且可以由向量组l βββ,,,21 线性表出.证明必存在某个向量),,2,1(l j j =β使得向量组s j αααβ,,,,21 线性无关.3.(北大2010).设A 是n 阶正定矩阵,向量组s βββ,,,21 满足)1(0'n j i A j i ≤<≤=ββ.问向量组s βββ,,,21 的秩可能是多少?证明你的结论.1.2 线性方程组1.(北大1997).设B A ,是数域K 上的n 阶方阵, X 是未知量n x x x ,,,21 所成的1⨯n 矩阵.已知齐次线性方程组0=AX 和0=BX 分别有m l ,个线性无关解向量,这里.0,0≥≥m l (1)证明0)(=X AB 至少有),max(m l 个线性无关解向量. (2) 如果,n m l >+ 证明0)(=+X B A 必有非零解. (3)如果0=AX 和0=BX 无公共非零解向量,且,n m l =+ 证明 nK 中任一向量α可唯一表成,γβα+= 这里γβ,分别是0=AX 和0=BX 的解向量.2.(北大1998).讨论b a ,满足什么条件时,数域上的下述线性方程组有唯一解,有无穷多个解,无解?当有解时,求出该方程组的全部解.⎪⎩⎪⎨⎧=++=++=++.222,14,333321321321bx x x x x x x x ax 3.(北大2001).设ω是复数域C 上的本原次单位根(即, ,1=n ω而当n l <<0时, 1≠lω),b s ,都是正整数,而且n s <.令.111)1)(1()1)(1()1()1(2)1(2211⎪⎪⎪⎪⎪⎭⎫⎝⎛=-+-+---++-++s b n b n b n s b b b s b b b A ωωωωωωωωω任取s C ∈β判断线性方程组β=AX 有无解?有多少解?写出理由.4.(北大2006).(1)设B A ,分别是数域K 上m s n s ⨯⨯,矩阵.叙述矩阵方程B AX =有解的充分必要条件,并给予证明.(2)设A 是数域K 上n s ⨯列满秩矩阵,试问:方程n E XA =是否有解?若有解,写出它的解集:若无解,说明理由.(3) 设A 是数域K 上n s ⨯列满秩矩阵,试问:对于数域K 上m s ⨯矩阵,矩阵方程B AX =是否一定有解?当有解时,它有多少个解?求出它的解集,要求说明理由.5.(北大2008).回答下列问题:(1) A 是n s ⨯矩阵.非齐次线性方程组β=AX 有解且,)(r A rank =则β=AX 的解向量中线性无关的最多有多少个?并找出一组个数最多的线性无关解向量. (2) β=AX 对于所有的s 维非零向量β都有解,求)(A rank .6.(北大2010). 设B A ,是n 阶矩阵,且满足⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=E B E B A T11011101.证明: 对任意的n 维列向量ξ,方程组ξTTAX A A A =+)(2必有非零解.7.(中科院2007).设nk R ∈ααα,,,21 是齐次线性方程组0=AX 的基础解系,,,R t s ∈ .,,,111211ααβααβααβt s t s t s k k k k k +=+=+=--试问:t s ,应该满足什么关系,使得k βββ,,,21 是方程组0=AX 的基础解系,反之,当k βββ,,,21 是方程组0=AX 的基础解系时,这个关系必须成立.8.(中科院2006).考虑齐次线性方程组0=AX ,其中n n ij a A ⨯-=)1()(.设),,2,1(n j M j =是在系数矩阵A 中消去第j 列所得到的1-n 阶子式.求证: (1)()n n M M M 121)1(,,,--- 是方程组的一个解;(2)如果A 的秩为1-n ,那么方程组的解全是()n n M M M 121)1(,,,--- 的倍数.9.(中科院2006).设四元齐次线性方程组(Ⅰ)为⎩⎨⎧=-=+,004231x x x x 又知某线性齐次方程组(Ⅱ)的通解为T T k k )1,2,2,1()0,1,1,0(21-+. (1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由. 10.(中科院2004). ⎩⎨⎧+=+=++,2411n n n nn n y x y y x x 已知,0,100==y x 求.,100100y x11.(中科大1997,2010).求线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+-+=-++=+++12541851895325353724321432143214321x x x x x x x x x x x x x x x x 的通解.12.(中科大1998).取哪些值时,下面的方程组有非零解:.00011111111121⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛---n x x x n λλ1.3 矩阵代数1.(北大2000).设实数域上的n s ⨯矩阵A 的元素只有0和1,并且A 的每一行的元素的和是常数A r ,的每两个行向量的内积为常数,m 其中.r m < (1)求|'|AA ;(2)证明n s ≤;(3)证明'AA 的特征值全为正实数.2.(北大2006).(1)设B A ,分别是数域K 上s n n s ⨯⨯,矩阵,证明:).()()(BA E rank A rank ABA A rank n -+=-(2) 设B A ,分别是实数域上n 阶矩阵,证明:矩阵A 与矩阵B 的相似关系不随数域扩大而改变. 3.(北大2007).矩阵B A ,可交换,证明).()()()(AB rank B rank A rank B A rank -+≤+4.(北大2008).(1)设B A ,分别是数域K 上m n n s ⨯⨯,矩阵,则对于所有l m ⨯矩阵C ,是否有)()(BC rank ABC rank =?给出你的理由.(2) A 是n 阶矩阵, A 的每一元素的代数余子式都等于此元素,求)(A rank .5.(北大2010).设A 是非零矩阵,证明A 可以写成某个列满秩矩阵与某个行满秩矩阵的乘积.6.(中科院2007).设A 是n 阶实数矩阵,,0≠A 而且A 的每个元素和它的代数余子式相等.证明A 是可逆矩阵.7.(中科院2006).若α为一实数,试计算nn n n ⎪⎪⎭⎫ ⎝⎛∞→1//1lim αα. 8.(中科院2006).设a 为实数,,11100100⨯∈⎪⎪⎪⎪⎪⎭⎫⎝⎛=R a a a A 求50A 的第一行元素之和. 9.(中科院2004).设B A ,是n 阶实方阵,而I 是n 阶单位阵,证明:若AB I -可逆,则BA I -也可逆.10.(中科院2003).已给如下三阶矩阵:,11001⎪⎪⎪⎭⎫⎝⎛=d c b a A (1)求)det(A ;(2)求)(A Tr ;(3)证明:2)(≥A rank ;(4)为使,2)(=A rank 求出c b a ,,和d 应满足的条件.11.(中科院2010).(1)设B A ,是n 阶方阵, A 可逆,B 幂零,BA AB =.证明:B A +可逆; (2)试举例说明上述问题中B A ,可交换的条件不能去掉.12.(中科大1997).(1)设n 阶矩阵⎪⎪⎭⎫⎝⎛=222112A A A I A k,其中k I 是k 阶单位矩阵,22A 是k n -阶矩阵.证明: n A rank k ≤≤)(,其中)(A rank 是A 的秩.并证明k A rank =)(的充要条件是122122A A A =.(2)设A是n 阶可逆矩阵, α和β是n 维列向量,证明:,)(1n A rank n T≤-≤-αβ并且1)(-=-n A rank T αβ的充要条件是: ,11=-αβA T 这里T β表示β的转置.13.(中科大1997).设5阶3对角矩阵552112112⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----= A .(1)计算A 的行列式)det(A ;(2)求A 的逆矩阵1-A ;(3)求A 的Jordan 标准形;(4)求对称矩阵A 的正、负惯性指数;(5)将阶数5改为n ,求n 阶方阵A 的行列式和逆矩阵. 14.(中科大1998).计算矩阵:(1) 19977cos 7sin 7sin7cos⎪⎪⎪⎪⎭⎫⎝⎛-ππππ; (2) 191000110011101111-⎪⎪⎪⎪⎪⎭⎫⎝⎛.15.(中科大1999). 2≥n ,n 阶方阵)(ij a A =其中⎩⎨⎧≠==.,1,,0j i j i a ij 求)det(A 及.1-A16.(中科大1999,2008).求证:与任意n 阶方阵可交换的方阵一定是纯量阵.二、行列式2.1 定义、性质和计算方法1.(北大2010).A 是复矩阵,B 是幂零矩阵,且BA AB =.证明.|||2010|A B A =+2.(中科院2007).计算n 阶3对角行列式αααcos 211cos 211cos 2=n D .3.(中科院2006).已知γβα,,为实数,求nn R A ⨯∈⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αγβαγβα 的行列式的值. 4.(中科院2005).给定一单调递减序列,021>>>>p b b b 定义)(min 11111!+-≤≤-⎪⎪⎭⎫ ⎝⎛-=k k p k b b p p p β.假设复数),,2,1(p k a k =满足,1,,2,1|,|||1-=>+p k a a k k β且.1||≥p a 证明以下行列式ppp b p b pb pbb b bb b a a a a a a a a a D212121222111=其绝对值有上下界如下:∏∏==<<pk bk p k b k k k a D a p 11||2||||1.5.(中科院2004).设)(ij a A =是2004阶方阵,且I j i ij a ij .2004,1,≤≤=是2004阶单位阵,计算),det()(Ax I x f +=这里R x ∈.6.(中科院2010).设B A ,分别是m n ⨯和n m ⨯矩阵, k I 是k 阶单位矩阵.(1)证明)det()det(BA I AB I m n -=-;(2)计算行列式⎪⎪⎪⎪⎪⎭⎫⎝⎛++++++++++++=n n n n n n n x a x a x a x a x a x a x a x a x a D 111det 212221212111. 7.(中科院2011).设n 阶方阵(),||,1n j i n j i A ≤≤-=其行列式记为n D ,试证明:.04421=++--n n n D D D并由此求出行列式n D .8.(中科大2010).填空:(1)设i j ij n n ij b a a a A n +==>⨯,)(,2则=)det(A .(2)设1>n ,矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=--121010010n n a a a a A,则A 的特征多项式是 .2.2 应用1.(中科院2003).给了n 个不同的数n a a a ,,,21 ,试求一个1-≤n 次的多项式)(x f ,使i i b a f =)(,这里i b 也是给定的值, n i ,,2,1 =.三、线性空间与线性变换3.1 线性空间的基本理论1.(北大1996).设线性空间V 中的向量组4321,,,αααα线性无关. (1)试问:向量组14433221,,,αααααααα++++是否线性无关?要求说明理由.(2)求向量组14433221,,,αααααααα++++生成的线性子空间W 的一个基以及W 的维数.2.(北大1998).设V 是定义域为实数集R 的所有实值函数组成的集合,对于R a V g f ∈∈,,分别用下列式子定义g f +与af :),()())((x g x f x g f +=+ ),())((x af x af = .R x ∈∀则V 成为实数域R 上的一个线性空间. 设.3cos )(,2cos )(,cos )(,1)(3210x x f x x f x x f x f ====(1)判断3210,,,f f f f 是否线性相关,写出理由;(2)用><g f ,表示g f ,生成的线性子空间,判断><+><3210,,f f f f 是否为直和,写出理由.3.(北大1999).设V 是实数域R 上的n 维线性空间, V 上的所有复值函数组成的集合,对于函数的加法以及复数与函数的数量乘法,形成复数域C 上的一个线性空间,记作VC . 证明:如果121,,,+n f f f 是V C 中1+n 个不同的函数,并且它们满足:),()()(βαβαj j j f f f +=+ ,,V ∈∀βα),()(ααj j kf k f = ,,V R k ∈∈∀α则121,,,+n f f f 是VC 中线性相关的向量组.4.(中科院2006).若向量)2(,,,21>s s ααα 线性无关,讨论113221,,,,αααααααα++++-s s s 的线性相关性.5.(中科大2010).填空:(1)设4321,,,αααα是线性空间V 中4个线性无关的向量,则向量组14433221,,,αααααααα++++的秩等于 . (2)在3维实向量空间3R 中,设,)1,1,1(1T -=α,)0,1,1(2T -=α,)1,0,1(3T -=α.)4,3,4(T -=β则β在基{}321,,ααα下的坐标是 .3.2 线性空间的子空间和商空间1.(北大1999).设V 是数域K 上的一个n 维线性空间, n ααα,,,21 是V 的一个基.用1V 表示由n ααα+++ 21生成的线性子空间,令.,0:112⎭⎬⎫⎩⎨⎧∈==∑∑==n i i ni i i i K k k k V α(1)证明2V 是V 的子空间;(2)证明21V V V ⊕=;(3)设V 上的一个线性变换A 在基n ααα,,,21 下的矩阵A 是置换矩阵(即: A 的每一行与每一列都只有一个元素是1,其余元素全为0),证明1V 与2V 都是A 的不变子空间.2.(北大2002).用R 表示实数域,定义nR 到R 的映射如下:|,|||||||)(11s r r r x x x x X f ++---++= ,),,,(21n T n R x x x X ∈=∀其中.0≥≥s r .证明:(1)存在nR 的一个r n -维子空间W ,使得W X X f ∈∀=,0)(.(2)若21,W W 是n R 的两个r n -维子空间,且满足,,0)(21W W X X f ⋃∈∀=则一定有)()dim(21s r n W W +-≥⋂.3.(北大2002).设V 是数域K 上的n 维线性空间, s V V ,,1 是V 的s 个真子空间,证明:(1)存在,V ∈α使得s V V V ⋃⋃⋃∉ 21α.(2)存在V 中的一组基,,,,21n εεε 使得()∅=⋃⋃⋃⋂s n V V V 2121},,,{εεε.4.(北大2005).设数域K 上的n 级矩阵A 的),(j i 元为j i b a - (1).求A ; (2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基.5.(北大2005).(1)设数域K 上n 级矩阵,对任意正整数m ,求mC [C 是什么?](2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。

数年级数学竞赛试题及答案

数年级数学竞赛试题及答案试题一:整数的巧算题目:计算下列表达式的值:1. \( 1234567890 \times 9 \)2. \( 1234 \times 3456 + 5678 \times 8765 \)试题二:分数的运算题目:解下列分数方程:1. \( \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = ? \)2. 如果 \( \frac{1}{2} \) 等于 \( \frac{a}{b} \),求 \( a \) 和 \( b \) 的值。

试题三:几何图形的面积计算题目:一个正方形的边长为 \( 6 \) 厘米,求其面积。

试题四:应用题题目:小明有 \( 30 \) 张邮票,他给了小红 \( 1/3 \),然后又给了小华 \( 1/4 \),小明还剩下多少张邮票?试题五:逻辑推理题目:如果所有的猫都怕水,而所有的狗都不怕水,那么以下哪个陈述是正确的?A. 所有怕水的动物都是猫。

B. 没有狗是怕水的。

C. 所有不怕水的动物都是狗。

答案:试题一:1. 原式 \( = 1234567890 \times (10 - 1) = 12345678900 - 1234567890 = 11111110010 \)2. 原式 \( = 1234 \times (3000 + 400 + 50 + 6) + 5678 \times (8000 + 700 + 60 + 5) \)\( = 3702000 + 493600 + 61700 + 7404 + 45464000 + 3974600 + 340680 + 28390 \)\( = 4280704 + 49524680 + 368070 \)\( = 53805410 + 368070 \)\( = 54173480 \)试题二:1. 原式 \( = \frac{3}{6} + \frac{2}{6} + \frac{1}{6} =\frac{6}{6} = 1 \)2. 由于 \( \frac{1}{2} = \frac{1}{2} \),所以 \( a = 1 \),\( b = 2 \)。

【高中数学竞赛专题大全】 竞赛专题17 其它综合类竞赛题(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题17 其它综合类竞赛题 (50题竞赛真题强化训练)一、填空题1.(2019·全国·高三竞赛)计算:10112k k nn k C k +=⎡⎤⎛⎫⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦∑=_______.【答案】113112n n +⎡⎤⎛⎫-⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦【解析】 【详解】注意到,()01nnk kn k C x x ==+∑.两边积分得()01112200nn k kn k C x dx x dx ==+∑ 11011311212k n k nn k C k n ++=⎡⎤⎡⎤⎛⎫⎛⎫⇒=-⎢⎥⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦∑. 故答案为113112n n +⎡⎤⎛⎫-⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦2.(2019·全国·高三竞赛)设1234123,241,1,5,4,13P P P k P k +(,,)(,,)(,)(,)是空间中体积为1的一个四面体的四个顶点.则k =_______. 【答案】-2或1. 【解析】 【详解】四面体体积为()()62276k k ⇒---=1k ⇒=+1805n n a a n n N ∈=,)或-2. 故答案为-2或1.3.(2019·全国·高三竞赛)给定函数())1f x x ≤.则函数()f x 与反函数()1f x -交点的坐标为______.【答案】()1,0,()0,1,⎝⎭. 【解析】 【详解】())1f x x ≤的反函数为()()1210f x x x -=-≥.联立方程21,y y x ⎧⎪⎨=-⎪⎩①② 由式①得()()42212211y x x x x =-+=---.把式①、②代入上式,得422y y y =-,即()()4220y y y y ---=,于是,()()2110y y y y -+-=.解得10y =,11x =;21y =,20x =;3y =(舍去负值),3x =. 故答案为()1,0,()0,1,⎝⎭. 4.(2019·全国·高三竞赛)把函数()ax bf x cx d+=+的系数按其自然位置排成两行两列,记为二阶矩阵A a b c d ⎛⎫= ⎪⎝⎭.其中,每一个数字称为二阶矩阵的元素.又记()()()()af x b f f x cf x d+=+()()()()22abc x ab bd ac cd x bc d +++=+++的系数所组成的二阶矩阵22a ab ab bd ac cd bc d ⎛⎫++ ⎪++⎝⎭为A 的平方,即222A A A a bc ab bd ac cd bc d ⎛⎫++=⨯= ⎪++⎝⎭.观察二阶矩阵乘法的规律,写出1112322122A A A aa a a ⎛⎫=⨯= ⎪⎝⎭中的元素21a =________.【答案】222a c acd bc cd +++ 【解析】【详解】根据二阶矩阵乘法的规律,知111232122a a A a a ⎛⎫= ⎪⎝⎭中的ij a 应是2A 中第i 行的元素分别乘以A 中第j 列对应元素的代数和,则()()222221a ac cd a bc d c a c acd bccd =+++=+++.故答案为222a c acd bc cd +++5.(2018·江西·高三竞赛)a 、b 为正整数,满足1112018a b -=,则所有正整数对(),a b 的个数为______. 【答案】4 【解析】 【详解】 由1112018a b -=,知12018a ≤<,且201820180ab a b +-=, 于是()()22220182018201821009a b -+==⋅,而020182018a <-<,20182018b +>. 因1009为质数,数2221009⋅所有可能的分解式为212018⨯,()2221009⨯⨯,241009⨯,()100941009⨯⨯.其中每一个分解式对应于(),a b 的一个解,故其解的个数为4. 故答案为46.(2018·湖南·高三竞赛)如图,将一个边长为1的正三角形分成四个全等的正三角形,第一次挖去中间的一个小三角形,将剩下的三个小正三角形,再分别从中间挖去一个小三角形,保留它们的边,重复操作以上做法,得到的集合为谢尔宾斯基缕垫.设A n 是第n 次挖去的小三角形面积之和(如1A 是第1次挖去的中间小三角形面积,2A 是第2次挖去的三个小三角形面积之和),则前n 次挖去的所有小三角形面积之和的值为____________________.3314n⎤⎛⎫-⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】 【详解】3而第k 次一共挖去13k -个小三角形,1334k k A -⎫=⎪⎝⎭.因此,可以采用等比级数求和公式,得到答案为1111333334134414nk n n n k k k A -==⎛⎫- ⎪⎤⎛⎫⎛⎫⎝⎭===-⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-∑. 3314n⎤⎛⎫-⎥ ⎪⎝⎭⎢⎥⎣⎦7.(2018·湖南·高三竞赛)已知n 为正整数,若22310616n n n n +-+-是一个既约分数,那么这个分数的值等于_____. 【答案】811【解析】 【详解】因为()()()()225231061682n n n n n n n n +-+-=--+-,当21n -=±时,若()()8,55,31n n n ++=+=,则22310616n n n n +---是一个既约分数,故当3n =时,该分数是既约分数. 所以这个分数为811. 故答案为8118.(2019·全国·高三竞赛)设k 为常数.若对一切()0,1x y ∈、,有111k k k k k k k k x y x y x y x y+-≤+-,则实数k 的取值范围是____. 【答案】](,0.-∞ 【解析】 【详解】注意到()()111111111k k k kk kk k k k k k x y x y x y x y x y x y ⎛⎫⎛⎫+-≤+-⇔--≥-- ⎪ ⎪⎝⎭⎝⎭10.k k x y k ⇔≥⇔≤故答案为](,0-∞9.(2019·全国·高三竞赛)定义数列{}n a :()34n a n n N +=+∈,令()1,n n n d a a +=.则n d 的最大值为_________. 【答案】433. 【解析】 【详解】由()()334,14n d n n +++,知()324,331n d n n n +++.则()()3234331n d n n n n ⎡⎤-++++⎣⎦,且()()222331312,331n n d n n d n n n n ++⇒+-++()()2213,331213,332n n d n n n d n n ⇒+++⇒+- ()()233233213433n n d n n d ⎡⎤⇒--++⇒⎣⎦.所以,()max 433n d ≤. 易知,()210211,433a a =. 从而,()max 433n d =. 故答案为43310.(2019·全国·高三竞赛)如图,设圆台的轴截面为等腰梯形ABCD ,其中,18AB =,6CD =.若圆台的高为8,PQ 是下底面与AB 夹角为60︒的直径,则异面直线PC 、DQ 所成角的余弦值为________.【答案】1127【解析】 【详解】如图,设异面直线PC 、QD 所成角为α,向量PC 、DQ 的夹角为θ,以下底面中心O 为原点、AB 所在直线为x 轴建立空间直角坐标系.则()3,0,8C 、()3,0,8D -、993,,022P ⎛⎫ ⎪ ⎪⎝⎭、993,,022Q ⎛⎫-- ⎪ ⎪⎝⎭. 于是393,,822PC ⎛⎫=-- ⎪ ⎪⎝⎭,393,,822QD ⎛⎫= ⎪ ⎪⎝⎭. 因此1PC QD ⋅=.而127PC =,127QD =, 故1cos 127θ=. 从而,1cos cos 127αθ==. 故答案为112711.(2018·甘肃·高三竞赛)设,x y 满足24,1,2 2.x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩若z ax y =+只在点()2,0A 处取得最小值,则实数a 的取值范围是______.【答案】122a -<<【解析】 【详解】画出平面区域如下:由数形结合可得122a -<-<,即122a -<<.12.(2018·全国·高三竞赛)若函数()1y f x =+的反函数为()11y f x -=+,且()13999f =,则满足()f n n =的最小正整数n =______. 【答案】2000 【解析】 【详解】由条件得()()1111f x f x --+-=-,()113999f -=.从而,()()11399939981ff ---=-,()()11399839971f f ---=-,…,()()1111f k f k --+-=-. 相加得()()()111399940004000f k k f k k f k k ---=-⇒=-⇒-=.令40000k -=.则2000k =.13.(2018·全国·高三竞赛)方程()4sin 1cos 33x x +=______. 【答案】()π2π3x k k =+∈Z 【解析】 【详解】原方程两边平方得()()()22222716sin 1cos 161cos 12cos cos x x x x x =+=-++4316cos 32cos 32cos 110x x x ⇒+-+=()()222cos 14cos 12cos 110x x x ⇒-++=()1πcos 2π23x x k k Z ⇒=⇒=+∈. 14.(2018·全国·高三竞赛)已知,42ππθ⎛⎫∈ ⎪⎝⎭,一元二次方程()()22222tansec 2tan sin cos 20x x θθθθθ++--=有重根.则cos θ的值是______.【解析】 【详解】由于方程有重根,故0∆=,即()()22222tan sin cos2tan sec 0θθθθθ-++=. 设2cos d θ=.则()21111210d d d d d dd --⎛⎫⎛⎫+-+-+= ⎪⎪⎝⎭⎝⎭. 故()22310d d -+=,解得d =因此,cos θ. 15.(2018·全国·高三竞赛)设()f x 定义在+N 上,其值域B +⊆N ,且对任意n +∈N ,都有()()1f n f n +>,及()()3f f n n =.则()()1011f f +=________.【答案】39 【解析】 【详解】由()()13f f =,知()()()()13f f f f =. 若()11f =,则()()()3111f f f ===,矛盾. 因此,()()()()21213f f f f ≤<≤=.则()23f =,()12f =,()()()326f f f ==,()()()639f f f ==.又()()()()634569f f f f =<<<=,故()47f =,()58f =,()()()7412f f f ==,()()()12721f f f ==.因为()()()9618f f f ==,()()()()189********f f f f =<<<=,所以,()1019f =,()1120f =.因此,()()101139f f +=.16.(2018·全国·高三竞赛)已知()221f x x x =++,存在实数t ,使得当[]1,x m ∈时,()f x t x +≤恒成立.则m 的最大值是______. 【答案】4 【解析】 【详解】把()f x 的图像向右平移t -个单位,数形结合得m 的最大值是(),y x y f x t =⎧⎨=+⎩两个交点横坐标的较大者.由()11f t +=,解得1,3t t =-=-.再由()3f x x -=,得1x =(舍去),4x =. 故m 的最大值是4.17.(2018·全国·高三竞赛)直角坐标平面上两曲线3y x =与3x y =围成的图形的面积为______. 【答案】1. 【解析】 【详解】因为两曲线分别关于原点对称,从而,只需计算两曲线在第一象限围成的图形的面积A .当1x >时,3x >;当01x <<时,3x <. 所以,两曲线在第一象限有唯一的交点()1,1.又)13A x dx =⎰441303311|44442x x ⎛⎫=-=-= ⎪⎝⎭,所以,两曲线围成的图形的面积为21A =.18.(2019·全国·高三竞赛)已知关于x 的方程()()2201000x a x a a +-+=≠的两根均为整数.则实数a 的值为______. 【答案】4024 【解析】 【详解】设方程的根为1x 、()212x x x ≤.由韦达定理得()122010x x a +=--,12x x a =.则12122010x x x x ++=,即()()12112011x x ++=.又因为2011为质数,所以,120,2010x x =⎧⎨=⎩或122012,2.x x =-⎧⎨=-⎩故0a =(舍)或4024a =.19.(2021·全国·高三竞赛)若65432()2f x x x x x =--+-+f 的值为_______.【解析】 【分析】 【详解】研究二次方程210x --=和210x -+=,即(0x x =和(0x x =.因此0x422()(1)(1)(f x x x x x x =--+-++故f =20.(2019·全国·高三竞赛)不等式()332211x x+-≥的解集为________.【答案】{}0,1 【解析】【详解】y =,则不等式化为221x y +=,331x y +≥. 故330x y ≤+()()2211x x y y =-+-()()()()221111y x x y =--+--()()()()221111y x x y =------()()()112x y x y =---++.因为2221x y x =+≥,所以1x ≤. 同理,1y ≤.故10x ±≥,10y ±≥,20x y ++≥.若20x y ++=,110x y +=+=,不满足221x y +=.因此,20x y ++>. 于是,不等式化为()()110x y --≤. 但10x -≥,10y -≥, 故()()110x y --=. 解得()()(),1,0,0,1x y =.经检验,0x =或1都是原不等式的解. 故原不等式的解集为{}0,1. 故答案为{}0,121.(2019·全国·高三竞赛)已知函数26y x ax a =+-与x 轴有两个不同的交点()()12,0,0x x 、,并且()()()()121238311+1616aa x x a x a x -=-+----,则a 的值是______.【答案】12 【解析】 【详解】由23640a a ∆+>,得0a >或19a <-,根据题意知()()2126y x ax a x x x x =+-=--则()()()1211117x x f a -+=-=-,()()121616a x a x ---- ()1617f a a =-=-于是,38317a a a-=-- 解得12a =或0a =(舍去). 22.(2019·全国·高三竞赛)设实常数k 使得方程222250x y xy x y k +-+++=在平面直角坐标系xOy 中表示两条相交的直线,交点为P.若点A 、B 分别在这两条直线上,且||1PA PB ==,则PA PB ⋅=_____. 【答案】45±【解析】 【详解】由题设知,关于x y 、的二次多项式222250x y xy x y k +-+++=可以分解为两个一次因式的乘积.因()()2222522x y xy x y x y +-=-+-+,所以,()()2222522x y xy x y k x y a x y b +-+++=-++-++,其中,a b 、为待定的常数. 将上式展开后比较对应项的系数得 ,21,21ab k a b b a =--=+= .解得1,1,1a b k ==-=-.再由210,210,x y x y -++=⎧⎨-+-=⎩得两直线斜率为121,22k k ==,交点()1,1P .设两直线的夹角为θ(θ为锐角).则 212134tan ,cos 145k k k k θθ-===+.故PA PB ⋅cos PA PB θ=⋅或()4cos 180cos 5PA PB PA PB θθ⋅︒-=±⋅=±.故答案为45±23.(2019·全国·高三竞赛)已知a 、b 、c 是一个直角三角形三边之长,且对大于2的自然数n ,成立()()22222n n n n n n a b c a b c ++=++.则n =______. 【答案】4 【解析】 【详解】设2nx a =,2n y b =,2nz c =,有 ()()()()22222444222022n n n n n na b c a b c x y z x y z =++-++=++-++444222222222x y z x y x z y z =++---()()()()x y z x y z y z x z x y =-+++-+-+-. (*)不妨设c 为斜边,则z x >,z y >.可知0x y z ++>,0y z x +->,0z x y +->. ∴(*)式等价于z x y =+,即221nna b c c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.另一方面,222a b c +=成立,或221a b c c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.因为01a c <<,01b c <<,x xa b y c c ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭为单调减函数,仅在一个x 点处取1y =,因此,22n=,4n =. 故答案为424.(2018·山东·高三竞赛)已知a ,b ∈Z ,且a b +为方程20x ax b ++=的一个根,则b 的最大可能值为______. 【答案】9 【解析】 【详解】由题设()()20a b a a b b ++++=,则22230a ab b b +++=.因为a ,b Z ∈,则()222988b b b b b ∆=-+=-必为完全平方数.设()228b b m m N -=∈,则()22416b m --=,()()4416b m b m -+--=.所以4842b m b m -+=⎧⎨--=⎩或4444b m b m -+=⎧⎨--=⎩或4248b m b m -+=-⎧⎨--=-⎩或4444b m b m -+=-⎧⎨--=-⎩.解得9b =,8,1-,0.所以b 的最大可能值为9.25.(2018·贵州·高三竞赛)方程组()33266x y xy x y ⎧+=⎪⎨+=-⎪⎩的实数解为___________.【答案】13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩ 【解析】 【详解】因为()33266x y xy x y ⎧+=⎪⎨+=-⎪⎩,所以()()333326188x y x y xy x y +=+++=-=,即2x y +=,代入()6xy x y +=-,得3xy =-.由23x y xy +=⎧⎨=-⎩ ⇒ 13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩. 26.(2018·全国·高三竞赛)已知αβγ、、为方程3256780x x x -+-=的三个不同的根,则()()()222222ααββββγγγγαα++++++的值为_________.【答案】1679-625【解析】 【详解】注意到,()()()()()()()()()3333332222225-5-5-++++++=5-5-5-αββγγαααββββγγγγαααββγγα⋅⋅()()()()()()()()()2222226--7-6--7-6--7-=5-5-5-αβαββγβγγαγααββγγα⋅⋅()()()36+-76+-76+-7=5αββγγα⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦36666--76--76--7555=5γαβ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ 3111-6-6-6555=5αβγ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 336111=---5303030αβγ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 记()()()()5f x x x x αβγ=--- 则()()()32222224611679530625f ααββββγγγγαα⎛⎫++++++==-⎪⎝⎭. 27.(2018·全国·高三竞赛)使得方程280x ax a ++=①只有整数解的实数a 的个数为______. 【答案】8 【解析】 【详解】设方程①有整数解()m n m n ≤、.则,8m n a mn a +=-=. 于是,()()8864m n ++=.解得,()()()()()()()()(),72,9,40,10,24,12,16,16,7,56,6,24,4,8,0,0m n =-----------. 对应的()81,50,36,32,49,18,4,0,a m n =-+=---共8个.28.(2018·全国·高三竞赛)某人排版一个三角形,该三角形有一个内角为60°,该角的两边边长分别为x 和9.这个人排版时错把长x 的边排成长1x +,但发现其他两边的长度没变.则x =______.【答案】4 【解析】 【详解】 由12cos609x +=︒,得4x =.29.(2018·全国·高三竞赛)已知()3233f x x x x =-+在区间[],a b ()b a >上的值域为[],a b .则满足条件的区间[],a b 为________. 【答案】[]0,1,[]0,2,[]1,2 【解析】 【详解】有()()2236331f x x x x =-+=-,知除1x =外,()0f x '>.故()f x 在(),-∞+∞上为增函数.依题意函数在x a =取最小值a ,在x b =取最大值b ,则()f a a =,()f b b =, 这表明a 、b 是方程()f x x =的两个根.注意到3233x x x x -+= ⇔ ()()120x x x --=.解得10x =,21x =,32x =. 故所求的区间为[]0,1,[]0,2,[]1,2.30.(2018·全国·高三竞赛)30 !末尾最后一个不为零的数字为________. 【答案】8 【解析】 【详解】注意到2614742230!2357111317192329=⨯⨯⨯⨯⨯⨯⨯⨯⨯ 则1914422730!23711131719232910=⨯⨯⨯⨯⨯⨯⨯⨯ ()1914422237137939mod10≡⨯⨯⨯⨯⨯⨯⨯⨯.因为4437、模10均余1,且42n 模10余6,所以,()3730! 28mod1010≡≡31.(2018·全国·高三竞赛)平面区域()223,0,,sin sin sin sin 24S x y x y x x y y π⎧⎫⎡⎤=∈+⋅+≤⎨⎬⎢⎥⎣⎦⎩⎭、的面积等于______. 【答案】26π【解析】 【详解】由()()()()()222sin sin sin sin 22cos cos cos cos x x y y x y x y x y x y -⋅+=-+⋅-++--()()31132cos cos 2222x y x y ⎡⎤⎡⎤=-++⋅--≤⎢⎥⎢⎥⎣⎦⎣⎦, 得()()11cos cos 022x y x y ⎡⎤⎡⎤++⋅--≥⎢⎥⎢⎥⎣⎦⎣⎦,即2,33x y x y ππ⎧+≤⎪⎪⎨⎪-≤⎪⎩或2,3.3x y x y ππ⎧+≥⎪⎪⎨⎪-≥⎪⎩结合x 、0,2y π⎡⎤∈⎢⎥⎣⎦,可得到如图的平面区域,其面积为2222126236ππππ⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.32.(2018·上海·高二竞赛)分解因式:()()()111xy x y xy ++++=_______. 【答案】(xy+x+1)(xy+y+1) 【解析】 【详解】xy =(xy+1)(xy+x+y+1)+xy=(xy+1)((xy+1)+(x+y))+xy=(xy+1)^2+(x+y)(xy+1)+xy =((xy+1)+x)((xy+1)+y)=(xy+x+1)(xy+y+1)33.(2021·全国·高三竞赛)若一个分数ab(a ,b 均为正整数)化为小数后,小数部分出现了连续的“2020”,例如20.02020299=,就称它为“好数”.则“好数”的分母的第二小的可能值为________. 【答案】193 【解析】 【分析】 【详解】我们总可以将一个“好数”适当乘一个10的方幂并减去其整数部分后使之成为一个小数点后前四位是“2020”的真分数,于是0.20200.2021ab≤<, 进而1115005476a b ≤-<,即1515005476a b b -≤<. 若51a b -=,则4765500b <≤且()4mod5b ≡,所以99b =.若52a b -=,则95251000b <≤且()3mod5b ≡,所以193,198b =. 若53a b -≥,则51428,286b b >≥. 另一方面,390.20207193≈是“好数”,因此b 的第二小的可能值为193. 故答案为:193. 二、双空题(共0分)34.(2018·全国·高三竞赛)阅读下面一道题目的证明,指出其中的一处错误.题目:平面上有六个点,任何三点都是三边互不相等三角形的顶点,则这些三角形中有一个的最短边又是另一个三角形的最长边.证明:第一步,对已知的六个点作两两连线,可以得出15条边,记为1a ,2a ,…,15a .第二步,由于任何三点组成的都是“三边互不相等的三角形”,因此,15条边互不相等不妨设1215a a a <<<.第三步,由于“任何三点都是三边互不相等三角形的顶点”,因此,任取三条边都可以组成三角形,则1a 、2a 、3a 组成的三角形的最长边3a ,也是3a 、4a 、5a 组成的三角形的最短边,命题得证.这三步中,第______步有错误,理由是______. 【答案】 二或三 第三步有错误,理由是:不能推出“任取三条边都可以组成三角形”或第二步有错误,理由是:不能推出1215a a a <<<.【解析】 【详解】不能推出“任取三条边都可以组成三角形”,比如,从六个点1A 、2A 、3A 、4A 、5A 、6A 中,记1A 、2A 的连线为i a ,记3A 、4A 的连线为j a ,记5A 、6A 的连线为k a (i 、j 、k 互不相等),则i a 、j a 、k a 未必能组成三角形,即使组成三角形也不是本题所说的“三点两两连线”所成的三角形.第二步也有错误,理由是三点组成的“单个三角形”内部边长互不相等, 不能推出“多个三角形”之间边长互不相等,因而,“1215a a a <<<”中的“<”也可能有“≤”.说明:虽然证明有错误,但结论是成立的,可把六个点“两两连线”的每个三角形最长边染成红色,剩下的边染成蓝色,然后证明必有同色三角形,又因为每个三角形都有红边,所以,同色三角形必有三边同红色的三角形,这个三角形的最短边便又是另一个三角形的最长边. 三、解答题(共0分)35.(2019·全国·高三竞赛)在直角坐标系中,有三只青蛙A 、B 、C ,其起始位置分别为()()(0004,62,3,6A B C 、,首先,A 以B 为中心跳到其对称点上,然后,B 以C 为中心跳到其对称点上,接着,C 以A 为中心跳到其对称点上,……依此类推.设A 、B 、C 第n 次跳到的位置分别为n n n A B C 、、,201120112011A B C ∆的三边长分别为a 、b 、c ,面积为S .证明:222201730017a b c S ++>⨯ 【答案】见解析 【解析】 【详解】设n n n A B C ∆的三边长分别为,,n n n a b c .则由題意知1n n 1n n 1n n+1222n n n A A B B B C C C A++++=⎧⎪+=⎨⎪+=⎩ ①②③ 由式①得 ()n 1n 12n B A A +=+ ④ 将式④代入式②得 ()n 2n+1124n n C A A A +=++ ⑤ 将式⑤代人式③并整理得 3n+21350n n n A A A A +++++=.其特征方程为323510λλλ+-+=,即()()21410λλλ-+-=.解得0121,22λλλ==-=-则n nn 12A D E F λλ=++ ⑥在式④、⑤、⑥中令n=0,得()()(12124,6112,32211622D E F D E F D E F λλλλ⎧⎪++=⎪++⎪+⋅+⋅=⎨⎪--⎪+⋅+⋅=+⎪⎩24 解得()()()0,0,1,2,3,4D E F ===.故222n n n a b c ++222n n n n n n B C C A A B =-+-+-()()()222n+2n+21n+111123442n n n n A A A A A A A +=-+-+- ()()222n+1n+1n+111=22n n A A A A A +++- ()222n+1n+11=2n A A A ++又每只青蛙跳后,三只青蛙所组成的三角形面积不变,即000A B C S S =∆=. 而()22n n 212225221nn n A EE F λλλ=+>+-,故 22222201*********a b c A A ++=+()40222514222>++)4022142S >+()(20111509S =+201130017S >⨯36.(2019·全国·高三竞赛)设异面直线a 、b 成60︒角,它们的公垂线段为EF ,且2EF =,线段AB 的长为4,两端点A 、B 分别在a 、b 上移动.求线段AB 中点P 的轨迹方程.【答案】2219x y +=【解析】 【详解】易知点P 在过EF 的中点O ,且与a 、b 平行的平面α内.如图所示,设a 、b 在α内的射影分别为a '、b ',点A 、B 在α内的射影分别为A '、B ',则60A OB ∠=''︒,且A B ''的中点即为AB 的中点P .又4AB =,2EF =,则23A B ''=.于是,问题转化为求定线段A B ''的两个端点分别在a '、b '上移动时,其中点P 的轨迹. 如图所示,以A OB ∠''的平分线为x 轴,O 为原点,建立直角坐标系.不失一般性,令OB n '=,OA m '=.在A OB ∆''中,22 12m n mn +-=. ①设A B ''的中点P 的坐标为(),x y ,则()()232,2,32212.232m x y x m n n x y y m n ⎧⎧=+=+⎪⎪⎪⎪⇒⎨⎨⎪⎪=-=-⎪⎪⎩⎩代入式①,化简整理得2219x y +=. ②这里得到的是椭圆②夹在A OB ∠''内的弧.在另外3种情形中,同样可得到椭圆②的另3段弧.综合得点P 的轨迹是椭圆2219x y +=.37.(2018·全国·高三竞赛)求所有三次多项式()P x ,使得对一切0x y ≥、,均有()()()P x y P x P y +≥+.【答案】见解析【解析】 【详解】设()()320P x ax bx cx d a =+++≠.则原不等式等价于()32axy x y bxy d ++≥(任意的x 、y 0≥) ① 令x 、y 充分大,得0a >. 令x=y=0,得0d ≤. 在这样的条件下,式①又可写成()()22332ax y axy d b xy ++-≥-(任意的x 、y 0≥) ②当2b -,即328243b a d ≥时,由基本不等式得式②成立.反之,当2b -时.若0d <,则取x 、y 使2233ax y axy d ==-,即知式②不成立;若d=0时,则要求对任意整数x 、y ,有()32a x y b +≥-,故0b ≥,矛盾.综上,所求三项多项式为()32P x ax bx cx d =+++.其中,0a >,0d ≤,328243b a d ≥ 38.(2018·全国·高三竞赛)已知多项式()()()()4322275311735f x ax a x a x a x a =+-+-+-+-,其中,a 为实数.证明:对任意的实数a ,方程()0f x =总有一个相同的实数根. 【答案】见解析 【解析】 【详解】注意到,()()()432322757323115f x a x x x x x x x =-+-++-+-()()()32221335x a x x x x x ⎡⎤=--+-+-+⎣⎦ ()()()()2221315x a x x x x ⎡⎤=--++-+⎣⎦.从而,对任意的实数a ,方程()0f x =总有根0.5x =.39.(2018·全国·高三竞赛)给定正整数n ,求1122nk k n =⎡⎤-⎢⎥⎣⎦∑,其中,[]x 表示不超过实数x 的最大整数. 【答案】0 【解析】 【详解】令11110222m m m m n a a a a --=++++.其中,0m a ≠.此时,122m m n +≤< ,所以,[]2log n m =.若2k m ≥+,则1212102222m k m n ++-<-=,此时1122k n ⎡⎤-=-⎢⎥⎣⎦.若1k m =+,则11110,22222k m n n +⎡⎫-=-∈⎪⎢⎣⎭,此时1022k n ⎡⎤-=⎢⎥⎣⎦.若k m =,则110111222222m m t m m m k t t a a n a a ---=⎡⎤⎡⎤⎡⎤-=-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑.若1k m ≤+,则1011221222m m m k tt k m t t k k t t k n a a a -----==⎡⎤⎡⎤-=-=+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑. 则[]2log 11111111111121222222n m m m m t k m m t k k k k k k k k t k n n n a a a a ------=====⎛⎫⎡⎤⎡⎤⎡⎤-=-=-+=++- ⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎝⎭∑∑∑∑∑ 1111111121mtm m t km m t k t k k k a a a a -----=====-++-∑∑∑∑()()()111122211m mmtm t k t k a a a m --===-+-+--∑∑m211t t t a m n m ==--=--∑.故1112111122222222nm nk k m k k k k m n n n n +===+⎡⎤⎡⎤⎡⎤⎡⎤-=-+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦∑∑∑()()()()2101110nk m n m n m n m =+=--++-=-----=∑40.(2018·全国·高三竞赛)试求所有的正整数n 及实数,22x x ππ⎛⎫⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭,使得tan n xcot x +.【答案】见解析 【解析】 【详解】由tan n xcot x((()tan cot tan cot n x x n x x Q +=++,①((tan cot tan cot 3n x x n n x x Q =++∈.②由式①知存有理数q,使得tan cot n x x q +=-由式②知(tan cot n x x Q +,即(0q Q Q q -⇒⇒=.故tan cot n x x +=-设tan x y =.则1ny y +=-210ny ⇒++=y ⇒=由ny Q +=,知2n =或3. 当2n =时,y =此时,x =或. 当3n =时,y =此时,arctan 6x π⎛==- ⎝⎭. 41.(2018·全国·高三竞赛)实数333111111i i i i i y x y x ======∑∑∑满足3211123ii y x x x x =+∑,试求()11,2,3ii y a i x ==的值. 【答案】0 【解析】 【详解】令331111i i i i a a x ====∑∑.于时,()()()()()()1111111211231123231213122331y y x a a a x x x x x x x x x x x x x x x x x x x x x -===+++++++++.故()()()222222123122331y a a x x x x x x x x x x x -=++++. 同理,()()()333323123122331y a a x x x x x x x x x x x -=++++,()()()333111112111231223310i i i i a a x y x x x x x x x x x x ===-==++++∑∑∑. 则211,)2y y p.42.(2018·全国·高三竞赛)已知非零实数a 、b 、c 、t 满足()2,1.a tb c b c t t =+⎧⎪⎨=++⎪⎩(1)求证:二次方程()()()22220cx c b c x b c b c +--+-=①必有实根,且2c b a --是方程的一个实根;(2)当15a =,7b =时,求c 、t . 【答案】(1)见解析;(2)1,2c t == 【解析】 【详解】(1)解法1:由()21b c t t =++,有()22441bc c t t =++ ()22223123c c t c =++≥,得二次方程的判别式()()()222224c b c c b c b c ∆=-++- ()22430b bc c =-≥.所以,二次方程①必有实根,把2x c b a =--代入方程①有左边()()222c c b a c b c =--+-⋅ ()()()222c b a b c b c ---+-()()()222c b a c c b a c b c ⎡⎤=----+-⎣⎦ ()()22b c b c ---()()()222ac c b a b c b c =----+- ()()()()22bt c c bt b c b c b c =++--+-()()()22222c b t b t b c c b c b c ⎡⎤=++--+-⎣⎦()()222b c t t b c c ⎡⎤=++-⎣⎦ ()()22b c b c -+-()()()()2222b b c b c c b c b c ⎡⎤=-+--+-⎣⎦()()()()22220b c b c b c b c =+--+-=.因此,2c b a --是方程①的一个实根.所以,二次方程①必有实根,且2c b a --是方程的一个实根.解法2:由()2,1a tb c b c t t =+⎧⎪⎨=++⎪⎩消去t 得21a c a c b c b b ⎡⎤--⎛⎫=++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 故()()232b c b b a c a c ⎡⎤=+-+-⎣⎦()22232ca c b c a b c bc c =+-+-+.则()()()22220ca c b c a b c b c +--+-=.②.这表明,二次方程①有实根a .由根与系数的关系得方程的另一根为()22c c b x a c b a c-=-=--.因此,二次方程①必有实根,且2c b a --是方程的一个实根.说明:当0∆=时,43b c =,12t =-,58a c =,确实有两根相等528c b a c a --==.(2)把15a =,7b =代入式②整理得32373793430c c c -+-=.观察知方程的系数和为0,故有分解式()()21363430c c c --+=,但()223634318190c c c -+=-+>,得1c =.代入a bt c =+得a ct b -=15127-==. 43.(2018·全国·高三竞赛)设a 、b 为复数,01p ≤≤.求证:pppa b a b +≤+. 【答案】见解析 【解析】 【详解】对于0p =,1p =,不等式显然成立. 对于01p <<: 若0a b +≠,则1111pppppa b a b a b a b a ba ba ba b----+++=≤=+++++. ①若{}max ,a b a b +≥,则1111ppa b a--≤+,1111ppa bb--≤+.利用式①有11pp pa b a b a ba b--+≤+++ 11p pppa b a b ab--≤+=+.不等式成立.若{}max ,a b a b +<,则{}()max ,pp ppa b a b a b +≥>+.不等式也成立.最后,若0a b +=,则0p p pa b a b +≥=+.不等式也成立. 44.(2019·全国·高三竞赛)已知非常数的整系数多项式()f x 满足()()()()32324432211xx x f x x x x f x +++=-+-+.①证明:对所有正整数()8n n ≥,()f n 至少有五个不同的质因数. 【答案】见解析 【解析】 【详解】 式①等价于()()()()()()2231111x x x f x x x x f x +++=--++. ②在式②中分别令3x =-1. 则()()210f f f f -====⎝⎭⎝⎭.再在式②中令2,0x =-.则()()100f f -==. 故2-、1-、0、1()0f x =的根.则 ()()()()()()22111f x x x x x x x g x =++--+, ③其中,()g x 为实系数多项式.由式③得()()()()()()2132111f x x x x x x x g x +=++++++. ④将式③、④代入式②得()()1g x g x =+. 设()0nkk k g x a x ==∑.则()01nnkkk k k k a x a x ===+∑∑.考虑两边1n -次项系数知110n n n n a na a na --=+⇒=. 所以,()g x 为常数c .故()()()()()22111f x c x x x x x x =++---,其中,常数{}\0c Z ∈.首先证明:()()()()2118n n n n n ++-≥至少有四个不同的质因数.否则,()()()211n n n n ++-至多有三个不同的质因数2、3、()2,3p p ≠.但1n -、n 、1n +、2n +两两之间的最大公因数为1、2、3,其中两个奇数互质,则为3a 、()bp a b N +∈、.从而,两个偶数为12c +、()23dc d N +⨯∈、.故231c d -=.解得()()(),2,1,3,2c d =.因此,这两个偶数为8、6或16、18.前者不符,后者得到另两个奇数为15、17或17、19,均导致矛盾.其次,假设存在某个正整数()8n n ≥,使得21n n -+的每个质因数都是()()()211n n n n ++-的质因数,且()()()211n n n n ++-恰有四个质因数,否则,结论成立.显然,()()21,11n n n n -+-=.由()()()()21123237n n n n n n -+=+-+=+-+,知()21,11n n n -++=或3,()21,21nn n -++=或7.故()2137a b n n a b N +-+=∈、.但9|21)n n -+(不能,故{}0,1a ∈,则0b >. 由假设知2n +、1n +、n 、1n -的质因数为2、3、7、()2,3,7p p ≠.则()72n +. 考虑其中两个偶数、两个奇数的质因数集合A 、B .显然,2A ∈,2B ≥,{}3A B ⋂⊆. 故2A =或3A =且3A ∈.若{}2,3A =或{}2,7,则两个偶数为12c +、23d ⨯或12c +、27d ⨯,得231c d -=或271c d-=.故这两个偶数为16、18或16、14.前者得7 |(n+2)不能;后者使()()()211n n n n ++-有质因数2、3、5、7及13(或17),矛盾. 若{}2,A p =,则2n +为奇数,1n -为偶数. 由33|A ∈⇒(1)3|n -⇒(2)n -.故()27c n +=,3d n =,且{}21,1en n ∈+- ()2,3c d e N c d e +∈≥≥、、、. 从而,()()321,2,3d ed e -=⇒=.于是,9n =.则2117c n +=≠,矛盾.若{}2,3,7A =,则{}3,B p =,且2n +为偶数,()2,13n n +-=. 故()2372n ⨯⨯+.从而,2c n =,13d n -=,1e n p += (),3,2c d e N c d +∈≥≥、、.于是,()()231,2,1c dc d -=⇒=,矛盾.若{}2,3,A p =,则{}3,7B =,且2n +为奇数,()2,13n n +-=.故()372n ⨯+. 但(),21n n +=,则n 的奇质因数不是3、7,矛盾.45.(2019·贵州·高三竞赛)我们知道,目前最常见的骰子是六面骰,它是一颗正立方体,上面分别有一到六个洞(或数字),其相对两面之数字和必为七.显然,掷一次六面骰,只能产生六个数之一(正上面).现欲要求你设计一个“十进制骰”,使其掷一次能产生0~9这十个数之一,而且每个数字产生的可能性一样.请问:你能设计出这样的骰子吗?若能,请写出你的设计方案;若不能,写出理由.【答案】能,方案见解析 【解析】 【详解】因为不存在正十面体,所以直接产生“十进制骰”是办不到的. 但要实现“十进制骰”的要求,这样的骰子也是能设计的.即把骰子做成正二十面体,使其相对两面标同一个数字,这样0~9这十个数字就均匀分布在骰子上,当掷一次骰子时,最上面出现的数字必然是0~9这十个数字之一, 显然,每个数字出现的可能性一样故“个位骰”即为“二十面骰”.46.(2019·全国·高三竞赛)设二元函数()22,236z f x y x y y ==+-的定义域是(){}22,327,,D x y xy xy x y R =+≤∈.(1)求(),z f x y =(点(),x y ∈D )的取值范围;(2)求所有的实数a ,使得在空间直角坐标系O xyz -中,曲面(),z f x y =(点(),x y ∈D )与另一个曲面()z xy a x y =+∈R 、相交. 【答案】(1) 81,29⎡⎫-+∞⎪⎢⎣⎭(2) 8126a -≥ 【解析】 【详解】(1)当0x =时,220,0y y ≤=,()(),0,00f x y f ==;当0x ≠时,22730y y x x x ⎛⎫-+≤ ⎪⎝⎭,即1302y y x x ⎛⎫⎛⎫--≤ ⎪⎪⎝⎭⎝⎭.解得132yx≤≤. 令y t x=,则3,yt y tx x ≤≤=,()222,326f x y t x x tx =+-()22326t x tx =+- ()2326x t x t ⎡⎤=+-⎣⎦先固定t ,让x 变化.显然,当x →-∞或+∞时,(),f x y →+∞. 当2332tx t =+时,(),f x y 取得最小值. ()22296,33232t f x y t t -=-+++ 368133229≥-+-+当且仅当239273,,322929t t x y tx t =====+时等号成立. 由以上讨论可知(),f x y 的取值范围是81,29⎡⎫-+∞⎪⎢⎣⎭.(2)曲面()()(),,z f x y x y D =∈与(),z xy a x y R =+∈相交⇔方程()()(),,f x y xy a x y D =+∈有实数解 ⇔ ()()22236,x y y xy a x y D +-=+∈有实数解(),x y2222236,132x t x tx tx a t ⎧+-=+⎪⇔⎨≤≤⎪⎩有实数解(),x t ()223260,132t t x tx a t ⎧-+--=⎪⇔⎨≤≤⎪⎩有实数解(),x t ()22364320,132t t t a t ⎧∆=+-+≥⎪⇔⎨≤≤⎪⎩有实数解t 229,32132t a t t t ⎧-≥⎪⎪-+⇔⎨⎪≤≤⎪⎩(显然2320t t -+>), 221333322t a t t t -⎛⎫⇔≥--⋅≤≤ ⎪-+⎝⎭.令()2213322t g t t t t -⎛⎫=≤≤ ⎪-+⎝⎭. 欲求()g t 的最大值,只须考虑23t <≤这一情形(否则()0g t ≤,不可能是最大值). 令2(01)t k k -=<≤,则()()()23222kg t k k =+-++211231112113kk k k k =-++⎛⎫++ ⎪⎝⎭ 211231112113kk k k k ==++⎛⎫++ ⎪⎝⎭21141131134k k ==⎛⎫⎡⎤++ ⎪⎢⎥++⎝⎭⎢⎥⎣⎦211261134≤=⎡⎤⎢⎥++⎢⎥⎣⎦0>,且关于k 严格递减). 当且仅当1k =时,上式等号成立.故()g t 的最大值为126. 从而,()813326a g t -≥--≥.所以,a 的取值范围是8126a -≥.47.(2019·全国·高三竞赛)设直线与函数42y x x x =-+的图像恰有两个不同的公共点.求出所有这样的直线方程.【答案】1112y x ⎛=+ ⎝⎭【解析】 【详解】显然,直线x a =与函数42y x x x =-+的图像只有一个公共点.于是, 设直线方程为y px q =+.将其代入42y x x x =-+,得()4210x x p x q -+--=. ①方程①恰有两个不同实根,有如下3种情形:(1)()()()()4221x x p x q x u x v x Cx D -+--=--++,其中,u 、v 、C 、D R ∈,u v ≠,且24C D <.(2)()()()22421x x p x q x u x v -+--=--,其中,u 、v R ∈,且u v ≠. (3)()()()3421x x p x q x u x v -+--=--,其中,u 、v R ∈,且u v ≠.对于(1),可设()()()42221x x p x q x Ax B x Cx D -+--=++++,其中,24A B >,24C D <.展开比较系数得0A C +=,1AC B D ++=-,1BC AD p +=-,BD q =-. 由前两个方程得C A =-,21D A B =--,代入24A B >,24C D <,得 22244444B A C D A B <=<=--.所以,2844B A <-.故22221,12min ,24,4A A A AB A A ⎧-≤⎪⎧⎫-⎪<=⎨⎬⎨⎩⎭⎪⎪⎩ 则3121p BC AD A AB A =--=++-,22q BD B B A B =-=+-.直线方程为()32221y A AB A x B B A B =++-++-,其中,实数A 、B 满足221min ,24A A B ⎧⎫-<⎨⎬⎩⎭. 比如,取0A =,则12B <-;取2B =-,则1p =,2q =.因此,直线方程为2y x =+.此时,方程①为()()22210x x -+=.对于(2),可设()()24221x x p x q x Ax B -+--=++,其中,24A B >.在(1)的方程组中令A C =,B D =,得20A =,221A B +=-,21AB p =-,2B q =-. 解得0A =,12B =-,1p =,14q =-.因此,直线方程为14y x =-.对于(3),展开比较系数得30u v +=,()231u uv +=-,3231u u v p +=-,2u v q =-.由前两个方程得3v u =-,()22331u u -=-.解得u =注意到,()()2141319163p u u v u u u =++=+-=-,341312q u v u =-==,于是,()1,112p q ⎛⎫= ⎪ ⎪⎝⎭.此时,直线方程为1112y x ⎛=+ ⎝⎭. 48.(2018·全国·高三竞赛)已知12,,n x x x 为实数,且1i x ≥,对{}1,2,,x n =的子集{}12t ,,,A i i i =,定义()12t i i i S A x x x =+++.其中,规定()0S ∅=,问:从n 个这样的和中至多可以选出多少个,使得其中任何两个的差的绝对值都小于1? 【答案】n 2nC ⎡⎤⎢⎥⎣⎦【解析】 【详解】不妨设所有的0i x >.事实上,若有某个0i x <,则将i x 换作i x -,并将集合A 换作:{}()A A i i A =⋃∉'或{}()\A A i i A ='∈.故“和()S A ”变为()()S A S A x '=-,这样所有2n 个和均增加了i x -,任何两个“和”的差不变. 从而, 1i x ≥. 设12,,k A A A 是选出来的集合X 的子集,满足()()1i j S A S A -<.从而,必有各i A 互不包含.否则,设i j A A ⊆故()()()\1i j i j S A S A S A A -=≥.导出矛盾.由斯波那定理,知可选出的集合数n 2n C k ⎡⎤⎢⎥⎣⎦≤.另外,取1i x =,则{}1,2,,X n =的全部n 2n C ⎡⎤⎢⎥⎣⎦个n 2⎡⎤⎢⎥⎣⎦元子集互不包含,且对每一个i A ,有()n 2i S A ⎡⎤=⎢⎥⎣⎦.于是,()()01i j S A S A -=<.所以,集合数的最大值为n 2n C ⎡⎤⎢⎥⎣⎦.49.(2018·全国·高三竞赛)(1)若正整数n 可以表示成(),2b a a b N a b 、、∈≥)的形式,则称n 为“好数”.试求与2的正整数次幂相邻的所有好数.(2) 试求不定方程2351x y z-⨯=的所有非负整数解(),,.x y z【答案】(1)9;(2)(1,0,0),(1,1,0),(2,1,0),(3,2,0),(4,l ,1),(2,0,1). 【解析】 【详解】(1)设所求的好数为n ,(),2,2.bn a a b N a b +=∈≥≥、于是,存在正整数t (t>1),使得2 1.t b a =±显然,a 为奇数.若b 为奇数,则()()12211.t b b a aa a --=±+⋯+ ① 而121b b a a a --+⋯+是奇数个奇数相加减的结果仍然是奇数,只可能是l ,代入 式①得b=l ,这与b≥2矛盾.若b 为偶数,则()1mod4.ba =若21t b a =+,则()212mod4.t ba =+=所以,t=1.矛盾若222111b b tba a a ⎛⎫⎛⎫=-=+- ⎪⎪⎝⎭⎝⎭,但221,12b ba a ⎛⎫+-= ⎪⎝⎭, 故2129.bb a a -=⇒=综上,所求的所有好数只有一个n=9.(2)显然,x ≥1.当z=0时,若y≤1,易得方程的三组解(1,0,0),(1,1,0),(2,l ,0); 若y≥2,由(1)的结论易知此时方程只有一组解(3,2,0). 当z≥l 时,显然,2x ≥.易知当且仅当2x =(mod 4)时,()21mod5x=-;当且仅当0x =(mod 4)时,()21mod5.x=若2351x y z -⨯= ②则()21mod5x≡,此时,()0mod4.x ≡设()4.x m m N +=∈对式②两边模4得()()111mod4.y +-≡于是,y 是奇数.设()21.y l l N =+∈ 则式②变为4212351m l z +-⨯=, 即()()2221212135.mm l z +-+=⨯。

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学竞赛专题 第一讲 因式分解一、选择题1.下列由左边到右边的变形中,其中是因式分解的是( )A .(2a+3)()2a-3)=4a 2-9;B .4m 2-9=(2m+3)(2m-3)C .m 2-16+3m=(m+4)(m-4)+3m;D .2x(y+z)-3(y+z)=2xy + 2xz – 3y – 3z2.下面各式的因式分解中,正确的是( )A .-7ab – 14 + 49aby = 7ab(1- 2x + 7y);B .)3(33111x y y x y xy x n m n m n m +-=+---+ C .6)133)((2)(2)(2+--=---b a b a a b b a ; D .xy(x – y ) – x (y – x ) = x (x – y )(y – 1 )3.下面各式的因式分解中,正确的是( )A .)444221)(221()(81223b ab a b a b a b a ++++++-=+-B .)2)(2(4)(222222222xy y x xy y x y x y x -+++=-+C .22)1(4448-=--a a aD .))()(()()(22b a b a y x x y b y x a -+-=-+-4.下面各式的因式分解中,正确的是( )A .ab – a + b + 1 = (a – 1)(b + 1)B .4xy + 1 – 4)21)(21(22y x y x y x ---+=-C .3a – 3b + 3x – bx = (a – b )(3 – x )D .)21)(21(41422y x y x y x xy --++=--+-5.下列因式分解的变形中,正确的是( )A .))(1()1(22a x x a x a x --=++-B .)13)(12(61652++=++m m m m C .))(()(2222222b y a y b a y b a y ++=+⋅++D .)1)(4)(2)(1(8)3(2)3(222-+--=----x x x x x x x x二、填空题1.在代数式164)3(,)2(,144)1(2222++++-n n mn m x x 中是完全平方式的是__________。

2.若:922-+ax x 被2x – 3 除后余3,则商式是__________,且a = __________。

3.在一个边长12.75平厘米的正方形内挖去一个边长为7.25厘米的正方形,则剩下的面积就是___________。

4.乘积)1011)(911()311)(211(2222---- =________________。

5.已知一个正六位数,前三位数字与后三位数字完全相同,那么这个六位数一定能被质数___________整除。

三、解答题1.分解因式42(1)23x x +-; 42(2)29x x ++; 22(3)(1)(1)4a b ab ---2(4)23x xy x y -++-; 2222(5)(1)(1)a a a a ++++;3(6)()2(1)1m n mn m n ++---; 22(7)(1)(2)12a a a a ++++-;432(8)1256895612x x x x -+-+2.已知三角形的三条边a,b,c 适合等式:abc c b a 3333=++,请确定三角形的形状。

3.已知:三个连续奇数,它们的平方和为251,求这三个奇数。

4.已知:2x – 3 和 3x + 1是f(x) = 153223+++x bx ax 的因式,求a,b 的值。

5.证明:(1)若n 为整数,则22)12()12(--+n n 一定是8的倍数;(2)若n 为正整数时,3n - n 的值必是6的倍数;(3)四个连续自然数的积加1必为一完全平方数。

答案一、选择题1.B2.C3.D4.D5.C提示:1.依据因式分解的定义:将一个多项式分解成几个整式乘积的形式称为分解因式。

只有选项B 正确,其中选项A 、D 均为整式乘法。

2.按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正、只有选项C 正确。

3.利用公式法进行因式分解,同时注意分解因式后的最后结果必须分解彻底,只有选项D 正确,选项B 因式分解的结果并不彻底。

4.利用分组分解法同时结合公式法进行因式分解,只有选项D 正确。

5.利用十字相乘法进行因式分解,同时注意因式分解是恒等变形,只有选项C 正确,选项B 非恒等变形。

二、填空题:1.1;2.X+4.5;3.110平方厘米;4.2011; 5.7、11、13提示:1.若代数式是完全平方式,则必可利用公式法进行因式分解。

而只有(1)式=2)12(-x 是完全平方式。

2.根据题意,利用大除法: 2)3(32)3(3)3(9)3(32923222+++-+-+--+-a x a x a x a xx ax x x ∴3]2)3(3[9=+---a a = 5 ∴42)3(+=++x a x ,即:商式为x + 4,且a = 5. 3.依题意,原正方形面积为275.12厘米,挖去的正方形面积为7.25平方厘米,利用平方差公式:乘下的面积就是12.752- 7.252=(12.75+7.25)(12.75 - 7.25) = 110平方厘米4.原式222222222210110919414313212-⋅-⋅-⋅-⋅-= 201110119910845334221122222=⨯⋅⨯⋅⨯⋅⨯⋅⨯=5.依题意,设所求的站位数为:abcabc ,a,b,c 均为自然数,则abcabc c b a c b a +⨯+⨯+⨯+⨯+⨯=10101010102345)10100(1001)110)(1010()1010()1010(1032223c b a c b a c b a c b a ++=++⨯+⨯=+⨯+⨯++⨯+⨯=∵1001=7×11×13, ∵a,b,c 为自然数,∴100a + 10b + c 为自然数∴7abcabc abcabc abcabc |13,|11,|三、解答题1.分解因式:(1)十字相乘法:原式)1)(1)(3(2-++=x x x(2)配方法:原式=)32)(32(22+++-x x x x(3)配方法:原式ab b a b a 412222-+--= )1)(1()()1()2()21(222222b a ab b a ab b a ab ab b a ab b a ---++-=+--=++--+=(4)原式=y xy x x +--+322)3)(1()1()1)(3(+--=---+=y x x x y x x(5)法1:原式=23422212aa a a a a ++++++222222223234234)1()1()1()1(11232++=++++++++=++++++++=++++=a a a a a a a a a a a a a a a a a a a a a a法2:原式=2222)(12a a a a a +++++ 22222)1()()(21++=++++=a a a a a a a(6)法1:原式=1222)23(223223---+++++mn n m mn n mn n m m )1)(1()1()1()1()1()1(1122222222232233223++++-+=-++-++-++-++-+=-++-+--++-++-+=-++++=n m n m n m n m n m n n m m m n n n m m n m n n nm m nm m n m n n m n m m mn n mn n m m法2:原式=)1(21)(33n m mn n m --+-+ )1)(1()1(2]1)())[(1(222++++-+=-+-++++-+=n m n m n m n m mn n m n m n m (7)原式=122)(3)(222-++++a a a a)1)(2)(5()2)(5(222-+++=-+++=a a a a a a a a(8)反数法:原式=)(5689)1(12324x x x x +-++ )23)(32)(12)(2()6136)(252(]13)1(6][5)1(2[]65)1(56)1(12[)]1(568924)1(12[)1(5689)1(12222222222222----=+-+-=-+-+=++-+=+-+-+=+-++=x x x x x x x x xx x x x xx x x x xx x x x x x x xx x2.解,依题意:abc c b a 3333=++而abc c b a 3333-++abc c b a 3333-++))(()(3])())[((3)(3)(3]3))[((3))((222223332322=---++++=++-+⋅+-+++=-++-+=-+-++=-++-+=bc ac ab c b a c b a c b a ab c c b a b a c b a abcc b a ab b a abcc ab b a b a abcc b ab a b a∵a,b,c 为三角形的三边长 ∴a + b + c > 0 ∴0)()()(022202222220222222222222222=-+-+-=+-++-++-=---++=---++c b c a b a c bc b c ac a b ab a bc ac ab c b a bc ac ab c b a∵0)(,0)(,0)(222≥-≥-≥-c b c a b a∴只有0)(,0)(,0)(222=-=-=-c b c a b a∴a = b = c ,即三角形为等边三角形注:abc c b a 3333-++也可如下分解:原式=abc ab b a c b ab b a a 333332233223---++++))(()(3)(22233ab bc ac c b a c b a c b a ab c b a ---++++=++-++=3.解:设这三个奇数依次为n – 2 , n , n + 2,其中n 为自然数,则n > 2,则依题意: (n - 2)2 + n 2 + (n+2)2 = 251 3n 2=243 n 2=81∴ n = 9或-9当n = 9时,n – 2 = 7, n + 2 = 11;当n = - 9时,n – 2 = - 11, n + 2 = -7.所以,这三个连续奇数为7、9、11;或7、-9、-114.解:若(2x – 3 )和(3x + 1)都是f(x) = ax 2+bx 2+32x + 15的因式,则(2x – 3 )(3x + 1 ) = 6x 2-7x – 3能整除f(x)。

相关文档
最新文档