数学江苏省启东中学2017高二下学期期中考试数学理试题Word版含答案
江苏省启东中学2017-2018学年高二下学期期中考试数学(文)试题 Word版含解析

江苏省启东中学2017-2018学年度第二学期期中考试高二文科数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1. 已知集合,集合,则______.【答案】【解析】由题意结合交集的定义可得:.2. 函数的单调递减区间是______.【答案】【解析】本题考查导数及函数的单调性函数的定义域为由得令,则,解得;又则故函数的递减区间为3. 已知命题的必要而不充分条件,则实数的取值范围是______.【答案】【解析】若是的必要不充分条件,则集合是集合的子集,据此可得:实数的取值范围是.4. 若函数,则______.【答案】【解析】,,结合导数的运算法则可得:.5. 已知函数,则函数的定义域为______.【答案】【解析】函数有意义,则:,解得:,据此可得函数的定义域为.点睛:求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.6. 设曲线在处的切线与直线平行,则实数的值为 ______.【答案】【解析】由函数的解析式可得:,则函数在处的切线斜率为,结合直线平行的结论可得:,解得:.7. 函数的值域为______.【答案】【解析】函数的定义域为,则:,,,即函数的值域为.8. 函数的极大值是______.【答案】【解析】函数的定义域为,且,列表考查函数的性质如图所示:则当时函数取得极大值:.9. 若函数是偶函数,则的值为______.【答案】3【解析】设,则,函数为偶函数,则,结合题中所给函数的解析式可得:,则.点睛:正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.10. 设函数为自然对数的底数,则的极小值为______.【答案】【解析】函数的定义域为,且,..................列表考查函数的性质如图所示:则当时函数取得极小值:.11. 设函数的导函数为,若,则=______.【答案】【解析】结合导数的运算法则可得:,则,导函数的解析式为:,据此可得:.12. 某种圆柱形的饮料罐的容积为,为了使得它的制作用料最少(即表面积最小),则饮料罐的底面半径为(用含的代数式表示)______.【答案】【解析】设饮料罐的底面半径为,高为,由题意可得:,故,圆柱的表面积:,当且仅当,即时等号成立,据此可知为了使得它的制作用料最少,则饮料罐的底面半径为.点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.13. 已知函数是定义在上的偶函数,为奇函数,时,,则在区间(4,5)内满足方程的实数的值为______.【答案】【解析】∵函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,∴f(-x)=f(x),f(-x+1)=-f(x+1),∴f(2+x)=-f(-x)=-f(x),∴f(x+4)=f(x),函数的周期为,由题意可得:,则,当时,,由可得,据此可得原方程的解为:.14. 若函数有3个不同的零点,则实数的取值范围是______ .【答案】【解析】由函数的解析式可得:当时,,;当时,,;当时,,;当时,,,此时函数单调递增;则,绘制函数的图象如图所示,函数有3个不同的零点,则函数与函数有个不同的交点,观察函数图象可得:.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答. 解答时应写出文字说明、证明过程或演算步骤.15. 已知函数(1)当在上是增函数,求实数的取值范围;(2)当处取得极值,求函数上的值域.【答案】(1)(2)【解析】试题分析:(1)由题意可得, 满足题意时在区间上横成立,即在区间上横成立,据此可得(2)由题意可得,且=0,据此可得结合导函数的解析式可得在上为减函数,在上增函数,故函数的最大值函数的最小值函数的值域为.试题解析:(1),因为在上是增函数,所以在区间上横成立,即在区间上横成立,令,,在上单调增函数.所以(2) ,因为处取得极值,所以=0,得出,令,在上为减函数,在上增函数,又,函数的最大值函数的最小值所以,函数上的值域为.16. 已知函数为自然对数的底数.(1)当时,求函数在点处的切线方程;(2)求函数的单调区间.【答案】(1)(2)当时,的单调递增区间为,无减区间.当时,的增区间为,减区间为【解析】试题分析:(1)由函数的解析式可得=3,=3,则在点处的切线方程为:(2)结合函数的解析式有,分类讨论可得:当时,的单调递增区间为,无减区间.当时,的增区间为,减区间为.试题解析:(1),=3=3,函数在点处的切线方程为:,即:(2),⑴当时,恒成立,的单调递增区间为,无减区间.⑵当时, 令,,,,的单调增区间为,单调减区间为.综上:当时,的单调递增区间为,无减区间.当时,的增区间为,减区间为.点睛:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.17. 已知全集,, .(1)求集合;(2)函数,对一切,恒成立,求实数的取值范围. 【答案】(1)(2)【解析】试题分析:(1)由题意可得,,则.(2)结合(1)的结论可知原问题等价于对一切恒成立. 构造函数,令,结合导函数研究函数的单调性可得的最小值为. 则.试题解析:(1)求解一元二次不等式可得,求解分式绝对值不等式可得,.(2) 由得对一切恒成立.对一切恒成立.令,,在上单调递减,在上单调递增;的最小值为. .18. 已知命题:函数.命题:,不等式恒成立.(1)若函数的单调减区间是,求的值;(2)若函数在区间上为单调增函数,且命题为真命题,求的取值范围.【答案】(1)(2)【解析】试题分析:(1)令则,利用换元法可得函数的解析式为,结合二次函数的性质可得为真命题均为真命题命题p为真命题,讨论可得0≤m≤4,命题q为真命题,由判别式小于零可得,故m的取值范围是.试题解析:(1)令则,得出,所以,为真命题均为真命题命题p为真命题:若m=0,符合;若m≠0,得出m>0,,即0<m≤4,∴0≤m≤4,命题q为真命题:即.所以,m的取值范围是.19. 为了庆祝江苏省启东中学九十周年校庆,展示江苏省启东中学九十年来的办学成果及优秀校友风采,学校准备校庆期间搭建一个扇形展览区,如图,是一个半径为2百米,圆心角为的扇形展示区的平面示意图.点C是半径上一点(异于两点),点D是圆弧上一点,且.为了实现“以展养展”现在决定:在线段、线段及圆弧三段所示位置设立广告位,经测算广告位出租收入是:线段处每百米为元,线段及圆弧处每百米均为元.设弧度,广告位出租的总收入为y元.(1)求y关于x的函数解析式,并指出该函数的定义域;(2)试问为何值时,广告位出租的总收入最大,并求出其最大值.【答案】(1),定义域为;(2)广告位出租的总收入的最大值为元.【解析】试题分析:(1)由题意结合正弦定理可得,结合题意可知函数的解析式为,定义域为;(2)结合(1)中函数的解析式:求导可得,利用导函数研究函数的单调性可得在处取得最大值.试题解析:(1)因为∥,所以,在△中,,,百米,由正弦定理得,得百米,百米.又圆弧长为百米.所以,.(2)记,则,令,得.当x变化时,,的变化如下表:所以在处取得极大值,这个极大值就是最大值.即.答:(1),定义域为;(2)广告位出租的总收入的最大值为元.20. 定义可导函数的弹性函数为;在区间D上,若函数的弹性函数值大于1,则称在区间D上具有弹性,相应的区间D也称作的弹性区间.(1)若,求的弹性函数及弹性函数的零点;(2)对于函数=(其中e为自然对数的底数),求的弹性区间D.【答案】(1)弹性函数为.其零点为.(2)【解析】试题分析:(1)由函数的解析式有结合弹性函数的定义可得的弹性函数为.其零点为.⑵由题意可得弹函数的解析式为,此不等式等价于不等式组:(Ⅰ)或(Ⅱ).分类讨论可知因不等式组(Ⅰ)的解为.不等式组(Ⅱ)无实数解.即的弹性区间.试题解析:(1),.令,解得,所以弹性函数的零点为.⑵,函数定义域为。
江苏省启东中学2017-2018学年高二数学下学期第二次月考试题 理

江苏省启东中学2017-2018学年度第二学期月考高二理科数学试卷数学I 2018.06(满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 是 ▲ . 2.函数)2lg(1x y -=的定义域是 ▲ .3.函数y =12x 2-ln x 的单调递减区间是 ▲ .4.曲线y =sin xsin x +cos x +1在点)23,4π(M 处的切线的斜率是 ▲ .5.已知命题p :若函数2()||f x x x a =+-是偶函数,则0a =;命题q :(0,)m ∀∈+∞,关于x 的方程2210mx x -+=有解.下列命题为真命题的是 ▲ .(填序号)①p q ∨;②p q ∧;③()p q ⌝∧;④()()p q ⌝∨⌝6.若函数f (x )=k -2x1+k ·2x 在定义域上为奇函数,则实数k = ▲ .7.已知x x g 21)(-=,)0(1)]([22≠-=x xx x g f ,则)21(f = ▲ . 8.已知f (x )是定义在R 上的奇函数,当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示是 ▲ .9.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是 ▲ .10.“0a ≤”是“函数()1|()|f x ax x -=在区间(0,)+∞内单调递增”的 ▲ 条件。
(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”) 11.已知函数()f x 是定义在R 上的周期为4的奇函数,当02≤<-x 时, a x f x +=2)(,则=⎪⎭⎫ ⎝⎛-213f ▲ . 12.已知函数f (x )=x 2(x -a ).若若存在(2,3),∈t s , 且t s ≠,使得)()(t f s f ≠成立,则实数a 的取值范围是 ▲ .13.定义在R 上的奇函数()f x 的导函数满足()()'f x f x <,且()()31f x f x ⋅+=-, 若ef 1)2018(-=,则不等式1)(+<x e x f 的解集是 ▲ .14. 定义域为R 的函数f (x )满足f (x+2)=3f (x ),当[0,2]x ∈时,x x x f 2)(2-=, 若[4,2]x ∈--时,⎪⎭⎫ ⎝⎛-≥t t x f 3181)(恒成立,则实数t 的取值范围是 ▲ . 二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知命题p :指数函数x a x f )62()(-=在R 上是单调减函数;命题q :关于x 的方程012322=++-a ax x 的两根均大于3.若p 或q 为真,p 且q 为假,求实数a 的范围.16.(本小题满分14分)已知函数,R (11lg )(∈--=k x kx x f 且k >0). (1) 求函数)(x f 的定义域;(2) 若函数)(x f 在[10,+∞)上单调递增,求k 的取值范围.17.(本小题满分15分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.18.(本小题满分15分)已知函数)0(32ln )(≠+-=a ax x a x f . (1)设1-=a ,求函数)(x f 的极值;(2)在(1)的条件下,若函数m x f x x x g +'+=)(31)(23(其中)(x f '为)(x f 的导数)在区间(1,3)上不是单调函数,求实数m 的取值范围.19.(本小题满分16分)已知某手机品牌公司生产某款手机的年固定成本为40万元,每生产1万部还需另投入16万元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.20.(本小题满分16分)已知函数().ln xxxf=(1)求函数()x f的极值点;(2)若直线l过点(0,—1),并且与曲线()x fy=相切,求直线l的方程;(3)设函数()()()1--=xaxfxg,其中Ra∈,求函数()x g在[]e,1上的最小值.(其中e为自然对数的底数)数学Ⅱ(附加题)1.(本小题满分10分)求下列函数的导数:(1)y=ln xx2+1; (2)y=ln(2x-5).2.(本小题满分10分)为了做好阅兵人员的运输,从某运输公司抽调车辆支援,该运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有多少种不同的抽调方法?3.(本小题满分10分)在一袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4),现从袋中任取一球,X 表示所取球的标号.(1)求X 的分布列、期望;(2)若Y =aX +b ,E (Y )=1,V (Y )=11,试求a ,b 的值.4.(本小题满分10分)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2.(1)若n =11,求a 6+a 7+a 8+a 9+a 10+a 11的值;(2)设b k =2k a k (k ∈N ,k ≤n ),S n =b 0+b 1+b 2+…+b n ,求S n 的值.江苏省启东中学2017-2018学年度第二学期月考理数学I一、填空题:1.{0,2,4};2.)2,1()1,(⋃-∞;3. (0,1];4. 21;5.①④;6. ±1;7. 15;8.()()5,05,-+∞;9. (-∞,2];10.充分必要;11. 424-;12. ⎝ ⎛⎭⎪⎫3,92 ; 13.),2(+∞- ;14.10t -≤<或3t ≥二、解答题: 15.(本小题满分14分)已知命题p :指数函数f (x )=(2a -6)x在R 上是单调减函数;命题q :关于x 的方程x 2-3ax +2a 2+1=0的两根均大于3.若p 或q 为真,p 且q 为假,求实数a 的范围. 解:由p 真得0<2a -6<1,即3<a <72; ……………4分由q 真得⎩⎪⎨⎪⎧9a 2-4(2a 2+1)≥0,3a2>3,9-9a +2a 2+1>0,解得a >52;……………8分若p 或q 为真,p 且q 为假,则p 、q 一真一假.若p 真q 假,则⎩⎪⎨⎪⎧3<a<72,a ≤52.解集为∅; ……………10分若p 假q 真,则⎩⎪⎨⎪⎧a≤3或a≥72,a>52,解得52<a ≤3或a ≥72. ……12分综上所述52<a ≤3或a ≥72. ……………14分16.(本小题满分14分)已知函数f (x )=lg kx -1x -1(k ∈R ,且k >0).(1) 求函数f (x )的定义域;(2) 若函数f (x )在[10,+∞)上单调递增,求k 的取值范围. 解:(1) 由kx -1x -1>0,k >0,得x -1k x -1>0,当0<k <1时,得x <1或x >1k;当k =1时,得x ∈R 且x ≠1;当k >1时,得x <1k或x >1.综上,当0<k <1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1或x>1k ;当k ≥1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1k 或x>1. …………… 7分(2) 由函数f (x )在[10,+∞)上单调递增,知10k -110-1>0,∴ k >110.又f (x )=lg kx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1,由题意,对任意的x 1、x 2,当10≤x 1<x 2,有f (x 1)<f (x 2),即lg ⎝ ⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1,得k -1x 1-1<k -1x 2-1(k -1)(1x 1-1-1x 2-1)<0. ∵ x 1<x 2,∴ 1x 1-1>1x 2-1,∴ k -1<0,即k <1.综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫110,1. ……………14分 17.(本小题满分15分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0. ……………5分(2)f (x )为偶函数. ……………7分 证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数. ……………10分 (3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数, ∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数. ∴0<|x -1|<16,解之得-15<x <17且x ≠1.∴x 的取值范围是{x |-15<x <17且x ≠1}. ……………15分 18.(本小题满分15分)已知函数)0(32ln )(≠+-=a ax x a x f . (1)设1-=a ,求函数)(x f 的极值;(2)在(1)的条件下,若函数m x f x x x g +'+=)(31)(23(其中)(x f '为)(x f 的导数)在区间(1,3)上不是单调函数,求实数m 的取值范围.解:(1)当1-=a ,32ln )(++-=x x x f )0(>x ,'1()2f x x -=+, …2分∴ ()f x 的单调递减区间为(0,21),单调递增区间为(21,)∞+ ………4分111() ln 23ln 2 4.222f x f =-+⨯+=+的极小值是(). …………7分(2)23)21(31)(x m x x x g ++-+=,1)24()(2'-++=∴x m x x g , 1)0(31)('-=g x g )上不是单调函数,且,在区间( , ………………9分⎪⎩⎪⎨⎧><∴0)3(0)1(''g g ⎩⎨⎧>+<+∴0620024m m 即:2310-<<-m . …………………12分m 的取值范围10(,2)3-- . ………14分19.(本小题满分16分)已知某手机品牌公司生产某款手机的年固定成本为40万元,每生产1万部还需另投入16万元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润. 解 (1)当0<x ≤40时,W =xR (x )-(16x +40)=-6x 2+384x -40, 当x >40时,W =xR (x )-(16x +40)=-40 000x-16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40. ……………8分(2)①当0<x ≤40时,W =-6(x -32)2+6 104,所以W max =W (32)=6 104; ……………10分 ②当x >40时,W =-40 000x-16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600,当且仅当40 000x=16x ,即x =50∈(40,+∞)时,取等号,……12分所以W 取最大值为5 760.综合①②知,当x =32时,W 取得最大值6 104万元.…………16分 20.(本小题满分16分) 已知函数().ln x x x f = (1)求函数()x f 的极值点;(2)若直线l 过点(0,—1),并且与曲线()x f y =相切,求直线l 的方程;(3)设函数()()()1--=x a x f x g ,其中R a ∈,求函数()x g 在[]e ,1上的最小值.(其中e 为自然对数的底数)解:(1)()x x x f ,1ln +='>0. 而()x f '>0⇔lnx+1>0⇔x >()x f e ',1<0⇔1ln +x <0⇔0<x <,1e所以()x f 在⎪⎭⎫ ⎝⎛e 1,0上单调递减,在⎪⎭⎫ ⎝⎛+∞,1e上单调递增. 所以e x 1=是函数()x f 的极小值点,极大值点不存在.…………………5分(2)设切点坐标为()00,y x ,则,ln 000x x y =切线的斜率为,1ln 0+x所以切线l 的方程为()().1ln ln 0000x x x x x y -+=-………………7分又切线l 过点()1,0-,所以有()().01ln ln 10000x x x x -+=--解得.0,100==y x 所以直线l 的方程为.1-=x y …………………10分(3)()()1ln --=x a x x x g ,则().1ln a x x g -+='()x g '<0a x -+⇔1ln <0⇔0<x <()x g e a '-,1>0x ⇔>,1-a e 所以()x g 在()1,0-a e上单调递减,在()+∞-,1a e上单调递增.①当,11≤-a e 即1≤a 时,()x g 在[]e ,1上单调递增, 所以()x g 在[]e ,1上的最小值为().01=g ……12分②当1<1-a e <e ,即1<a <2时,()x g 在[)1,1-a e上单调递减,在(]e ea ,1-上单调递增.()x g 在[]e ,1上的最小值为().11---=a a e a e g ……14分 ③当,1-≤a e e 即2≥a 时,()x g 在[]e ,1上单调递减, 所以()x g 在[]e ,1上的最小值为().ae a e e g -+=综上,当1≤a 时,()x g 的最小值为0;当1<a <2时,()x g 的最小值为1--a e a ;当2≥a 时,()x g 的最小值为.ae e a -+ ………………16分数学Ⅱ(附加题)1.(本小题满分10分)求下列函数的导数:(1)y =ln xx 2+1; (2)y =ln(2x -5).解 (1)y ′=xx 2+-ln x x 2+x 2+2=1xx 2+-2x ln xx 2+2=x 2+1-2x 2ln x x x 2+2.(2)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.2.(本小题满分10分)为了做好阅兵人员的运输,从某运输公司抽调车辆支援,该运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有多少种不同的抽调方法?解 在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有C 17种抽调方法;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A 27种抽调方法;一类是从3个车队中各抽调1辆,有C 37种抽调方法.故共有C 17+A 27+C 37=84种抽调方法.3.(本小题满分10分)在一袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4),现从袋中任取一球,X 表示所取球的标号.(1)求X 的分布列、期望;(2)若Y =aX +b ,E (Y )=1,V (Y )=11,试求a ,b 的值. 解:(1)X 的取值为0,1,2,3,4,其分布列为所以E (X )=0×12+1×20+2×10+3×20+4×5=1.5,(2)由V (Y )=a 2V (X )得2.75a 2=11,得a =±2,又E (Y )=aE (X )+b , 所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4, 所以⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4.4.(本小题满分10分)设(1+x )n=a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2.(1)若n =11,求a 6+a 7+a 8+a 9+a 10+a 11的值;(2)设b k =2k a k (k ∈N ,k ≤n ),S n =b 0+b 1+b 2+…+b n ,求S n 的值. 解:(1)因为a k =C kn ,当n =11时,a 6+a 7+a 8+a 9+a 10+a 11=C 611+C 711+C 811+C 911+C 1011+C 1111 =12(C 011+C 111+…+C 1011+C 1111)=210=1 024. (2)左边=21111111111111[(1)]n n n n n kk k k k nn n n n k k k k k k C knC n kC n C k C --------========+-∑∑∑∑∑. 1212122222[2(1)][2(1)]2(1)2n n n k n k n n n n k k n n Cn n C n n n --------===+-=+-=+-∑∑ 2(1)2n n n -=+证法二求导积分赋值法:1121(1)2n n n n n n n x C C x nC x --+=++⋅⋅⋅+ 两边同时乘以x 1122(1)2n n n n n n nx x C x C x nC x -+=++⋅⋅⋅+两边再对x 求导可得2112221(1)(1)(1)2n n n n n n n n n x n x C C x n C x ----+++=++⋅⋅⋅+令1x =可得22212223212()2123(1)n n n n n n n n n n C C C n C n C --+=++++-+L。
江苏省启东中学2017-2018学年高二下学期第二次月考数

江苏省启东中学2017~2018学年度第二学期高二创新班月考 数学试卷 2018.5.27数学I本试卷均为非选择题( 第1题~第20题,共20题) .本卷满分为160分,考试时间为120分钟.一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题..纸.相应位置上...... 1.抛物线24y x =的准线方程为 .2.如果从不包括大、小王的52张扑克牌中随机抽取一张,则取到黑色牌的概率是 . 3.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为 .4.若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为 .5.双曲线221412x y -=上一点M 到它的右焦点的距离是3,则点M 的横坐标是 .6.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为 .7.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 . 8.记函数f (x )=4-3x -x 2的定义域为D .若在区间[-5,5]上随机取一个数x ,则x ∈D 的概率为 .9.在平面区域{(x ,y ) |0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为 .10.随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则标准差为 . 11.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮命中率为0.6,且各次投篮是否投中相互独立,则该同学透过这次测试的概率为 .12.盒中共有9个球,其中4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.从盒中随机取出4个球,其中红球、黄球、绿球的个数分别记为1x ,2x ,3x ,随机变量X 表示1x ,2x ,3x 中的最大数,则X 的数学期望()E X = .13.在平面直角坐标系xOy 中,F 1,F 2分别为椭圆22221y x a b+=(0a b >>)的左、右焦点,B ,C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交点为D . 若127cos F BF ∠=,则直线CD 的斜率为 .14.设实数x ,y 满足2214x y -=,则234x xy -的最小值是 .二、解答题:本大题共6小题,共计90分,请在答题..纸.指定区域....内作答.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知集合A ={-2,0,1,3},在平面直角坐标系中,点M 的坐标(x ,y )满足x ∈A ,y ∈A .⑴请列出点M 的所有坐标; ⑵求点M 不在y 轴上的概率.16.(本小题满分14分)如图,F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A是椭圆C的上顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.⑴求椭圆C的离心率;⑵已知△AF1B的面积为403,求a,b的值.17.(本小题满分14分)在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0) .(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2-p,-p);②求p的取值范围.18.(本小题满分16分)已知关于x的二次函数f(x)=b2x2-(a+1)x+1.⑴若a,b分别表示将一质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求y=f(x)恰有一个零点的概率;⑵若a,b∈[1,6],求满足y=f(x)有零点的概率.19.(本小题满分16分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.⑴若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的概率分布及数学期望;⑵商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.20.(本小题满分16分)如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,其离心率e =12,左准线方程为x =-8.⑴求椭圆的方程;⑵过F 1的直线交椭圆于A ,B 两点,I 1,I 2分别为△F 1AF 2,△F 1BF 2的内心. ①求四边形F 1I 1F 2I 2与△AF 2B 的面积比;②是否存在定点C ,使CA ―→·CB ―→为常数?若存在,求出点C 的坐标;若不存在,说明理由.数学Ⅱ(附加题)本试卷均为非选择题(第21题~第23题).本卷满分为40分,考试时间为30分钟. 21.【选做题】本题包括A 、B 两小题,解答时应写出文字说明、证明过程或演算步骤.A.(本小题满分10分)证明等式:12312323(1)!1nn A A A nA n +++=+- .B.(本小题满分10分)某运动队有男运动员6名,女运动员4名,若选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员.【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)将5个小球放入三个不同的盒子中.⑴若小球完全相同,且每个盒子至少放一个球,求有多少种放法?⑵若小球各不相同,且每个盒子至少放一个球,求有多少种放法?⑶若小球完全相同,盒子也完全相同,求有多少种放法?23.(本小题满分10分)设4k S =12a a ++⋅⋅⋅4k a +()*k ∈N ,其中{}01i a ∈,(i =1,2,⋅⋅⋅,4k ).当4k S 除以4的余数是b (b =0,1,2,3)时,数列1a ,2a ,⋅⋅⋅,4k a 的个数记为()m b .(1)当2k =时,求m (1)的值;(2)求m (3)关于k 的表达式,并化简.。
江苏省启东中学2016-2017学年高二数学理科周考卷二(教师版)Word版含答案

江苏省启东中学2016-2017学年度第一学期高二数学理科周考卷二 命题人:陈高峰一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 直线l 的倾斜角α满足21sin =α,则l 的斜率为 ▲ .33± 2. 过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为 ▲ .13.若直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么直线l 的斜率是 ▲ .31- 4. 已知实数x 、y 满足2x +y +5=0,那么x 2+y 2的最小值为 ▲ .55.若点P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是 ▲ .03=--y x6.直线mx +y +m +1=0与圆x 2+y 2=2的位置关系是 ▲ .相切或相交7.若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为 ▲ .),2(+∞8.若圆的方程为x 2+y 2+kx+2y+k 2=0,那么当圆面积最大时,圆心坐标为 ▲ .9.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 ▲ .10.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a = ▲ .111.已知定点(1,2)M -,动点N 在单位圆221x y +=上运动,以OM ,ON 为邻边作平行四边形OMPN ,则点P 到直线34100x y ++=距离的取值范围是 ▲ .[2,4]12.已知A (x 1,y 1),B (x 2,y 2)是圆x 2+y 2=2上两点,O 为坐标原点,且∠AOB =120°,则x 1x 2+y 1y 2= ▲ .1-13.已知函数y =1-(x -1)2,x ∈[1,2],对于满足1<x 1<x 2<2的任意x 1,x 2给出下列结论:①f (x 2)-f (x 1)>x 2-x 1;②x 2f (x 1)>x 1f (x 2);③(x 2-x 1)[f (x 2)-f (x 1)]<0;④(x 2-x 1)[f (x 2)-f (x 1)]>0. 其中正确结论的序号是 ▲ .②③14.已知圆O : x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为▲________.[2-22,2+2 2]二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).求圆心C在l1上且与直线l2相切于点P的圆的方程.解:设圆心为C(a,b),半径为r,依题意得b=-4a.又PC⊥l2,直线l2的斜率k2=-1,∴过P,C两点的直线的斜率k PC=-2-(-4a)3-a=1,解得a=1,b=-4,r=|PC|=2 2.故所求圆的方程为(x-1)2+(y+4)2=8.16.(本小题满分14分)已知直线l经过直线2x+y-5=0与x-2y=0的交点,(1)点A(5,0)到l的距离为3,求l的方程;(2)求点A(5,0)到l的距离的最大值.解:(1)经过两已知直线交点的直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,∴|10-5λ-5|(2+λ)2+(1-2λ)2=3.解得λ=2或λ=12.∴l的方程为x=2或4x-3y-5=0.(2)由{2x+y-5=0,x-2y=0,解得交点P(2,1),如图,过P作任一直线l,设d为点A到l的距离,则d≤P A(当l⊥P A时等号成立).∴d max=P A=10.17.(本小题满分15分)已知圆M过两点E(1,-1),F(-1,1),且圆心M在直线x+y-2=0上.(1)求圆M的方程;(2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB面积的最小值.解:(1)设圆M的方程为(x-a)2+(y-b)2=r2(r>0),根据题意得(1-a)2+(-1-b)2=r2,(-1-a)2+(-1-b)2=r2,a+b-2 = 0解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)由题意知,四边形P AMB 的面积为S =S △P AM +S △PBM =12AM ·P A +12BM ·PB . 又AM =BM =2,P A =PB ,所以S =2P A ,而P A =PM 2-AM 2=PM 2-4,即S =2PM 2-4.因此要求S 的最小值,只需求PM 的最小值即可,即在直线3x +4y +8=0上找一点P ,使得PM 的值最小,所以PM min =|3×1+4×1+8|32+42=3, 所以四边形P AMB 面积的最小值为S min =2[(PM )min ]2-4=232-4=2 5.18.(本小题满分15分) 已知圆C :(x +1)2+y 2=4和圆外一点A (1,23),(1)若直线m 经过原点O ,且圆C 上恰有三个点到直线m 的距离为1,求直线m 的方程;(2)若经过A 的直线l 与圆C 相切,切点分别为D ,E ,求切线l 的方程及D 、E 两切点所在的直线方程.解:(1)圆C 的圆心为(-1,0),半径r =2,由于圆C 上恰有三个点到直线m 的距离为1,则圆心到直线m 的距离恰为1,由于直线m 经过原点,圆心到直线m 的距离最大值为1. 所以满足条件的直线就是经过原点且垂直于OC 的直线,即y 轴,所以直线方程为x =0.(2)设直线方程为y -23=k (x -1),则d =|-2k +23|1+k 2=2, 解得k =33,所求直线为y -23=33(x -1),即3x -3y +53=0, 斜率不存在时,直线方程为x =1, ∴切线l 的方程为x =1或3x -3y +53=0,过点C 、D 、E 、A 有一外接圆,x 2+(y -3)2=4,即x 2+y 2-23y -1=0,过切点的直线方程为x +3y -1=0.19.(本小题满分16分)在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆Q 相交于不同的两点A ,B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA →+OB →与PQ →共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可化为(x -6)2+y 2=4,其圆心为Q (6,0).过点P (0,2)且斜率为k 的直线方程为y =kx +2.代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A ,B ,所以Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为(-34,0). (2)设A (x 1,y 1),B (x 2,y 2),则OA →+OB →=(x 1+x 2,y 1+y 2).由方程①,得x 1+x 2=-4(k -3)1+k 2,② 又∵y 1+y 2=k (x 1+x 2)+4.③而P (0,2),Q (6,0),PQ →=(6,-2),所以OA →+OB →与PQ →共线等价于(x 1+x 2)=-3(y 1+y 2),将②③代入上式,解得k =-34. 由(1)知k ∉(-34,0),故没有符合题意的常数k .20.(本小题满分16分)在平面直角坐标系xOy 中,已知圆C 经过A (0,2),O (0,0),D (t,0),(t >0)三点,M 是线段AD 上的动点,l 1,l 2是过点B (1,0)且互相垂直的两条直线,其中l 1交y 轴于点E ,l 2交圆C 于P 、Q 两点.(1)若t =PQ =6,求直线l 2的方程;(2)若t 是使AM ≤2BM 恒成立的最小正整数,求三角形EPQ 的面积的最小值. 解:(1)由题意可知,圆C 的直径为AD ,所以圆C 方程为:(x -3)2+(y -1)2=10.设l 2方程为:y =k (x -1),则(2k -1)21+k 2+32=10,解得k 1=0,k 2=43,当k =0时,直线l 1与y 轴无交点,不合,舍去.所以k =43,此时直线l 2的方程为4x -3y -4=0. (2)设M (x ,y ),由点M 在线段AD 上,得x t +y 2=1, 即2x +ty -2t =0.由AM ≤2BM ,得⎝⎛⎭⎫x -432+⎝⎛⎭⎫y +232≥209. 依题意知,线段AD 与圆⎝⎛⎭⎫x -432+⎝⎛⎭⎫y +232≥209至多有一个公共点, 故⎪⎪⎪⎪83-83t 4+t 2≥253,解得t ≥16-10311或t ≥16+10311. 因为t 是使AM ≤2BM 恒成立的最小正整数,所以t =4. 所以圆C 方程为:(x -2)2+(y -1)2=5(i) 当直线l 2:x =1时,直线l 1的方程为y =0,此时,S △EPQ =2; (ii) 当直线l 2的斜率存在时,设l 2的方程为:y =k (x -1)(k ≠0),则l 1的方程为:y =-1k(x -1),点E ⎝⎛⎭⎫0,1k .所以BE =1+1k 2. 又圆心C 到l 2的距离为|k +1|1+k 2,所以PQ =25-⎝ ⎛⎭⎪⎫|k +1|1+k 22=24k 2-2k +41+k 2. 故S △EPQ =12BE ·PQ =121+1k 2·24k 2-2k +41+k 2 =4k 2-2k +4k 2= 4k 2-2k +4≥152. 因为152<2,所以(S △EPQ )min =152.。
2017年江苏省南通市启东中学高二下学期期中数学试卷与解析答案(理科)

2016-2017学年江苏省南通市启东中学高二(下)期中数学试卷(理科)一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题纸相应位置上.1.(5分)已知全集U={﹣1,2,3,a},集合M={﹣1,3}.若∁U M={2,5},则实数a的值为.2.(5分)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为.3.(5分)随机变量X的概率分布规律为P(X=k)=,k=1,2,3,4,其中c是常数,则P(<X<)的值为.4.(5分)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是.5.(5分)我市开展的“魅力教师”学生原创网文大赛,各校上传文章的时间为3月1日到30日,评委会把各校上传的文章按5天一组分组统计,绘制了频率分布直方图(如图).已知从左至右各长方形的高的比为2:3:4:6:4:1,第二组的频数为180.那么本次活动收到的文章数是.6.(5分)曲线y=x3﹣2x+4在(1,3)处的切线的倾斜角为.7.(5分)已知命题p:∃x∈[0,1],a≤e x,命题q:∀x∈R,x2+x+a>0,若命题p∧q是真命题,则实数a的取值范围是.8.(5分)下列有关命题的说法中正确的是.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件;③命题“存在x∈R,使得x2+x+1=0”的否定是“对任意的x∈R,均有x2+x+1<0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题.9.(5分)在0,1,2,3,…,9这十个自然数中,任取三个不同的数字.则组成的三位数中是3的倍数的有个.10.(5分)学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节课至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有种.11.(5分)已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有种.12.(5分)2016年国庆节前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是.13.(5分)已知,则的值是.14.(5分)=.二、解答题:本大题共6小题,共计90分,请在答题纸指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(15分)4名男同学和3名女同学站成一排照相,计算下列情况各有多少种不同的站法?(1)男生甲必须站在两端;(2)两名女生乙和丙不相邻;(3)女生乙不站在两端,且女生丙不站在正中间.16.(15分)记函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数g(x)=的定义域为集合B.(1)求①A∩B;②(∁R A)∪B;(2)若C={x|(x﹣m+1)(x﹣2m﹣1)<0},C⊆B,求实数m的取值范围.17.(15分)对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.p:f(x)=m+2x为定义在[﹣1,2]上的“局部奇函数”;q:曲线g(x)=x2+(5m+1)x+1与x轴交于不同的两点;若“p∧q”为假命题,“p∨q”为真命题,求m的取值范围.18.(15分)某房屋开发公司根据市场调查,计划在2017年开发的楼盘中设计“特大套”、“大套”、“经济适用房”三类商品房,每类房型中均有舒适和标准两种型号.某年产量如表:若按分层抽样的方法在这一年生产的套房中抽取50套进行检测,则必须抽取“特大套”套房10套,“大套”15套.(1)求x,y的值;(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:9.0 9.2 9.5 8.8 9.6 9.7现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为ξ,求ξ的分布列及数学期望.19.(15分)已知数列{a n}的前n项和为S n,数列是公比为2的等比数列.求证:数列{a n}成等比数列的充要条件是a1=3.20.(15分)设函数,(1)①当m=2时,求f(4,y)的展开式中二项式系数最大的项;②若,且a1=﹣12,求;(2)利用二项式定理求的值(n≥1,n∈N*).2016-2017学年江苏省南通市启东中学高二(下)期中数学试卷(理科)参考答案与试题解析一、填空题:本题共14小题,每小题5分,共70分.请把答案填写在答题纸相应位置上.1.(5分)已知全集U={﹣1,2,3,a},集合M={﹣1,3}.若∁U M={2,5},则实数a的值为5.【解答】解:∵集合M={﹣1,3},∴∁U M={2,5}={2,a},故a=5,故答案为:5.2.(5分)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为482.【解答】解:∵样本中编号最小的两个编号分别为007,032,∴样本数据组距为32﹣7=25,则样本容量为=20,则对应的号码数x=7+25(n﹣1),当n=20时,x取得最大值为x=7+25×19=482,故答案为:482.3.(5分)随机变量X的概率分布规律为P(X=k)=,k=1,2,3,4,其中c是常数,则P(<X<)的值为.【解答】解:∵P(X=k)=)=,k=1,2,3,4,∴=1,∴c=,∵P(<X<)=P(X=1)+P(X=2)=;4.(5分)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是.【解答】解:由题意知,本题是一个古典概型,试验发生包含的事件是从中随机取出2个小球,共有C52=10种结果,满足条件的事件是取出的小球标注的数字之和为3或6,可以列举出所有的事件:1,2;1,5;2,4,共有3种结果,根据古典概型概率公式得到P=,故答案为:5.(5分)我市开展的“魅力教师”学生原创网文大赛,各校上传文章的时间为3月1日到30日,评委会把各校上传的文章按5天一组分组统计,绘制了频率分布直方图(如图).已知从左至右各长方形的高的比为2:3:4:6:4:1,第二组的频数为180.那么本次活动收到的文章数是1200.【解答】解:∵频率分布直方图中,从左至右各长方形的高的比为2:3:4:6:4:1,且二组的频数为180,∴本次活动收到的文章数是180÷=1200.故答案为:1200.6.(5分)曲线y=x3﹣2x+4在(1,3)处的切线的倾斜角为45°.【解答】解:y′=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.7.(5分)已知命题p:∃x∈[0,1],a≤e x,命题q:∀x∈R,x2+x+a>0,若命题p∧q是真命题,则实数a的取值范围是<a≤e.【解答】解∵命题p:∃x∈[0,1],a≤e x∴若p为真,那么a≤(e x)max∴a≤e又∵命题q:∀x∈R,x2+x+a>0,∴若q为真,那么△=1﹣4a<0∴∵命题p∧q是真命题∴p真,q真综上,实数a的取值范围是:<a≤e故答案为:<a≤e8.(5分)下列有关命题的说法中正确的是④.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件;③命题“存在x∈R,使得x2+x+1=0”的否定是“对任意的x∈R,均有x2+x+1<0”;④命题“若x=y,则sinx=siny”的逆否命题为真命题.【解答】解:①命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”;故①错误,②由x2﹣5x﹣6=0得x=﹣1或x=6,则“x=﹣1”是“x2﹣5x﹣6=0”的充分不必要条件;故②错误③命题“存在x∈R,使得x2+x+1=0”的否定是“对任意的x∈R,均有x2+x+1≠0”;故③错误,④命题“若x=y,则sinx=siny”为真命题.,则命题的逆否命题为真命题.故④正确,故答案为:④.9.(5分)在0,1,2,3,…,9这十个自然数中,任取三个不同的数字.则组成的三位数中是3的倍数的有228个.【解答】解:要想组成的三位数能被3整除,把0,1,2,3,…,9这十个自然数中分为三组:0,3,6,9;1,4,7;2,5,8.若每组中各取一个数,含0,共有C31C31C21A22=36种;若每组中各取一个数不含0,共有C31C31C31A33=162种;若从每组中各取三个数,共有3A33+C32A22A22=30种.所以组成的三位数能被3整除,共有36+162+30=228种.故答案为:228.10.(5分)学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节课至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有30种.【解答】解:根据题意,由于4科的专题讲座每科一节课,每节至少有一科,必有两科在同一节,先从4个专题讲座中任选2个看作整体,然后与其他2个讲座全排列,共C42A33=36种情况,再从中排除数学、理综安排在同一节的情形,将数学、理综看成一个整体,然后与其他2个讲座全排列,共A33=6种情况,故总的方法种数为:36﹣6=30;故答案为:3011.(5分)已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有18种.【解答】解:根据题意,分2步进行分析:①、对于A、B、C区域,三个区域两两相邻,种的植物都不能相同,将3种不同的植物全排列,安排在A、B、C区域,有A33=6种情况,②、对于D、E区域,分2种情况讨论:若A,E种的植物相同,则D有2种种法,若A,E种的植物不同,则E有1种情况,D也有1种种法,则D、E区域共有2+1=3种不同情况,则不同的种法共有6×3=18种;故答案为:18.12.(5分)2016年国庆节前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是.【解答】解:设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,它们第一次闪亮的时候相差不超过2秒,则|x﹣y|≤2,由几何概型可得所求概率为上述两平面区域的面积之比,由图可知所求的概率为:;故答案为:.13.(5分)已知,则的值是()2018.【解答】解:∵(x+1)2(x+2)2016=a0+a1(x+2)+a2(x+2)+…+a2018(x+2)2018,∴令x=﹣2,得a0=0再令x=﹣,得到a0+=(﹣+1)2(﹣+2)2016=()2018,∴=,故答案为:()2018,14.(5分)=.【解答】解:C n m﹣1===C n+1m,则1=C n+11,Cn1=Cn+12,…,Cnn=Cn+1n+1,则=[(﹣1)0C n+11+(﹣1)1C n+11+(﹣1)2C n+13+…+(﹣1)n C n+1n+1]=﹣[(﹣1)1C n+11+(﹣1)2C n+12+(﹣1)3C n+13+…+(﹣1)n+1C n+1n+1]=﹣[(1﹣1)n﹣1]=.二、解答题:本大题共6小题,共计90分,请在答题纸指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(15分)4名男同学和3名女同学站成一排照相,计算下列情况各有多少种不同的站法?(1)男生甲必须站在两端;(2)两名女生乙和丙不相邻;(3)女生乙不站在两端,且女生丙不站在正中间.【解答】解:(1)男生甲必须站在两端,其余的进行全排列即可,故有=1440种.(2)利用插空法,先排除乙丙之外的另外5人,然后在这5人形成的6个间隔中插入乙和丙即可,故有=3600种.(3)分两类,若乙在正中间,则有=720种,若乙不站在正中间,乙不站在两端,则乙从另外4个位置任选一个,丙从另外5个位置选一个,其他任意排,故有=2400种,根据分类计数原理得共有720+2400=3120种.16.(15分)记函数f(x)=lg(x2﹣x﹣2)的定义域为集合A,函数g(x)=的定义域为集合B.(1)求①A∩B;②(∁R A)∪B;(2)若C={x|(x﹣m+1)(x﹣2m﹣1)<0},C⊆B,求实数m的取值范围.【解答】解:(1)依题意,得A={x|x2﹣x﹣2>0}=(﹣∞,﹣1)∪(2,+∞)B={x||3﹣x|x|≥0}=[﹣3,3],①A∩B=[﹣3,﹣1)∪(2,3]②(∁R A)∪B=[﹣3,3],(2)∵(x﹣m+1)(x﹣2m﹣1)<0,∴[x﹣(m﹣1)][x﹣(2m+1)]<0①当m﹣1=2m+1,即m=﹣2时,C=∅,满足C⊆B②当m﹣1<2m+1,即m>﹣2时,C=(m﹣1,2m+1),要使C⊆B,只要得﹣2<m≤1③当2m+1<m﹣1,即m<﹣2时,C=(2m+1,m﹣1),要使C⊆B,只要得m∈∅综上,m 的取值范围是[﹣2,1]17.(15分)对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.p:f(x)=m+2x为定义在[﹣1,2]上的“局部奇函数”;q:曲线g(x)=x2+(5m+1)x+1与x轴交于不同的两点;若“p∧q”为假命题,“p∨q”为真命题,求m的取值范围.【解答】解:∵p:f(x)=m+2x为定义在[﹣1,2]上的“局部奇函数”,∴∃x∈[﹣1,2],使得m+2﹣x=﹣(m+2x),化为:m=﹣(2x+2﹣x)∈.q:曲线g(x)=x2+(5m+1)x+1与x轴交于不同的两点,则(5m+1)2﹣4>0,解得或;∵“p∧q”为假命题,“p∨q”为真命题,则p或q一真一假.p真q假,则,得无交集;若p假q真,则,得或或.综上知m的取值范围为:或或.18.(15分)某房屋开发公司根据市场调查,计划在2017年开发的楼盘中设计“特大套”、“大套”、“经济适用房”三类商品房,每类房型中均有舒适和标准两种型号.某年产量如表:若按分层抽样的方法在这一年生产的套房中抽取50套进行检测,则必须抽取“特大套”套房10套,“大套”15套.(1)求x,y的值;(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:9.0 9.2 9.5 8.8 9.6 9.7现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为ξ,求ξ的分布列及数学期望.【解答】解:(1)由题设知==,解得y=450,x=400;(2)设至少有一套舒适型套房记为事件A,事件A发生的个数为:,基本事件的总和为,故所求的概率为;(3)根据题意,ξ可能的取值为1,2,3,4,5,则,,,,;所以ξ的分布列为:数学期望为E(ξ)=1×+2×+3×+4×+5×=.19.(15分)已知数列{a n}的前n项和为S n,数列是公比为2的等比数列.求证:数列{a n}成等比数列的充要条件是a1=3.【解答】证明:∵数列是公比为2的等比数列,∴.即.∵,∴显然当n≥2时=4.①充分性:当a1=3时,,∴对n∈N*,都有,即数列{a n}是等比数列.②必要性:∵{a n}是等比数列,∴,即,解得a1=3.20.(15分)设函数,(1)①当m=2时,求f(4,y)的展开式中二项式系数最大的项;②若,且a1=﹣12,求;(2)利用二项式定理求的值(n≥1,n∈N*).【解答】解:(1)①当m=2时,f(4,y)=的展开式中共有5项,二项式系数最大的项为第三项,∴T3=•12•=;②f(6,y)=的通项公式为T r+1=••(﹣1)r•=(﹣1)r••26﹣r•m2r﹣6•,且f(6,y)=a0++…+,∴的系数为a1=﹣6×32×m﹣4=﹣12,解得m=2;∴f(6,y)==的通项公式为T r+1=(﹣1)r••2r•,∴a r=(﹣1)r••2r ,r=0,1,2, (6)∴=﹣•2+•22﹣•23+…+•26=﹣•2+•22﹣•23+…+•26﹣=(1﹣2)6﹣1=0;(2)∵=﹣+22•﹣32•+42•+…+(﹣1)n•n2•,∴设f(x)=(1﹣x)n=C n0﹣C n1x+C n2x2﹣C n3x3+…+(﹣1)n•C n n x n…①,①式两边求导得:﹣n(1﹣x)n﹣1=﹣C n1+2C n2x﹣3C n3x2+…+(n﹣1)•(﹣1)n﹣1•C n n﹣1x n﹣2+n•(﹣1)n x n﹣1…②,n•Cn②的两边同乘x得:﹣nx(1﹣x)n﹣1=﹣xC n1+2C n2x2﹣3C n3x3+…+(n﹣1)•(﹣1)n﹣1•C n n﹣1x n﹣1+n•(﹣1)n•C n n x n…③,③式两边求导得:﹣n(1﹣x)n﹣1﹣n(n﹣1)x(1﹣x)n﹣2=﹣C n1+22C n2x﹣32C n3x2+…+(n﹣1)2•(﹣1)n﹣1•C n n﹣1x n﹣2+n2•(﹣1)n•C n n x n﹣1…④,④中令x=1,得﹣+22•﹣32•+42•+…+(﹣1)n•n2•=0,即=0.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
数学-高二-江苏省南通市启东中学高二(下)期中数学试卷(理科)

2015-2016学年江苏省南通市启东中学高二(下)期中数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.已知函数y=f(x)的图象在M(1,f(1))处的切线方程是+2,f(1)+f′(1)=.2.函数y=sinx•cosx的导函数为.3.函数y=xlnx的单调减区间为.4.已知函数f(x)=x3﹣2tx2+t2x在x=2处有极小值,则实数t的值为.5.函数y=x3+x2+ax在x∈R上单调递增,则实数a的取值范围是.6.函数y=3x3﹣9x+5在区间上的最大值与最小值之和是.7.若函数f(x)=2x2﹣lnx在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是.8.已知函数f(x),g(x)满足f(5)=5,f′(5)=3,g(5)=4,g′(5)=1,则函数y=的图象在x=5处的切线方程为.9.已知函数f(x)=alnx﹣x+2,其中a≠0.若对于任意的x1∈,总存在x2∈,使得f(x1)+f(x2)=4,则实数a=.10.水波的半径以50cm/s的速度向外扩张,当半径为250cm时,水波面的圆面积的膨胀率是.11.已知函数y=f(x)是定义在R上的奇函数,且当x∈(﹣∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=(logπ3)•f(logπ3),.则a,b,c的大小关系是.12.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现作为条件,求若函数g(x)=x3﹣x2+3x﹣+,则g()+g()+g()+…+g()=.13.已知函数f(x)=|xe x|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围.14.设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A﹣1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.16.袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球部放回,直到其中有一人去的白球时终止.用X表示取球终止时取球的总次数.(1)求袋中原有白球的个数;(2)求随机变量X的概率分布及数学期望E(X).17.已知二阶矩阵A=.(1)求矩阵A的特征值和特征向量;(2)设向量=,求A2016.18.全美职业篮球联赛(NBA)某年度总决赛在雷霆队与迈阿密热火队之间角逐,比赛采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束.因两队实力相当,故每场比赛获胜的可能性相等.据以往资料统计,第一场比赛组织者可获门票收入2000万美元,以后每场比赛门票收入比上场增加100万美元,当两队决出胜负后,问:(1)组织者在此次决赛中要获得门票收入不少于13500万元的概率为多少?(2)某队在比赛过程中曾一度比分落后2分以上,最后取得全场胜利称为“逆袭”,求雷霆队“逆袭”获胜的概率;(3)求此次决赛所需比赛场数的分布列及数学期望.19.已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.(1)若x∈,不等式f(x)≤f′(x)恒成立,求a的取值范围;(2)解关于x的方程f(x)=|f′(x)|;(3)设函数,求g(x)在x∈时的最小值.20.已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性;(3)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2),(x1<x2),证明:.2015-2016学年江苏省南通市启东中学高二(下)期中数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.已知函数y=f(x)的图象在M(1,f(1))处的切线方程是+2,f(1)+f′(1)=3.【考点】导数的运算.【分析】先将x=1代入切线方程可求出f(1),再由切点处的导数为切线斜率可求出f'(1)的值,最后相加即可.【解答】解:由已知切点在切线上,所以f(1)=,切点处的导数为切线斜率,所以,所以f(1)+f′(1)=3故答案为:32.函数y=sinx•cosx的导函数为cos2x.【考点】导数的运算.【分析】利用导数的乘法与除法法则求出它的导数【解答】解:∵y=sinx•cosx,∴y′=(sinx)′cosx+sinx(cosx)′=cos2x﹣sin2x=cos2x故答案为cos2x.3.函数y=xlnx的单调减区间为(0,).【考点】利用导数研究函数的单调性.【分析】利用积的导数运算法则求出导函数,令导函数小于0求出x的范围与定义域的公共范围是函数的单调递减区间.【解答】解:y′=1+lnx,令,又因为函数y=xlnx的定义域为(0,+∞)所以函数y=xlnx的单调减区间为故答案为:4.已知函数f(x)=x3﹣2tx2+t2x在x=2处有极小值,则实数t的值为2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(2)=0,解出t的值,检验即可.【解答】解:f(x)=x3﹣2tx2+t2x,f′(x)=3x2﹣4tx+t2,∵函数f(x)在x=2处有极小值,∴f′(2)=0,解得:t=2或t=6,经检验,t=2符合题意,故答案为:2.5.函数y=x3+x2+ax在x∈R上单调递增,则实数a的取值范围是1,+∞).故答案为:﹣2,2﹣2,﹣1)递增,在(﹣1,1)递减,在(1,21,).【考点】利用导数研究函数的单调性.【分析】先对函数进行求导,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减得解.【解答】解:因为f(x)定义域为(0,+∞),又f'(x)=4x﹣,由f'(x)=0,得x=.据题意,,解得1≤k<故答案为:1,e1,e1,e1,e1,e1,e1,e1,e1,aa,e1,e1,e1,e1,e1,e1,e1,e0,+∞)上为增函数;当x<0时,f′(x)=﹣e x﹣xe x=﹣e x(x+1),由f′(x)=0,得x=﹣1,当x∈(﹣∞,﹣1)时,f′(x)=﹣e x(x+1)>0,f(x)为增函数,当x∈(﹣1,0)时,f′(x)=﹣e x(x+1)<0,f(x)为减函数,所以函数f(x)=|xe x|在(﹣∞,0)上有一个极大值为f(﹣1)=﹣(﹣1)e﹣1=,要使方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,令f(x)=m,则方程m2+tm+1=0应有两个不等根,且一个根在内,一个根在内,再令g(m)=m2+tm+1,因为g(0)=1>0,则只需g()<0,即,解得:t<﹣.所以,使得函数f(x)=|xe x|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根的t的取值范围是.故答案为.14.设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为.【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,设出A,B的坐标,代入导函数,由函数在A,B处的导数等于0列式,换元后得到关于a的一元二次方程,结合线性规划知识求得a的取值范围.【解答】解:由f(x)=ax+sinx+cosx,得f′(x)=a+cosx﹣sinx,设A(x1,y1),B(x2,y2),则f′(x1)=a+cosx1﹣sinx1,f′(x2)=a+cosx2﹣sinx2.由,得a2+a+(cosx1﹣sinx1)(cosx2﹣sinx2)+1=0.令m=cosx1﹣sinx1,n=cosx2﹣sinx2,则m∈,.∴a2+(m+n)a+mn+1=0.△=(m+n)2﹣4mn﹣4=(m﹣n)2﹣4,∴0≤(m﹣n)2﹣4≤4,.当m﹣n=时,m+n=0,又=.∴﹣1≤a≤1.∴函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为.故答案为:.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A﹣1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.【考点】逆变换与逆矩阵.【分析】利用特征值与特征向量的定义,可求a;利用A的逆矩阵A﹣1对应的变换将点(3,1)变为点(1,1),可求k的值.【解答】解:设特征向量为α=,对应的特征值为λ,则=λ,即因为k≠0,所以a=2.…因为A﹣1=,所以A=,即=,所以2+k=3,解得k=1.综上,a=2,k=1.…16.袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球部放回,直到其中有一人去的白球时终止.用X表示取球终止时取球的总次数.(1)求袋中原有白球的个数;(2)求随机变量X的概率分布及数学期望E(X).【考点】离散型随机变量的期望与方差;等可能事件的概率;离散型随机变量及其分布列.【分析】(1)由题意知本题是一个等可能事件的概率的应用问题,试验发生包含的所有事件是从9个球中取2个球,共有C92种结果,而满足条件的事件是从n个球中取2个,共有C n2种结果,列出概率使它等于已知,解关于n的方程,舍去不合题意的结果.(2)用X表示取球终止时取球的总次数,由题意知X的可能取值为1,2,3,4,结合变量对应的事件,用等可能事件的概率公式做出结果,写出分布列和期望.【解答】解:(1)由题意知本题是一个等可能事件的概率的应用问题,试验发生包含的所有事件是从9个球中取2个球,共有C92种结果而满足条件的事件是从n个球中取2个,共有C n2种结果设袋中原有n个白球,则从9个球中任取2个球都是白球的概率为,由题意知=,即,化简得n2﹣n﹣30=0.解得n=6或n=﹣5(舍去)故袋中原有白球的个数为6.(2)用X表示取球终止时取球的总次数,由题意,X的可能取值为1,2,3,4.;;;P(X=4)=.∴取球次数X的概率分布列为:∴所求数学期望为E(X)=1×+2×+3×+4×=.17.已知二阶矩阵A=.(1)求矩阵A的特征值和特征向量;(2)设向量=,求A2016.【考点】特征值与特征向量的计算;特征向量的意义.【分析】(1)由矩阵A的特征多项式f(λ),令f(λ)=0,求得特征值,代入二元一次方程组求得其特征向量;(2)由(1)的结论,向量是属于特征值为﹣2的一个特征向量,利用特征向量的定义与性质即可求得A2016.【解答】解:(1)矩阵A的特征多项式f(λ)=λE﹣A==(λ﹣3)(λ+2),令f(λ)=0,解得:λ1=3,λ2=﹣2,将λ1=3,代入二元一次方程组得:,解得y=0,矩阵A属于特征值3的特征向量为,将λ2=﹣2,代入二元一次方程组得:,当x=1时,y=﹣1,∴矩阵A属于特征值﹣2的特征向量为;(2)A2016==.∴A2016=.18.全美职业篮球联赛(NBA)某年度总决赛在雷霆队与迈阿密热火队之间角逐,比赛采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束.因两队实力相当,故每场比赛获胜的可能性相等.据以往资料统计,第一场比赛组织者可获门票收入2000万美元,以后每场比赛门票收入比上场增加100万美元,当两队决出胜负后,问:(1)组织者在此次决赛中要获得门票收入不少于13500万元的概率为多少?(2)某队在比赛过程中曾一度比分落后2分以上,最后取得全场胜利称为“逆袭”,求雷霆队“逆袭”获胜的概率;(3)求此次决赛所需比赛场数的分布列及数学期望.【考点】离散型随机变量的期望与方差;相互独立事件的概率乘法公式.【分析】(1)先确定至少要比赛6场,再求出相应的概率,即可求出组织者在此次决赛中要获得门票收入不少于13500万元的概率为多少?(2)雷霆队“逆袭”获胜,可能通过6场或7场获胜,分类求概率,即可求雷霆队“逆袭”获胜的概率;(3)所需比赛场数ξ是随机变量,其取值为4,5,6,7.求出相应的概率,即可求此次决赛所需比赛场数的分布列及数学期望.【解答】解:(1)因2000+2100+2200+2300+2400+2500=13500,故至少要比赛6场.当进行比赛6场时,某一队获胜的概率为,当进行比赛7场时,某一队获胜的概率为,所以收入不少于13500万元的概率为.(2)雷霆队“逆袭”获胜,可能通过6场或7场获胜.当6场获胜时,则1、2场败,3、4、5、6胜,概率为;当7场获胜时,则4胜3败,①若前2场都败,则另外1败可以任意发生在第3、4、5、6中的一场,所以“逆袭”获胜概率为.②若前2场1胜1败,则第3、4场必须败,所以“逆袭”获胜概率为,故雷霆队“逆袭”获胜的概率为.(3)所需比赛场数ξ是随机变量,其取值为4,5,6,7.若比赛最终获胜队在第k场获胜后结束比赛,则显然在前面k﹣1场中获胜3场,从而,k=4,5,6,7.①分布列为:ξ 4 5 6 7P②所需比赛场数的数学期望是.19.已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.(1)若x∈,不等式f(x)≤f′(x)恒成立,求a的取值范围;(2)解关于x的方程f(x)=|f′(x)|;(3)设函数,求g(x)在x∈时的最小值.【考点】利用导数求闭区间上函数的最值;函数恒成立问题.【分析】(1)根据f(x)≤f′(x),可得x2﹣2x+1≤2a(1﹣x),分离参数,确定右边函数的最大值,即可求a的取值范围;(2)由f(x)=|f′(x)|,可得|x+a|=1+a或|x+a|=1﹣a,再分类讨论,即可得到结论;(3)由f(x)﹣f′(x)=(x﹣1),,对a进行分类讨论,即可确定g(x)在x∈时的最小值.【解答】解:(1)因为f(x)≤f′(x),所以x2﹣2x+1≤2a(1﹣x),又因为﹣2≤x≤﹣1,所以在x∈时恒成立,因为,所以.(2)因为f(x)=|f′(x)|,所以x2+2ax+1=2|x+a|,所以(x+a)2﹣2|x+a|+1﹣a2=0,则|x+a|=1+a或|x+a|=1﹣a.①当a<﹣1时,|x+a|=1﹣a,所以x=﹣1或x=1﹣2a;②当﹣1≤a≤1时,|x+a|=1﹣a或|x+a|=1+a,所以x=±1或x=1﹣2a或x=﹣(1+2a);③当a>1时,|x+a|=1+a,所以x=1或x=﹣(1+2a).(3)因为f(x)﹣f′(x)=(x﹣1),①若,则x∈时,f(x)≥f′(x),所以g(x)=f′(x)=2x+2a,从而g(x)的最小值为g(2)=2a+4;②若,则x∈时,f(x)<f′(x),所以g(x)=f(x)=x2+2ax+1,当时,g(x)的最小值为g(2)=4a+5,当﹣4<a<﹣2时,g(x)的最小值为g(﹣a)=1﹣a2,当a≤﹣4时,g(x)的最小值为g(4)=8a+17.③若,则x∈时,当x∈1﹣2a,4hslx3y3h时,g(x)最小值为g(1﹣2a)=2﹣2a.因为,(4a+5)﹣(2﹣2a)=6a+3<0,所以g(x)最小值为4a+5.综上所述,.20.已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性;(3)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2),(x1<x2),证明:.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;不等式的证明.【分析】(1)利用导数的几何意义即可得出;(2)通过求导得到g′(x),通过对a分类讨论即可得出其单调性;(3)证法一:利用斜率计算公式,令(t>1),即证(t>1),令(t>1),通过求导利用函数的单调性即可得出;证法二:利用斜率计算公式,令h(x)=lnx﹣kx,通过求导,利用导数研究其单调性即可得出;证法三::令,同理,令,通过求导即可证明;证法四:利用斜率计算公式,令h(x)=x﹣x1lnx+x1lnx1﹣x1,及令m(x)=x﹣x2lnx+x2lnx2﹣x2,通过求导得到其单调性即可证明.【解答】解:(1)依题意得g(x)=lnx+ax2+bx,则,由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g'(1)=1+2a+b=0,∴b=﹣2a﹣1.(2)由(1)得=.∵函数g(x)的定义域为(0,+∞),∴当a=0时,,由g'(x)>0得0<x<1,由g'(x)<0得x>1,即函数g(x)在(0,1)上单调递增,在(1,+∞)单调递减;当a>0时,令g'(x)=0得x=1或,若,即时,由g'(x)>0得x>1或,由g'(x)<0得,即函数g(x)在,(1,+∞)上单调递增,在单调递减;若,即时,由g'(x)>0得或0<x<1,由g'(x)<0得,即函数g(x)在(0,1),上单调递增,在单调递减;若,即时,在(0,+∞)上恒有g'(x)≥0,即函数g(x)在(0,+∞)上单调递增,综上得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)单调递减;当时,函数g(x)在(0,1)单调递增,在单调递减;在上单调递增;当时,函数g(x)在(0,+∞)上单调递增,当时,函数g(x)在上单调递增,在单调递减;在(1,+∞)上单调递增.(3)证法一:依题意得,证,即证,因x2﹣x1>0,即证,令(t>1),即证(t>1)①,令(t>1),则>0,∴h(t)在(1,+∞)上单调递增,∴h(t)>h(1)=0,即(t>1)②综合①②得(t>1),即.证法二:依题意得,令h(x)=lnx﹣kx,则,由h'(x)=0得,当时,h'(x)<0,当时,h'(x)>0,∴h(x)在单调递增,在单调递减,又h(x1)=h(x2),∴,即.证法三:令,则,当x>x1时,h'(x)<0,∴函数h(x)在(x1,+∞)单调递减,∴当x2>x1时,,即;同理,令,可证得.证法四:依题意得,令h(x)=x﹣x1lnx+x1lnx1﹣x1,则,当x>x1时,h'(x)>0,∴函数h(x)在(x1,+∞)单调递增,∴当x2>x1时,h(x2)>h(x1)=0,即x1lnx2﹣x1lnx1<x2﹣x1令m(x)=x﹣x2lnx+x2lnx2﹣x2,则,当x<x2时,m'(x)<0,∴函数m(x)在(0,x2)单调递减,∴当x1<x2时,m(x1)>h(x2)=0,即x2﹣x1<x2lnx2﹣x2lnx1;所以命题得证.2016年10月17日。
江苏省启东中学2017-2018学年高二下学期期中考试数学(理)试题 (5)

【题文】
(本小题满分14分)
设关于x的一元二次方程x2+2ax+b2=0,其中a,b是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率.
(1)若随机数a,b∈{1,2,3,4,5};
(2)若a是从区间[0,5]中任取的一个数,b是从区间[0,4]中任取的一个数.
【答案】
解:设事件A为“方程x2+2ax+b2=0有实根”,
当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.…………2分
(1)基本事件共有25个:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含15个基本事件,故事件A发生
的概率为P(A)=3
5
…………………………9分
(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤5,0≤b≤4}.
构成事件A的区域为{(a,b)|0≤a≤5,0≤b≤4,a≥b},概率为两者的面积之比,
所以所求的概率为P(A)=2
5
…………………………14分
【解析】
【标题】江苏省启东中学2017-2018学年高二下学期期中考试数学(理)试题【结束】。
2017-2018学年高二下学期期中数学试卷(理科)Word版含解析

2017-2018学年高二下学期期中数学试卷(理科)一、选择题(每小题5分,共60分)1.复数z1=(m2﹣2m+3)+(m2﹣m+2)i(m∈R),z2=6+8i,则m=3是z1=z2的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除3.定积分(x2+sinx)dx的值为()A. +B.﹣C.﹣D. +4.若复数z=(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是()A. i B.﹣ i C.3i D.﹣3i5.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A.B.πC.πD.24π6.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+B. +C. +D.37.已知=()A.f′(x0)B.f′(x)C.2f′(x)D.﹣f′(x)8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,则A×C=()A.6E B.78 C.5F D.C09.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)二、填空题(每小题5分,共20分)13.计算: +(3+i17)﹣= .14.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥S﹣ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则.15.过点(1,0)且与曲线y=相切的直线的方程为.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.19.设数列{an }的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.20.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x 的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y表示为x的函数;(2)如何选点M才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.2017-2018学年高二下学期期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.复数z1=(m2﹣2m+3)+(m2﹣m+2)i(m∈R),z2=6+8i,则m=3是z1=z2的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m,即可判断出结论.【解答】解:由z1=z2,可得:m2﹣2m+3=6,m2﹣m+2=8,解得m=3.∴m=3是z1=z2的充要条件.故选:C.2.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除【考点】R9:反证法与放缩法.【分析】“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除.【解答】解:反证法证明命题时,应假设命题的反面成立.“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除,故选 B.3.定积分(x2+sinx)dx的值为()A. +B.﹣C.﹣D. +【考点】67:定积分.【分析】根据定积分的运算,即可求得答案.【解答】解:(x2+sinx)dx=(x3﹣cosx)=(﹣)﹣(0﹣1)=+,(x2+sinx)dx=+,故选B.4.若复数z=(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是()A. i B.﹣ i C.3i D.﹣3i【考点】A5:复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简z=,结合已知条件列出方程组,求解可得a的值,然后代入z=化简求出复数z,则复数z的共轭复数可求.【解答】解:∵z===是纯虚数,∴,解得a=6.∴z==.则复数z的共轭复数是:﹣3i.故选:D.5.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积()A.B.πC.πD.24π【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】利用定积分求体积.【解答】解:解方程组得x=4,y=4.∴几何体的体积V=π(4x﹣x2)dx=π•(2x2﹣)|=.故选B.6.若复数z满足|z+3+i|=,则|z|的最大值为()A.3+B. +C. +D.3【考点】A4:复数的代数表示法及其几何意义.【分析】由|z+3+i|=的几何意义,即复平面内的动点Z到定点P(﹣3,﹣1)的距离为画出图形,数形结合得答案.【解答】解:由|z+3+i|=的几何意义,复平面内的动点Z到定点P(﹣3,﹣1)的距离为,可作图象如图:∴|z|的最大值为|OP|+=.故选:B.7.已知=()A.f′(x0)B.f′(x)C.2f′(x)D.﹣f′(x)【考点】6F:极限及其运算.【分析】化简,根据极限的运算,即可求得答案.【解答】解:==+=2f′(x),∴=2f′(x),故选C.8.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如表.十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,则A×C=()A.6E B.78 C.5F D.C0【考点】EM:进位制.【分析】本题需先根据十进制求出A与C的乘积,再把结果转化成十六进制即可.【解答】解:∵A×C=10×12=120,∴根据16进制120可表示为78.故选:B.9.利用数学归纳法证明不等式+++…+>时,由k递推到k+1时,不等式左边应添加的式子是()A.B. +C.﹣D. +﹣【考点】RG:数学归纳法.【分析】只须求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【解答】解:当n=k时,左边的代数式为,当n=k+1时,左边的代数式为,故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:,故选:D.10.设函数f(x)=x3+x2+,其中θ∈(﹣,),则导数f′(1)的取值范围是()A.(﹣,1] B.(﹣,1)C.(﹣,) D.(﹣,]【考点】63:导数的运算.【分析】求导,当x=1时,f′(1)=+=sin(θ+),由θ∈(﹣,),即可求得θ+∈(﹣,),根据正弦函数的性质,即可求得导数f′(1)的取值范围.【解答】解:f(x)=x3+x2+,f′(x)=x2+x,f′(1)=+=sin(θ+),由θ∈(﹣,),则θ+∈(﹣,),则sin(θ+)∈(﹣,1],∴导数f′(1)的取值范围(﹣,1],故选A.11.函数f(x)是定义在R上的偶函数,且 f(2)=0,当x>0时,有xf′(x)﹣f(x)>0恒成立,则不等式f(x)<0的解集为()A.(﹣∞,﹣2)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,0)∪(2,+∞)【考点】6A:函数的单调性与导数的关系.【分析】设g(x)=,根据函数的单调性和函数的奇偶性求出不等式的解集即可.【解答】解:设g(x)=,∴g′(x)=,∵当x>0时,有xf′(x)﹣f(x)>0恒成立,∴当x>0时,g′(x)>0∴g(x)在(0,+∞)递增,∵f(﹣x)=f(x),∴g(﹣x)==﹣g(x),∴g(x)是奇函数,∴g(x)在(﹣∞,0)递增,∵f(2)=0∴g(2)==0,当x>0时,f(x)<0等价于<0,∴g(x)<0=g(2),∴0<x<2,当x<0时,f(x)<0等价于>0,∴g(x)>0=g(﹣2),∴﹣2<x<0,不等式f(x)<0的解集为(﹣2,0)∪(0,2),故选:C.12.若函数f(x)的导函数f′(x)=x2﹣3x﹣10,则函数f(1﹣x)的单调递增区间是()A.(,+∞)B.(﹣,+∞)C.(﹣4,3)D.(﹣∞,﹣4)和(3,+∞)【考点】6B:利用导数研究函数的单调性.【分析】由f′(x)<0求出f(x)的减区间,利用对称性求得f(﹣x)的增区间,再由平移变换可得函数f(1﹣x)的单调递增区间.【解答】解:由f′(x)=x2﹣3x﹣10<0,得﹣2<x<5,∴函数f(x)的减区间为(﹣2,5),则函数y=f(﹣x)的增区间为(﹣5,2),而f(1﹣x)=f[﹣(x﹣1)]是把函数y=f(﹣x)向右平移1个单位得到的,∴函数f(1﹣x)的单调递增区间是(﹣4,3).故选:C.二、填空题(每小题5分,共20分)13.计算: +(3+i17)﹣= 4+2i .【考点】A7:复数代数形式的混合运算.【分析】利用复数的运算法则分别计算即可.【解答】解:原式=+(3+i)﹣=+3+i﹣i10=i+3+i+1=4+2i;故答案为:4+2i.14.在Rt△ABC中,两直角边分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥S﹣ABC中的三条侧棱SA、SB、SC两两垂直,且长度分别为a、b、c,设棱锥底面ABC 上的高为h,则+.【考点】F3:类比推理.【分析】立体几何中的类比推理主要是基本元素之间的类比:平面⇔空间,点⇔点或直线,直线⇔直线或平面,平面图形⇔平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可.【解答】解:∵PA、PB、PC两两互相垂直,∴PA⊥平面PBC.设PD在平面PBC内部,且PD⊥BC,由已知有:PD=,h=PO=,∴,即.故答案为:.15.过点(1,0)且与曲线y=相切的直线的方程为4x+y﹣4=0 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】设出切点坐标,利用导数求出过切点的切线方程,再把已知点代入,求出切点横坐标,则切线方程可求.【解答】解:设切点为(),由y=,得y′=,∴,则切线方程为y﹣,把点(1,0)代入,可得,解得.∴切线方程为y﹣2=﹣4(x﹣),即4x+y﹣4=0.故答案为:4x+y﹣4=0.16.已知函数f(x)=x3+ax2+bx,(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为3,则a的值为.【考点】6G:定积分在求面积中的应用.【分析】题目中给出了函数图象与x轴围成的封闭图形的面积,所以我们可以从定积分着手,求出函数以及函数与x轴的交点,建立等式求解参数.【解答】解:由已知对方程求导,得:f′(x)=3x2+2ax+b.由题意直线y=0在原点处与函数图象相切,故f′(0)=0,代入方程可得b=0.故方程可以继续化简为:f(x)=x3+ax2=x2(x+a),令f(x)=0,可得x=0或者x=﹣a,可以得到图象与x轴交点为(0,0),(﹣a,0),由图得知a<0.故对﹣f(x)从0到﹣a求定积分即为所求面积,即:﹣a f(x)dx=3,﹣∫将 f(x)=x3+ax2代入得:﹣a(﹣x3﹣ax2)dx=3,∫求解,得a=﹣.故答案为:﹣.三、解答题(17题10分,其它每题12分)17.已知复数z+i,均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.【考点】A4:复数的代数表示法及其几何意义;A5:复数代数形式的乘除运算.【分析】复数z+i,均为实数,可设z=x﹣i, =﹣i,可得﹣=0,z=﹣2﹣i.在复平面内,(z+ai)2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,可得4﹣(a﹣1)2>0,﹣4(a﹣1)<0,解出即可得出.【解答】解:∵复数z+i,均为实数,设z=x﹣i, ==﹣i,∴﹣ =0,∴x=﹣2.∴z=﹣2﹣i.∵在复平面内,(z+ai)2=[﹣2+(a﹣1)i]2=4﹣(a﹣1)2﹣4(a﹣1)i的对应点在第四象限内,∴4﹣(a﹣1)2>0,﹣4(a﹣1)<0,解得:1<a<3.∴实数a的取值范围是(1,3).18.设函数f(x)=﹣x2+6ax+b,其中a,b∈R.(1)若函数f(x)在x=1处取得极值﹣,求a,b的值;(2)求函数f(x)的单调递增区间.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出f′(x)=x2﹣(3a+2)x+6a,由函数f(x)在x=1处取得极值﹣,列出方程组,能求出a,b.(2)由f′(x)=x2﹣3x+2,利用导数性质能求出函数f(x)的单调递增区间.【解答】解:(1)∵f(x)=﹣x2+6ax+b,其中a,b∈R,∴f′(x)=x2﹣(3a+2)x+6a,∵函数f(x)在x=1处取得极值﹣,∴,解得a=,b=﹣1.(2)由(1)得f(x)=﹣+2x﹣1,∴f′(x)=x2﹣3x+2,由f′(x)=x2﹣3x+2>0,得x>2或x<1,∴函数f(x)的单调递增区间为(﹣∞,1],[2,+∞).19.设数列{an }的前n项和为Sn,且关于x的方程x2﹣anx﹣an=0有一根为Sn﹣1.(1)求出S1,S2,S3;(2)猜想{Sn}的通项公式,并用数学归纳法证明.【考点】RG:数学归纳法;8E:数列的求和.【分析】(1)由题设求出S1=,S2=.S3=.(2)由此猜想Sn=,n=1,2,3,….然后用数学归纳法证明这个结论.【解答】解:(1)当n=1时,x2﹣a1x﹣a1=0有一根为S1﹣1=a1﹣1,于是(a1﹣1)2﹣a1(a1﹣1)﹣a1=0,解得a1=.当n=2时,x2﹣a2x﹣a2=0有一根为S2﹣1=a2﹣,于是(a2﹣)2﹣a2(a2﹣)﹣a2=0,解得a2=由题设(Sn ﹣1)2﹣an(Sn﹣1)﹣an=0,Sn 2﹣2Sn+1﹣anSn=0.当n≥2时,an =Sn﹣Sn﹣1,代入上式得Sn﹣1Sn﹣2Sn+1=0.①得S1=a1=,S2=a1+a2=+=.由①可得S3=.(2)由(1)猜想Sn=,n=1,2,3,….下面用数学归纳法证明这个结论.(i)n=1时已知结论成立.(ii)假设n=k时结论成立,即Sk=,当n=k+1时,由①得Sk+1=,可得Sk+1=,故n=k+1时结论也成立.综上,由(i)、(ii)可知Sn=对所有正整数n都成立.20.设铁路AB长为100,BC⊥AB,且BC=30,为将货物从A运往C,现在AB上距点B为x 的点M处修一公路至C,已知单位距离的铁路运费为2,公路运费为4.(1)将总运费y表示为x的函数;(2)如何选点M才使总运费最小.【考点】HT:三角形中的几何计算.【分析】(1)由题意,AB=100,BC⊥AB,BC=30,BM=x,则AM=100﹣x.MC=,可得总运费y表示为x的函数;(2)根据(1)中的关系式,利用导函数单调性,可得最值.【解答】解:(1)由题意,AB=100,BC⊥AB,BC=30,BM=x,则AM=100﹣x.MC=,∴总运费y=2×+4×MC=200﹣2x+4,.(2)由(1)可得y=200﹣2x+4,.则y′=﹣2+4××令y′=0.可得:2=4x,解得:x=10.当时,y′<0,则y在当单调递减.当时,y′>0,则y在单调递增.∴当x=10时,y取得最大值为200+60.∴选点M距离B点时才使总运费最小.21.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥.【考点】8G:等比数列的性质.【分析】y,z为正数,可得≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.根据a,x,b成等差数列,a,y,z,b成等比数列,a,b>0.可得2x=a+b,,z=.令=m>0, =n>0,可得2x≥y+z⇔m3+n3≥m2n+mn2⇔(m﹣n)2≥0,【解答】证明:∵y,z为正数,∴≤,要证明x+1≥.(x>0).只要证明:2x≥y+z即可.∵a,x,b成等差数列,a,y,z,b成等比数列,a,b>0,∴2x=a+b,,z=.令=m>0, =n>0,则2x≥y+z⇔m3+n3≥m2n+mn2.⇔(m﹣n)2≥0,上式显然成立,因此:x+1≥.22.设函数f(x)=ax2lnx﹣(x﹣1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.(1)求证:当x≥1时,f(x)≥(x﹣1)2;(2)若当x≥1时,f(x)≥m(x﹣1)2恒成立,求实数m的取值范围.【考点】6H:利用导数研究曲线上某点切线方程;6E:利用导数求闭区间上函数的最值.【分析】(1)由题意求得a=1,得到函数解析式,构造函数g(x)=x2lnx+x﹣x2,(x≥1).利用导数可得函数在[1,+∞)上为增函数,可得g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,求其导函数,结合(1)放缩可得h′(x)≥3(x﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).然后对m分类讨论求解.【解答】(1)证明:由f(x)=ax2lnx﹣(x﹣1),得f′(x)=ax2lnx﹣(x﹣1)=2axlnx+ax ﹣1.∵曲线y=f(x)在点(1,0)处的切线方程为y=0,∴a﹣1=0,得a=1.则f(x)=x2lnx﹣x+1.设g(x)=x2lnx+x﹣x2,(x≥1).g′(x)=2xlnx﹣x+1,g″(x)=2lnx+1>0,∴g′(x)在[1,+∞)上为增函数,∴g′(x)≥g′(1)=0,则g(x)在[1,+∞)上为增函数,∴g(x)≥g(1)=0,即f(x)≥(x﹣1)2;(2)解:设h(x)=x2lnx﹣x﹣m(x﹣1)2+1,h′(x)=2xlnx+x﹣2m(x﹣1)﹣1,由(1)知,x2lnx≥(x﹣1)2+x﹣1=x(x﹣1),∴xlnx≥x﹣1,则h′(x)≥3(x﹣1)﹣2m(x﹣1)=(x﹣1)(3﹣2m).①当3﹣2m≥0,即m时,h′(x)≥0,h(x)在[1,+∞)上单调递增,∴h(x)≥h(1)=0成立;②当3﹣2m<0,即m>时,h′(x)=2xlnx+(1﹣2m)(x﹣1),h″(x)=2lnx+3﹣2m.令h″(x)=0,得>1,∴当x∈[1,x)时,h′(x)<h′(1)=0,)上单调递减,则h(x)<h(1)=0,不合题意.∴h(x)在[1,x综上,m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省启东中学2017-2018学年度第二学期期中考试高二理科数学试卷(满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数()sin f x x x =的导数是 ▲ .2.若56n n C C =,则9n C = ▲ .(用数字作答)3.设曲线3y ax x =+在(1,)a 处的切线与直线260x y --=平行,则实数a 的值为 ▲ .4.人民路华石路口一红绿灯东西方向的红灯时间为37 s ,黄灯时间为3 s ,绿灯时间为60 s .从西向东行驶的一辆公交车通过该路口,遇到绿灯的概率为 ▲ . 5.函数()ln f x x x =的单调减区间是 ▲ . 6.函数311()433f x x x =-+的极大值是 ▲ . 7.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为 ▲ . 8.设函数()f x 的导函数为'()f x ,若3'()52(1)f x x xf =+,则'(3)f = ▲ .9.用数字1到9组成没有重复数字的三位数,且至多有一个数字是偶数,这样的四位数一共有 ▲ 个.(用数字作答)10.已知函数3()27f x x x =-在区间[,1]a a +上不是单调函数,则实数a 的取值范围是 ▲ . 11.已知两曲线()sin f x a x =,()2cos ,(,)2g x x x ππ=∈相交于点P ,若两曲线在点P 处的切线互相垂直,则实数a 的值是 ▲ .12.某种圆柱形的饮料罐的容积为V ,为了使得它的制作用料最省(即表面积最小),则饮料罐的底面半径为(用含V 的代数式表示) ▲ .13. 已知直线y m =,分别与直线55y x =-和曲线2xy e x =+交于点M,N 两点,则线段MN 长度的最小值是 ▲ .14. 已知a 为常数,函数2(0)()1ln (0)x x f x x x x +⎧≤⎪=+⎨⎪>⎩,若关于x 的方程()2f x ax =+有且只有四个不同的解,则实数a 的取值所构成的集合为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在班级活动中,4 名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)(1)三名女生不能相邻,有多少种不同的站法?(2)四名男生相邻有多少种不同的排法?(3)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?(4)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)16.(本小题满分14分)设关于x的一元二次方程x2+2ax+b2=0,其中a,b是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率.(1)若随机数a,b∈{1,2,3,4,5};(2)若a是从区间[0,5]中任取的一个数,b是从区间[0,4]中任取的一个数.17.(本小题满分14分)已知曲线()ln(2)f x x ax =-+在点(0,(0)f )处的切线斜率为32. (1) 求()f x 的极值;(2) 设()()g x f x kx =+,若()g x 在(-∞,1]上是增函数,求实数k 的取值范围.18.(本小题满分16分)已知函数()f x =13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点的切线倾斜角的取值范围; (2)求()f x 在区间[]1,4-上的最值;(3)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.19.(本小题满分16分)为庆祝江苏省启东中学九十周年校庆,展示江苏省启东中学九十年来的办学成果及优秀校友风采,学校准备校庆期间搭建一个扇形展览区,如图,是一个半径为2百米,圆心角为3π的扇形展示区的平面示意图.点C 是半径OB 上一点,点D 是圆弧AB 上一点,且//CD OA .为了实现“以展养展”,现决定:在线段OC 、线段CD 及圆弧DB 三段所示位置设立广告位,经测算广告位出租收入是:线段OC 处每百米为2a 元,线段CD 及圆弧DB 处每百米均为a 元.设AOD x ∠=弧度,广告位出租的总收入为y 元.(1)求y 关于x 的函数解析式,并指出该函数的定义域 ;(2)试问x 为何值时,广告位出租的总收入最大,并求出其最大值.20.(本小题满分16分)已知函数21()2ln (R)2f x x x ax a =+-∈.(1)当3=a 时,求函数)(x f 的单调区间;(2)若函数)(x f 有两个极值点21x x ,,且]10(1,∈x ,求证:2ln 223)()(21-≥-x f x f ; (3)设ax x f x g ln )()(-=,对于任意)2,0(∈a 时,总存在]2,1[∈x ,使2)2()(-->a k x g 成立,求实数k 的取值范围.第19题图BDCOAx江苏省启东中学2017-2018学年度第二学期期中考试高二理科数学试卷参考答案一、填空题:1.sin cos x x x +2.553.13 4.35. 5. 1(0,)e 6.173 7. 498.105 9.300 10.(4,3)(2,3)-- 11.233-12.32V π 13.96ln 25- 14.31(,1)e e ⎧⎫--⎨⎬⎩⎭二、解答题:15.解:(1)4345A A =1440;(2)4444A A =576;(3)61156555A A A A +=3720;(4)7373A A ÷=840 。
其中(1)、(2)每题3分;(3)、(4)每题4分 16.解:设事件A 为“方程x 2+2ax +b 2=0有实根”,当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .…………2分(1)基本事件共有25个:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含15个基本事件,故事件A 发生的概率为P (A )=35………9分 (2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤5,0≤b ≤4}.构成事件A 的区域为{(a ,b )|0≤a ≤5,0≤b ≤4,a ≥b },概率为两者的面积之比, 所以所求的概率为P (A )=25…………14分 17.解:(1) f(x)的定义域是(-∞,2),f ′(x)=1x -2+a. …2分由题知f′(0)=-12+a =32,所以a =2,所以f′(x)=1x -2+2=232x x -- 令f′(x)=0,得x =32. ……4分当x 变化时,f ′(x),f(x)的变化情况如下表所示:x (-∞,32) 32(32,2) f′(x) +0 -f(x)1所以f(x)在x =32处取得极大值3ln 2-,无极小值. …………………………7分 (2) g(x)=ln(2-x)+(k +2)x ,g ′(x)=1x -2+(k +2), ………9分由题知g′(x)≥0在(-∞,1]上恒成立,即k ≥12-x-2在(-∞,1]上恒成立,因为x ≤1,所以2-x ≥1,所以0<12-x≤1,所以k ≥-1.故实数k 的取值范围是[-1,+∞). ……14分18.解:(1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,…………2分即过曲线C 上任意一点切线倾斜角的取值范围是3,0,42πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭…………4分 (2)()f x 的最大值为4(1)(4)3f f ==;()f x 的最小值为16(1)3f -=-………9分 (3)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,……12分解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2- 2 ]∪(1,3)∪[2+2,+∞). …………16分 19.解(1)因为CD ∥OA ,所以rad ODC AOD x ∠=∠=, 在△OCD 中,23OCD π∠=,3COD x π∠=-,2OD =百米, 由正弦定理得2432sin 3sin()sin 33OC CD x x ===ππ-, ……4分 得43sin 3OC x =km ,43sin()33CD x π=-百米.…………5分 又圆弧DB 长为2()3x π- 百米. 所以43432sin [sin()2()]3333y a x a x x ππ=⨯+⨯-+- 2(3sin cos )3a x x x π=⨯+-+,(0)3x π∈,.………7分(2)记()2(3sin cos )3f x a x x x π=⨯+-+,则()2(3cos sin 1)2[2cos()1]6f x a x x a x π'=⨯--=⨯+-,………………8分 令()0f x '=,得6x π=. ……………10分 当x 变化时,()f x ',()f x 的变化如下表:所以()f x 在6x π=处取得极大值,这个极大值就是最大值. 即()2(3)66f a ππ=⨯+. …14分 答:(1)y 关于x 的函数解析式2(3sin cos )3y a x x x π=⨯+-+,定义域为 : (0)3π,;(2)广告位出租的总收入的最大值为2(3)6a π+元.………………………16分x(0)6π, 6π ()63ππ, ()f x ' + 0 - ()f x递增极大值递减第19题图BDCOAx20.解:)0(22)(2>+-=-+='x xax x a x x x f(1)当3=a 时,xx x x x x x f )1)(2(23)(2--=+-=', …………………………2分 令100)(<<⇒>'x x f 或2>x ,令210)(<<⇒<'x x f ,所以)(x f 的递增区间为)1,0(和),2(+∞,递减区间为)2,1(.…………………………4分(2)由于)(x f 有两个极值点21,x x ,则022=+-ax x 在),0(+∞∈x 上有两个不等的实根21,x x ,⎪⎪⎩⎪⎪⎨⎧=+=>⇒≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧>==+>-=∆∴1221121212222)10(02208x x x x a a x a x x a x x a…………………………7分 )21ln 2()21ln 2()()(2222121121ax x x ax x x x f x f -+--+=- ))((2121)ln (ln 22121222121x x x x x x x x -+--+-=21211121)2(21)2ln (ln 2x x x x -+-= )10(2ln 222ln 4121211≤<--+=x x x x设)10(2ln 222ln 4)(22≤<--+=x x x x x F ,所以0)2(4444)(3223423<--=--=--='x x x x x x x x x F所以)(x F 在]1,0(上递减,所以2ln 223)1()(-=≥F x F 即2ln 223)()(21-≥-x f x f .……10分(3)由题意知:只需2)2()(max -->a k x g 成立即可.因为a ax x x x g ln 21ln )(2--+=, 所以a xx x g -+='1)(,因为]2,1[∈x ,所以⎥⎦⎤⎢⎣⎡∈+25,21x x ,而)2,0(∈a ,所以0)(>'x g ,所以)(x g 在]2,1[∈x 递增,当2=x 时,a a g x g ln 222ln )2()(max +-+==.所以2)2(ln 222ln -->--+a k a a 在上)2,0(∈a 恒成立,…12分令42ln )2(2ln )(++----=a k a a a h ,则0)(>a h 在上)2,0(∈a 恒成立, aa k k a a h 1)2(21)(---=---=',又0)2(=h 当02≤--k 时,0)(<'a h ,)(a h 在)2,0(∈a 递减,当0→a 时,+∞→)(a h , 所以0)2()(=>h a h ,所以2-≥k ; 当02>--k 即2-<k 时,ka a h --=⇒='210)( ①2210<--<k 即25-<k 时,)(a h 在)2,21(k --上递增,存在ka --=21,使得0)2()(=<h a h ,不合; ②221≥--k 即225-<≤-k 时,0)(<'a h ,)(a h 在)2,0(∈a 递减,当0→a 时,+∞→)(a h ,所以0)2()(=>h a h ,所以225-<≤-k 综上, 实数k 的取值范围为),25[+∞-.16分。