(完整版)比例阀
比例阀PRDM中文.pdf

电磁比例, 直动型减/泄压阀附高压无指令设定容量: 5 GPM (20 LPM)型号:PRDM产品说明电磁比例,直动型减/泄压阀. 可减低进口 (口2) 的主高压至一定的口1固定恒减压, 附口1通油缸 (口3)全流量泄压阀功能. 偏位泄压模式, 在线圈通电之后连接口2及口1. 增强线圈电流将按比例递减口1的压力. 如果口1压力超过线圈感应压, 则口1泄压至口3. 从减压到泄压功能切换时阀开启, 提供良好的压力控制以及动态反应.技术特点口3最大压力应限制在3000 psi (210 bar)口3 压力以1:1比例直接加于阀的设定并不应超过3000 psi (210 bar).从减压到泄压功能切换时阀将稍微开启, 有非常好的压力控制并消耗大约0.1 GPM (0,4 LPM) 的油量.使用通电放大器感应可调抖振以达最佳表现. 可调抖振范围硬在 100 – 250Hz 之间.直动式设计可在受污染的环境下提供可靠操作, 特别是在减压点的情况下.线圈可与Sun 的其它全流量电磁阀交换使用并可安装于管线的任何方向.在没有电力信号下, 减压设定将回复客户设定的默认值. 增强线圈指令将以反比降低第二压力值.所有3口减压及减/泄压阀可交换使用. (同油路, 同插孔及阀面尺寸). 若考虑安装设定, 则建议减/泄压阀与全回油量油路 (口3) 一起使用.自减压口 (口1) 到进口 (口2)全回流可能造成主滑栓关闭. 如油路系统需回油, 则请于油路内额外加装单向阀.包含Sun 的独特浮动式设计可消除因多余的安装力矩以及/或插孔/插式阀机械性的差异所产生的内部黏合.技术数据英制 公制 重量 --插孔 T-11A 阀型 1 容量5 gpm 20 L/min. 磁滞作用 (附抖振) <4% <4% 磁滞作用<8% <8% 线性程度 (附抖振) <2% <2% 抖振信号频率 <2% <2% 最大操作压力5000 psi 350 bar 最大漏损于110 SUS (24 cSt) 20 in³/min. 0,33 L/min. 电磁管线直径 0.75 in 19 mm 六角头尺寸 7/8 in. 22,2 mm 安装力矩 30 - 35 lbf ft 45 - 50 Nm 标称重量 1.20lb 0.66 kg密封包 Buna: 990-511-007密封包Viton: 990-511-006型号PRDM -X D N选购规格控制方式可调范围油封类型标准选项X*不可调, 固定设置+4.10B1000 - 400 psi (30 -70 bar)+0.00D 400 - 200 psi (14 -30 bar)+2.00E200 - 100 psi (7 - 14bar)+1.00S100 - 10 psi (0,7 - 7bar)+1.00N Buna-N +0.00V Viton +3.50*如需特殊设定, 订购时请详细说明.Coil Options***{无线圈} +0.00 21212 VDC ISO/DIN +16.30 212A1212 VDC ISO/DINWith 0 to 20mA 放大器+266.30212V1212 VDC ISO/DINWith 0 to 10V 放大器+266.30 22424 VDC ISO/DIN +16.30224A0624 VDC ISO/DINWith 0 to 20mA 放大器+266.30224V0624 VDCISO/DINWith 0 to10V 放大器+266.3051212 VDCSAE J858A+18.0052424 VDCSAE J858A+18.0061212 VDCAMP JuniorTimer+15.8062424 VDCAMP JuniorTimer+15.8071212 VDC 双导线+18.0072424 VDC双导线+18.0081212 VDC Metri-Pack +20.0082424 VDC Metri-Pack +20.0091212 VDC Deutsch +21.0092424 VDC Deutsch +21.00 Copyright © 2005-2006 Sun Hydraulics Corporation.All rights reserved.Terms and Conditions - Statement of Privacy。
比例阀的工作原理图解

比例阀的工作原理图解
比例阀是一种流量调节装置,用于按照设定的比例控制流体的流量。
它由主阀和电动机构两部分组成。
主阀部分包括由流体通过的孔道,孔道上有一个锥形的阀芯与之配合。
阀芯由电动机构控制,通过调节阀芯的高度来改变孔道的截面积,从而调节流体通过比例阀的流量。
当阀芯移到开位时,流体可以通过比例阀,当阀芯移到关位时,孔道将被阀芯完全封堵。
电动机构部分包括电机、蜗轮、蜗杆和阀芯的连接杆。
电机驱动蜗轮,蜗轮再带动蜗杆旋转。
蜗杆与连接杆相连,连接杆将蜗杆的旋转转化为阀芯的上下移动。
根据电机的转动角度,连接杆将阀芯移动到相应的位置。
当比例阀工作时,流体从进口进入孔道,阀芯上移,孔道截面积变大,流量增加。
流体经过比例阀后,再进入下游系统。
通过调节电机的转动角度,阀芯在截面积上的变化比例可以被控制,从而控制流体的流量。
需要注意的是,比例阀只能控制流体的流量,不能控制流体的压力。
如果需要控制流体的压力,还需要配合其他装置,比如压力阀。
简单易懂的比例阀基本原理

HBIVT
在这种情况下,为了改变灯泡亮度,可以 在全关闭位置和全打开位置之间的任意位 置上切换触点。
HBIVT
在这种情况下,为了改变灯泡亮度,可以 在全关闭位置和全打开位置之间的任意位 置上切换触点。
其可以通过电气装置来控制,这些电气装置在能这够接种通情或况关下断,电流为。了改变灯泡亮度,可以 驱号首动装先比 置 ,例可主电以阀磁为芯铁简上的单带大的有电电V形流位槽(计,一。这般可为以2实~ 现3A阀)口在置由开上全电度切关源的提换闭无供触位级,点调置而节。和来。全自输打入开信位号置装之置间的电的流任都意是位很小的(通常为几个毫安),因此,输入信
HBIVT
基本系统
三位电磁换向阀可以完成下列功能: - 液压缸活塞杆伸出 - 液压缸活塞杆回缩 - 停止液压缸
HBIVT
HBIVT
因此,电磁换向阀的作用就像电气回路中 的开关一样。 在一个位置上,关闭灯...
HBIVT
... 而在另一个位置上,接通灯, 但并没有中间位置。
HBIVT
不过,另一种类型的开关可以用于控制 灯泡亮度,该开关被称之为光度调整开 关。
。
远程控制 – 开关系统
当流体流过比例阀时,通常产生液动力,这些液动力与弹簧力一起克服电磁力,从而使阀口开度变小。
衔铁密闭在导磁套( F )中,比例电磁铁通常采用塑料树脂材料(G)封装。
在这种比例阀中,阀芯与阀套研配,阀芯由单比例电磁铁驱动,阀芯工作边为半边,当单比例电磁铁通电时,即获得相应工作位置。
HBIVT
电梯举例 – 开关系统 当电磁换向阀通电时,液压缸活塞杆以一定速度伸出或回缩,该速度大小可通过流量控制阀确定,因此,电磁换向阀本身并不控制液 压缸活塞运动速度。 进一步讲,电磁换向阀与比例阀之间的不同就在于阀芯结构上。 理论上,这可以通过光度调整类型元件(如可调电阻)来实现,但由于热量产生和漂移等问题,实际上并不使用这种元件,除非对于 最简单的应用场合。 在这种情况下,为了改变灯泡亮度,可以在全关闭位置和全打开位置之间的任意位置上切换触点。 在开关系统中,为了调节液压缸活塞运动速度,应将流量控制阀安装在合适位置处,这表明工作油管与操作台相连接。 电磁力越大,所需将溢流口打开的压力就越大。 在一台机器中,若使用比例方向阀和比例压力阀,则表明这台机器的液压功能(运动和作用力)可由电信号控制。 驱动比例电磁铁的大电流(一般为2 ~ 3A)由电源提供,而来自输入信号装置的电流都是很小的(通常为几个毫安),因此,输入信 号装置可以为简单的电位计。 通过渐增或渐降(称之为斜坡)电信号,可以获得几秒钟的通电和断电响应时间。 这种类型结构可使比例阀动作更快,性能更好,但也是以牺牲制造成本为代价。 当需要控制较大流量时,采用先导式比例阀是最佳解决方案(而不是采用大规格和大比例电磁铁)。 假设以宾馆中电梯为例,其采用开关式液压系统。 另一个比例电磁铁通电,主阀芯向相反方向运动,但弹簧仍然处于压缩状态。
比例阀溢流阀详细介绍

直动式比例溢流阀直动式比例溢流阀的工作原理及结构见图3-2,。
这是一种带位置电反馈的双弹簧结构的直动式溢流阀。
它于手调式直动溢流阀的功能完全一样。
其主要区别是用比例电磁铁取代了手动弹簧力调节组件。
如图3-2a所示,它主要包括阀体6,带位置传感器1、比例电磁铁2、阀座7、阀芯5及调压弹簧4等主要零件。
当电信号输入时,电磁铁产生相应的电磁力,通过弹簧座3加在调压弹簧4和阀芯上,并对弹簧预压缩。
此预压缩量决定了溢流压力。
而压缩量正比输入电信号,所以溢流压力也正比于输入电信号,实现对压力的比例控制。
弹簧座德实际位置由差动变压器式位移传感器1检测,实际值被反馈到输入端与输入值进行比较,当出现误差就由电控制器产生信号加以纠正。
由图3-2b所示的结构框图可见,利用这种原理,可排除电磁铁摩擦的影响,从而较少迟滞和提高重复精度等因素会影响调压精度。
显然这是一种属于间接检测的反馈方式。
ab图3-2 带位置电反馈的直动式溢流阀a)工作原理及结构b)结构框图1—位移传感器2—比例电磁铁3—弹簧座4—调压弹簧5—阀芯6—阀体7—阀座8—调零螺钉普通溢流阀可以靠不同刚度的调压弹簧来改变压力等级,而比例溢流阀却不能。
由于比例电磁铁的推力是一定的,所以不同的等级要靠改变阀座的孔径来获得。
这就使得不同压力等级时,其允许的最大溢流量也不相同。
根据压力等级不同,最大过流量为2~10L/min。
阀的最大设定压力就是阀的额定工作压力,而设定最低压力与溢流量有关。
这种直动式的溢流阀除在小流量场合下单独作用,作为调节元件外,更多的是作为先导式溢流阀或减压阀的先导阀用。
另外,位于阀底部德调节螺钉8,可在一定范围内,调节溢流阀的工作零位。
先导式比例溢流阀1.结构及工作原理图3-3所示为一种先导式比例溢流阀的结构图。
它的上部位先导级6,是一个直动式比例溢流阀。
下部为主阀级11,中部带有一个手调限压阀10,用于防止系统过载。
当比例电磁铁9通有输入信号电流时,它施加一个直接作用在先导阀芯8上。
简单易懂的比例阀基本原理课件

阀体是比例阀的主体,用 于容纳其他组件。
驱动装置用于驱动阀芯移 动。
比例阀的工作流程
控制系统根据输入信号发 出指令。
阀芯移动改变流体通道的 大小,进而控制流体的流 量和压力。
驱动装置接收指令并驱动 阀芯移动。
反馈装置将阀芯位置信号 反馈给控制系统,形成闭 环控制。
比例阀的工作原理图解
工作原理图解可以帮助理解比例阀的 工作过程,包括各部件的作用和工作 流程。
THANKS FOR WATCHING
感谢您的观看
比例阀对电源和输入信号的质量有一定的 要求,如果电源或信号受到干扰或不稳定 ,可能会影响其控制精度和稳定性。
06 比例阀的发展趋势和未来 展望
发展趋势
智能化
随着工业4.0和智能制造的推 进,比例阀将更加智能化, 能够实现远程控制、实时监 测和故障诊断等功能。
高精度化
集成化
为了满足高精度控制的需求, 比例阀将进一步提高其控制 精度和响应速度,实现更精 细的流量和压力调节。
双座比例阀
有两个阀芯和阀体,适用于大流量、 中等精度场合。
按驱动方式分类
电驱动比例阀
通过电机驱动阀的开度,如直流电机、步进电机等。
气动驱动比例阀
通过气压驱动阀的开度,如气瓶、气泵等。
04 比例阀的应用
在液压系统中的应用
控制液压系统的流量和压力
比例阀能够根据输入信号的大小,按比例调节液压油的流量和方向, 从而实现液压系统的流量和压力控制。
未来比例阀将更加集成化, 将多种功能集成于一体,减 少设备体积和安装成本,提 高系统的可靠性和稳定性。
环保化
随着环保意识的提高,比例 阀将更加注重环保设计,采 用低污染材料和节能技术, 降低能耗和排放。
比例阀比例溢流阀

比例阀比例溢流阀比例阀(Proportional Valve)和比例溢流阀(ProportionalRelief Valve)都属于流体控制阀门的一种,用于调节和控制流体的流量和压力。
两者相似之处在于都可以根据输入信号来控制输出的流量或压力,并且可以实现精确的流量和压力控制。
但是,在使用和应用方面存在一些显著的差异。
首先,比例阀是通过调节阀芯的开度来控制流量的。
它通常由一个线性或非线性的电动执行器驱动,例如电磁阀或伺服阀。
通过改变执行器的输入信号,可以精确地控制阀芯的位置和开度,从而实现对流量的控制。
比例阀在工业自动化系统中广泛应用,尤其适用于液压系统和气动系统。
比例溢流阀是通过调节溢流阀口的大小来控制压力的。
它通常由一个调节阀芯和一个溢流口组成。
当流体压力超过设定压力时,阀芯会打开溢流口,从而减少压力。
通过改变阀芯的位置和溢流口的尺寸,可以精确地调节设备工作时的压力。
比例溢流阀主要应用于液压系统,特别是在需要将过剩的流体引导到油箱或回路中的应用中。
在使用方面,比例阀主要用于流量控制,特别是在流量要求变化较大的系统中。
由于比例阀对输入信号的变化较为敏感,因此可以快速响应并调整输出流量,从而满足不同工况下的流量需求。
比例阀广泛应用于自动化机械设备、工程机械和船舶等领域。
而比例溢流阀主要用于压力控制,特别是在压力稳定性要求较高的系统中。
由于比例溢流阀可以根据压力信号自动调整阀口的大小,因此可以有效地控制系统的工作压力,并防止压力过高损坏设备。
比例溢流阀广泛应用于液压机床、液压系统等领域。
总之,比例阀和比例溢流阀在流体控制方面都有重要作用,但在控制对象(流量或压力)和应用场景上有所不同。
根据具体的工况和要求,选择适合的控制阀门非常重要,可以确保系统的稳定性和正常运行。
比例阀基本原理

集成化
为了简化流体控制系统的 结构,比例阀逐渐向集成 化方向发展,将多个功能 集成于一个阀体中。
比例阀在实际应用中的挑战
流体兼容性
不同流体对比例阀的材质和结构有不同的要求, 需要针对具体流体进行优化设计。
控制精度和稳定性
比例阀的控制精度和稳定性对流体控制效果有很 大影响,需要不断提高。
维护和保养
比例阀在使用过程中需要定期进行维护和保养, 以保证其正常工作。
比例阀的定义和重要性
比例阀是一种能够根据输入信号的大 小和方向,连续地控制流体流量和压 力的阀。
比例阀在控制系统中能够实现精确、 快速和稳定的控制,从而提高生产效 率和产品质量。
02
比例阀的工作原理
比例阀的结构和工作流程
比例阀的结构
比例阀由输入接口、控制电路、驱动电路和阀体等部分组成 。阀体内部通常包含一个或多个控制腔,以及一个或多个可 调节的节流口。
比例阀基本原理
• 引言 • 比例阀的工作原理 • 比例阀的分类和特点 • 比例阀的应用场景 • 比例阀的发展趋势和挑战
01
引言
目的和背景
01
比例阀在工业自动化领域中具有 广泛应用,如液压传动、气动控 制和工业过程控制等。
02
随着工业自动化水平的提高,比 例阀在实现精确控制和提高生产 效率方面发挥着越来越重要的作 用。
03
比例阀的分类和特点
按工作原理分类
电磁比例阀
利用电磁力作为驱动力,通过改变电 信号的大小来调节阀门的开度,实现 流量的控制。
气动比例阀
利用气体的压力差作为驱动力,通过 改变气信号的大小来调节阀门的开度, 实现流量的控制。
电动比例阀
利用电动机作为驱动力,通过改变电 信号的大小来调节阀门的开度,实现 流量的控制。
比例阀的调整说明

比例阀的调整说明比例阀是工业自动化过程中常用的一种控制阀,它的主要用途是调节流体介质的流量和压力,使得流体系统能够按照预定的比例工作,从而实现对工业过程参数的精确调控。
下面是比例阀的调整说明。
1.准备工作:在进行比例阀的调整前,需要先进行准确的参数设定。
这包括需要调整的流量、压力范围以及所需的精度等。
同时,还需要了解控制系统的工作原理和控制模式。
2.比例阀的调整步骤:(1)将比例阀安装到系统中,并正确连接好进出口管线。
(2)调整比例阀的调节参数,比如开度范围、零点漂移、灵敏度等。
这些参数通常可以通过阀体上的调节螺丝来进行微调,具体调整方法需要查看比例阀的说明书。
(3)进行初步调试。
打开系统控制开关,观察比例阀的实际工作情况,检查是否存在异常情况。
(4)根据系统的要求,对比例阀的调节范围进行进一步调整。
比例阀的调节范围是指阀门的最小和最大开度之间的比例关系,调整范围越大,阀门的控制精度就越高。
(5)进行性能测试。
将比例阀置于工作状态下,通过外部信号调节阀门的开度,观察管道中介质的流量和压力变化,检查比例阀的控制精度是否满足要求。
3.比例阀的故障排除:在进行比例阀的调整过程中,如果出现工作不正常的情况,需要进行故障排除。
常见的比例阀故障包括阀门无法开启或关闭、阀门卡死、阀门漏气等。
故障排除的方法通常包括以下几个步骤:(1)检查比例阀的电源是否正常,电压是否稳定。
(2)检查阀门是否受到堵塞或损坏,是否需要进行清洗或更换部件。
(3)检查比例阀所处的管线是否存在压力异常或泄漏现象,必要时需要修复或更换管线。
(4)通过仪器检测比例阀的开度和闭合情况,观察是否存在异常。
4.比例阀的维护与保养:为了确保比例阀的正常工作,需要进行定期的维护与保养。
具体包括:(1)清洗比例阀,去除积聚在阀门表面的污垢或杂质。
(2)定期检查比例阀的阀门动作是否灵活,需要加油或更换易损部件。
(3)检查比例阀的电源连接是否良好,电压是否稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、比例阀及元器件技术 二、利用压力补偿器实现负载压力补偿 三、比例阀的用电控制器 四、比例阀开环控制系统的设计准则 五、伺服阀及其元器件技术 六、闭环系统的控制 七、伺服阀动态特性对控制回路的影响 八、液压系统的油液过滤 九、液压系统常见故障的诊断方法 十、液压件常见故障及处理 十一、比例阀和伺服阀在实际中应用的案例分享 十二、变量叶片泵和柱塞泵
2)调整环节的任务 抑制干扰量 调整指令参量 3.基本传递环节汇总
4.闭环控制原理
5.实现闭环控制的设备构成 伺服放大器 通用插板 带斜坡发生器的插板 信号限制放大器 6.实际值的测量 数字式、模拟式或增量式、绝对式
第七章 伺服阀动态特性对控制回路的影响 1.闭环控制回路
2.Kv(回路增益)的最大允许值 3.固有频率的特性 4.测量系统的选择
安全。
10.质量应纯净,尽量减少机械杂质、水分和灰尘等的含量。
6.2液压油的分类 6.2.1矿物基液压油 6.2.2植物基液压油 6.2.3合成液压油 6.2.4防火液压油 6.3液压油的黏度和密度 6.4材料的相容性 6.5可过滤能力 6.6固态污染颗粒 6.7系统污染的测量
7.滤油器的设计计算
第一章 比例阀及元器件技术
比例电磁铁 比例方向阀 比例压力阀 比例流量阀 比例阀的安装、调试和维护
比例阀技术入门
比例控制设备的技术优势,主要在于阀位转换过程是受控的,设 定值可无级调节,而且实现控制所需的液压元件较少,从而减少投资 费用.
使用比例阀可更快捷、更简便和更精确地实现工作循环控制 ,并满足切换过程的性能要求。
7.1滤油器在液压系统中的作用 7.2液压系统中滤油器的布置位置
7.3滤油器的设计准则 7.4滤油器过滤精度的确定 7.5油液对滤油器设计的影响 7.6滤油器尺寸的确定
8.维护保养方面的注意事项
第九章 液压系统常见故障的诊断方法
系统简易故障 1.油箱内液压油的颜色变化或其它. 2.油温. 3.压力反映. 4.油泵声音. 5.油箱是否漏油. 6.液压缸的动作. 7.马达的动作、噪音等. 8.电磁铁的动作和电磁铁的工作温度. 9.流速音. 10.各接头是否有漏油. 11.液压件上是否有振动,紧固件发生松动。
第八章 液压系统的油液过滤
1.液压油的过滤 1.1固态污染物的影响 1.2对控制棱边的磨损作用
2.液压系统固体颗粒造成的污染 2.1初始的污染物 2.2系统工作时外界侵入的污染物 2.3新油带来的污染物
3.多层网状结构的滤芯特性 3.1 液流方向 由外向里,带单向阀 3.2星型折叠 3.3滤芯的压降 尺寸大,降低了压差 3.4污染物的吸纳能力
铁、阀座、阀芯和弹簧。 2、先导式比例溢流阀
组成:比例电磁铁、先导阀、主阀芯、主阀 和最高压力限制阀。
比例减压阀和先导式比例减压阀
比例流量阀
二通比例流量调节阀,可通过给定的电 信号,在较大范围内与压力及温度无关地 控制流量。 NG6、NG10、NG16和插装式的比例节流 阀
比例阀的安装、使用和维护
第五章 伺服阀及其元器件技术
1.液压伺服技术的定义 控制参量为机械量或液压量
2.开环系统和闭环系统的区别 1)开环控制
2)闭环的调节
3.力矩马达 4.一级阀 5.技术数据和运行 曲线
6.单级控制阀
7.多级控制阀 8.液压伺服阀的 安装、使用和维 护
第六章 闭环系统的控制
1.从开环到闭环控制 与时间相关的制动 与距离相关的制动 2.闭环调节 1)闭环调节的定义
4.滤油器的选用准则 4.1过滤率的高度稳定 4.2除污率 4.3特定除污率
5.滤油器安装注意事项 5.1耐压滤油器
5.2比例阀和伺服阀内直接嵌入式耐压滤油 器
5.3回油滤油器 5.4堵塞指示器 5.5空气滤清器
6.液压油 6.1液压油的性能 1.合适的粘度 2.良好的粘温特性 3良好的润滑性(抗磨性) 4.较高的化学反应稳定性能(抗氧化性) 5.良好的抗剪切安定性 6.良好的防锈和防腐蚀性 7.良好的抗乳化性和水解安定性、抗泡沫性和空气释放性 8.对密封材料的适应性 9.燃点、闪点应满足环境温度、挥发性要求,已确保液压油使用
比例电磁铁
电磁铁分为: 1、行程调节型电磁铁 主要用以控制直动式四通比例方向阀。 2、力调节型电磁铁 特征为力-行程特性。
比例方向阀
阀的基本组成部分有: 阀体、比例电磁铁、控制阀芯、弹簧和电感 式位移传感器。
滞环:表明一个状态和前一个状态的关系。
重复精度:在重复调节同一个输入信号时,输出信号所 出现的差值。
安装 使用 保养 存贮
使用无缝钢管 工作介质
第二章 压力补偿器对负载压力补偿(附件)
▪ 二通进口压力补偿器的负载压力补偿
FD型单向截止调速阀 出口压力补偿器的负载压力补偿 工程项目设计原则 溢流三通压力补偿器 二通插装阀的负载压力补偿
第三章 比例阀用电控器(附件)
1.斜坡发生器
2.比例阀用比例放大器 1)不带电反馈的比例放大器 2)带比例阀阀芯行程电反馈的比例放大器 3.闭环位置控制的比例放大器 4.电控摸组
第四章 比例阀开环控制系统的设计准则
质量、负载和作用力 符号与单位 加速、位移和减速 等速段到加减速段期间节流阀口的压力关系 四通节流阀口的压差计算 一定减速时间下减速行程的位置精度 管道系统的油液黏度改变引起的速度变化 四通比例阀控系统中油缸和液压马达的参数计算 液压系统固有的频率的计算和作用
先导式比例方向阀
阀的基本组成有: 带比例电磁铁的先导阀、阀芯、主阀和 弹簧
比例方向阀的特点:
1、结构与三位四通的普通方向阀相似; 2、对污染的敏感性较小; 3、一个阀可同时控制方向和流量; 4、具有较大的阀芯行程; 5、流入和流出执行器的液流,都要受到两
个控制阀口的约束。
比例压力阀
1、直动式比例溢流阀 组成:壳体、电感式位移传感器、比例电磁
系统噪声大、振动大的原因 1.压力阀 2.流量阀的设定 3.方向阀的动作 4.是否系统内泄大 5.液压缸的性能 6.空气