分子印迹聚合物的特性及其应用ppt课件
合集下载
分子印迹技术.ppt创新课

6
分子印迹技术的分类
根据印记分子和功能单体之间作用的不同,可将制备MIPs 的方法分为以下四种: (1)预组装法(pre-organized approach)——共价 键 作用
共价键法是由Wulff等人创立发展起来的。该方法中印迹分子(目 标分子)和功能单体一共价键的形式结合成印迹分子的衍生物,该聚 合物进一步在化学条件下打开共价键是印记分子脱离。功能单体一般 采用小分子化合物。
共价键结合作用包括:硼酸酯、席夫碱、缩醛酮、酯 和螯合物等。 该方法主要应用于制备各种具有特意识别功能的聚合 物,如糖及其衍生物,甘油酸及其衍生物,氨基酸及其衍 生物等。
7
分子印迹技术的分类
(2)自组装法(self-assembly approach)— —非共价键作用
该方法由Mosbach等人发展起来的。即把适当比例的 印迹分子与功能单体和交联剂混合,通过非共价结合在一 起生成非共价键印迹分子聚合物。 非共价键包括:氢键,静电引力,金属螯合作用,电 荷转移作用,疏水作用以及范德华力等。 该法主要应用与下列物质的分离:燃料,二胺,维生 素,氨基酸衍生物,多肽,肾上腺素功能药物阻聚剂,茶 碱,二氮杂苯等。
4
分子印迹技术概论和历史发展
分子印迹技术的发展
1949年 Dickey 专一性吸附
1972年 德国Heinrich Heine大学的Wulff研究小组报道了
人工合成分子印迹聚合物
1993年 瑞典Lund大学的Mosbach等在《Nature》上发表有
关茶碱分子印迹聚合物的研究报道
1997年 在瑞典Lund大学成立了国际性的分子印迹学会
21
分子印迹技术机理
• 分子印迹热力学
热力学过程控制分子印迹的识别分离过程是目前被研究者 普遍接受的理论,人们大多通过研究分离过程的熵变,焓 变和自由能等热力学参数的变化等来对热力学过程进行描 述。 从分子印迹聚合物的制备过程可以看出,在引发聚合之前, 模板分子与功能单体在溶液中经预组织排列形成复合物, 这是一个动态平衡过程,在平衡中形成的复合物的稳定程 度受吉布斯自由能的变化控制,这样焓变和熵变决定了平 衡态势,即模板分子-功能单体复合物的稳定性。
分子印迹技术的分类
根据印记分子和功能单体之间作用的不同,可将制备MIPs 的方法分为以下四种: (1)预组装法(pre-organized approach)——共价 键 作用
共价键法是由Wulff等人创立发展起来的。该方法中印迹分子(目 标分子)和功能单体一共价键的形式结合成印迹分子的衍生物,该聚 合物进一步在化学条件下打开共价键是印记分子脱离。功能单体一般 采用小分子化合物。
共价键结合作用包括:硼酸酯、席夫碱、缩醛酮、酯 和螯合物等。 该方法主要应用于制备各种具有特意识别功能的聚合 物,如糖及其衍生物,甘油酸及其衍生物,氨基酸及其衍 生物等。
7
分子印迹技术的分类
(2)自组装法(self-assembly approach)— —非共价键作用
该方法由Mosbach等人发展起来的。即把适当比例的 印迹分子与功能单体和交联剂混合,通过非共价结合在一 起生成非共价键印迹分子聚合物。 非共价键包括:氢键,静电引力,金属螯合作用,电 荷转移作用,疏水作用以及范德华力等。 该法主要应用与下列物质的分离:燃料,二胺,维生 素,氨基酸衍生物,多肽,肾上腺素功能药物阻聚剂,茶 碱,二氮杂苯等。
4
分子印迹技术概论和历史发展
分子印迹技术的发展
1949年 Dickey 专一性吸附
1972年 德国Heinrich Heine大学的Wulff研究小组报道了
人工合成分子印迹聚合物
1993年 瑞典Lund大学的Mosbach等在《Nature》上发表有
关茶碱分子印迹聚合物的研究报道
1997年 在瑞典Lund大学成立了国际性的分子印迹学会
21
分子印迹技术机理
• 分子印迹热力学
热力学过程控制分子印迹的识别分离过程是目前被研究者 普遍接受的理论,人们大多通过研究分离过程的熵变,焓 变和自由能等热力学参数的变化等来对热力学过程进行描 述。 从分子印迹聚合物的制备过程可以看出,在引发聚合之前, 模板分子与功能单体在溶液中经预组织排列形成复合物, 这是一个动态平衡过程,在平衡中形成的复合物的稳定程 度受吉布斯自由能的变化控制,这样焓变和熵变决定了平 衡态势,即模板分子-功能单体复合物的稳定性。
分子印迹技术演示ppt

非共价法(自组织法,self-assembling)
印迹分子与功能单体之间预先自组织排列,以非共价键形成多重作用位 点,聚合后这种作用保存下来.
常用的非共价作用有氢键、静电引力、金属螯合作用、电荷转移、疏水 作用以及范德华力等,其中以氢键应用最多.
二种方法的优缺点比较
共价法:由于共价键作用力较强,在印迹分子自组装或识别过程中结合和解 离速度较慢,难以达到热力学平衡,不适于快速识别,而且识别水平与生物识别 相差甚远.因此,共价法发展较为缓慢.
分子印迹技术
组员:赵一纳 骆荧 裘倍蕾
分子印迹技术
分子印迹技术(Molecular Imprinting Technique,MIT)是近
年来集高分子合成、分子设计、分子识别、仿生生物工程等众多 学科优势发展起来的一门边缘学科分支。
基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶 劣环境能力强、稳定性好、使用寿命长、应用范围广等特点。因 此,分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传 感、模拟酶催化、临床药物分析等得到日益广泛的研究和开发, 有望在生物工程、临床医学、环境监测、食品工业等行业形成产 业化规模的应用。
CONTENTS
分子印 迹技术
原理 类型 特点 应用
分子印迹的原理
分子印迹技术,又称分子烙印技术,是将模板分
子(印迹分子、目标分子)与交联剂在聚合物单体溶液 中进行聚合得到固体介质,然后通过物理或化学方法 洗脱除去介质中的模板分子,得到“印迹”有目标分 子空间结构和结合位点的MIPs.
分子印迹的原理
共价法(预组织法,preorganization)
印迹分子先通过共价键与单体结合,然后交联聚合,聚合后再通过化学途 径将共价键断裂而去除印迹分子.
分子印迹聚合物

合成方法
分子印迹聚合物的主要合成方法有:本体聚合法、沉淀聚合法、微乳液聚合法、悬浮聚合法、原位聚合法、 多步溶胀聚合法以及原位电聚合法等。
运用领域
1MIPs用作化学仿生传感器
化学或生物传感器是由分子识别元件和信号转换器所组成。近十几年来,生物传感器以其突出的灵敏度和特异 性引起了广泛的**,使传感技术的研究不断升温。分子印迹聚合物敏感材料与近年来研究较热的生物敏感材料相 比,具有耐高温、高压、酸、碱和有机溶剂,不易被生物降解破坏,可多次重复使用,易于保存等优点。
1.2光化学传感器:
Kriz等发展了一种基于分子印迹技术的光纤传感器。这种传感器具有手性识别能力,能识别荧光标记的氨基 酸衍生物。其原理是当荧光标记的氨基酸结合到附着于石英窗上的MIPs时,荧光信号随其浓度而变。以D型的氨基 酸衍生物作参比便实现了手性识别。其检测丹酰-L-苯基丙氨酸的浓度范围为0~30μg/ml。
通过分子印迹技术合成的对特定目标分子(模板分子)及其结构类似物具有特异性识别和选择性吸附的聚合 物。
应用
色谱分离、膜分离、固相萃取、药物控制释放、化学传感、环境检测等
基本原理
分子印迹技术是在仿生科学和模拟自然界中酶与底物及受体与抗体作用的基础之上发展来的一项技术。分子 印迹是通过以下方法实现的:(1)使印迹分子与功能单体(functional monomer)之间通过共价键(covalent)或Π 和非共价键(non-covalent)结合,形成主客体配合物(Host-gust complex)。(2)在配合物中加入交联剂 (crosslinker),受引发剂,热或光引发,印迹分子-单体配合物周围产生聚合反应。在此过程中,聚合物链通过自 由基聚合将模板分子和单体配合物“捕获”到聚合物的立体结构中。(3)将聚合物中的印迹分子通过适当的方法 洗脱(extraction)或解离(dissociation)出来,形成具有识别印迹分子的结合位点。
分子印迹技术优秀课件

2.4 分子印迹技术的特点
MIT之所以发展如此迅速,主要是因为它有三大特点: ●预定性(predetermination)
根据不同的目的制备不同的MIPs,以满足不同的需要。 ●识别性(recognition)
MIPs是按照模版分子定做的,可以专一地识别印迹分 子。 ●实用性(practicability)
它可以与天然的生物分子识别系统相比拟,例如,酶 和底物;抗原与抗体等。
3 分子印迹聚合物的制备
分子印迹聚合物是由印迹分子、功能基单体在交联剂等物质作用下 形成作用位点,相互聚合,发生反应,形成的一类具有特异选择识别 功能的物质。
图3.1 分子印迹聚合物制备过程示意图
3.1 分子印迹聚合物的制备要素
• 预组织法(共价法) Wulff 结合方式:可逆共价键 优点:空间精确固定排列 缺点:识别能力不够理想 形成复合物的过程缓慢
• 自组装法 (非共价法)Mosbach 结合方式:非共价键 优点:简单易行 模板容易除去 近似天然 缺点:印迹过程的轮廓不清晰
• 牺牲空间法 (两者兼备)Vulfson
2.2 分子印迹技术的分类
制备材料 模板分子 溶剂 功能单体
交联剂
强极性基团 高效MIPs 氢键基团 高选择性MIPs
促进作用 减小干扰 共价键型 含有乙烯基 非共价型 含有乙烯基和羧基 乙二醇二甲基丙烯酸酯
3.2 MIPs的聚合形式和方法
聚合形式主要有热化学聚合和光化学聚合两种 形式。 分子印迹聚合物的制备方法: ❖本位聚合 ❖原位聚合 ❖沉淀聚合 ❖悬浮聚合 ❖表面印迹 ❖电聚合
分子印迹技术优秀课件
1 背景介绍
分子印迹技术(MIT)的发展
1997年 Lund University 成 立分子 印迹学会
分子印迹聚合物的特性及其应用ppt课件

. Logo Logo
六、分子印迹聚合物的应用
(1)有效成分的分离:
朱全红等,以长春碱为模板分子制备了长春碱MIP,并作为固相萃取的吸 附剂用于分离长春花提取物中的长春碱。结果表明,通过选择和优化上样、 淋洗及洗脱等条件,长春花提取物中的主要成分长春碱得到高效富集及分离。
(2)有效组分群的分离:
徐筱杰等以槲皮素为模板分子通过非共价印迹方法制备了槲皮素MIP, 该聚合物对槲皮素表现出特殊的识别能力,能将银杏叶提取物水解液中的槲 皮素及山柰酚分离,能从沙棘提取物的水解液中得到槲皮素及异鼠李素。说 明槲皮素印迹的聚合物不仅对模板分子具有很高的亲和性,对与其结构类似 的化合物山柰酚、异鼠李素也表现出较高的结合能力。
四、分子印迹聚合物的合成
印迹 聚 萃取
. Logo Logo
与天然的生物分子识别系统相比,
五、分子印迹聚合物的特性 MIP是用化学合成的方法制备的, 因此还具有天然分子识别系统所不
具备的抗恶劣环境的能力,从而表
由于聚合物上预留的
现出高度的物理、化学稳定性,如
空穴与模板分子完美匹配,
耐高温、高压,能抵抗很强的机械
. Logo Logo
六、分子印迹聚合物的应用
分子印迹聚合物的应用领域包括: 1、中药研究 2、分析化学 3、天然药物化学 4、医药学 5、生物学
. Logo Logo
六、分子印迹聚合物的应用
1、在中药研究上的应用
以中药活性物质为模板制备的MIP,正是具有其他 分离材料所不具备的强特异性和高选择性,因此在中药 活性成分的分离、分析中具有很好的应用前景。目前用 MIT研究的中药有效成分包括黄酮、生物碱、香豆素、 木脂素等。主要应用在以下几个方面: (1)有效成分的分离; (2)有效组分群的分离; (3)活性成分的筛选; (4)复杂样品的预处理以及目标分子的测定;
六、分子印迹聚合物的应用
(1)有效成分的分离:
朱全红等,以长春碱为模板分子制备了长春碱MIP,并作为固相萃取的吸 附剂用于分离长春花提取物中的长春碱。结果表明,通过选择和优化上样、 淋洗及洗脱等条件,长春花提取物中的主要成分长春碱得到高效富集及分离。
(2)有效组分群的分离:
徐筱杰等以槲皮素为模板分子通过非共价印迹方法制备了槲皮素MIP, 该聚合物对槲皮素表现出特殊的识别能力,能将银杏叶提取物水解液中的槲 皮素及山柰酚分离,能从沙棘提取物的水解液中得到槲皮素及异鼠李素。说 明槲皮素印迹的聚合物不仅对模板分子具有很高的亲和性,对与其结构类似 的化合物山柰酚、异鼠李素也表现出较高的结合能力。
四、分子印迹聚合物的合成
印迹 聚 萃取
. Logo Logo
与天然的生物分子识别系统相比,
五、分子印迹聚合物的特性 MIP是用化学合成的方法制备的, 因此还具有天然分子识别系统所不
具备的抗恶劣环境的能力,从而表
由于聚合物上预留的
现出高度的物理、化学稳定性,如
空穴与模板分子完美匹配,
耐高温、高压,能抵抗很强的机械
. Logo Logo
六、分子印迹聚合物的应用
分子印迹聚合物的应用领域包括: 1、中药研究 2、分析化学 3、天然药物化学 4、医药学 5、生物学
. Logo Logo
六、分子印迹聚合物的应用
1、在中药研究上的应用
以中药活性物质为模板制备的MIP,正是具有其他 分离材料所不具备的强特异性和高选择性,因此在中药 活性成分的分离、分析中具有很好的应用前景。目前用 MIT研究的中药有效成分包括黄酮、生物碱、香豆素、 木脂素等。主要应用在以下几个方面: (1)有效成分的分离; (2)有效组分群的分离; (3)活性成分的筛选; (4)复杂样品的预处理以及目标分子的测定;
分子印迹聚合物简介

整体印迹法工艺虽然简单,但后续处理复杂 耗时,所得材料需经研磨和过筛才能得到所需 粒径范围的颗粒,并不适合工业化生产。另外, 此种方式制得的材料外形不规则,限制了其在 色谱和固相萃取领域的应用。最重要的是,整 体聚合时不可避免地会有大量的印迹位点分布 于材料内部,不利于蛋白质的进出。
3.2 表面印迹 在聚合物的表面或近表面构造模板蛋白的结合位点称为“表面印迹”。与 整体印迹旨在构造蛋白特异性三维结构不同的是,表面印迹的特点是在材料 的表面构建蛋白的“二维印迹”。这样的二维阴极材料从某种程度上解决了 生物大分子难以进出聚合物材料的问题,可大大缩短蛋白扩散进入材料并达 到平衡的时间。然而,与“三维印迹”材料性比,“二维印迹”材料可能会 出现对模板蛋白选择性降低的问题。
二 文献介绍
(一)、氨基硅球表面印迹牛血清白蛋白分离条件的初步探 索》 文献探讨了识别蛋白质分子过程中是何种作用力起主 导作用。选择无机前驱体、氨基硅烷和烃基硅烷为功能单 体,牛血清白蛋白为模板分子,牛血红蛋白和溶菌酶为竞 争蛋白,采用固定模板蛋白表面印迹的方法在氨丙基衍生 的硅球表面制备了溶胶-凝胶的MIPs。
Tan 等以甲基丙烯酸甲酯为功能单体, 乙二醇二甲基丙烯酸为交联剂, 用微乳液 (W/O/W 复乳)聚合法制备了印迹RNase A 的纳米粒。该法中使 用了较高浓度的SDS 和聚乙烯醇作为乳化剂。作者认为, 当两亲性的蛋白 被加入预聚合微乳液后, 蛋白会吸附于表面活性剂形成的胶束中并被分配 到油-水两相的界面上。聚合反应引发后,蛋白便被“束缚”在胶束的表面 了。研究表明, 蛋白和表面活性剂的相互作用有助于蛋白停留在纳米粒表 面, 然而太剧烈的作用却会导致蛋白明显的构象变化, 甚至变性, 造成错 误的印迹。
Li 等将高度交联的壳聚糖微球作为“核”通过可逆的席夫碱反 应共价连接模板蛋白BSA,最后在此多糖-蛋白的界面上通过溶胶-凝 胶过程覆盖一层聚硅氧烷的“壳”。用乙二酸破坏席夫碱从而将模板 蛋白从“核”上脱除,而“壳”上则将模板的大小、形状及空间构象 保留下来。此法制备的微球表面具有较粗糙的多孔结构。扫描电镜图 像显示,印迹微球表面形成大量分布均匀、网状连接的空穴。BET氮 气吸附试验结果表明,作为支撑基质的壳聚糖微球BET表面积为 41.25m2·g-1平均孔径为8.7 nm。而“核-壳”型印迹微球的BET 表面 积为48.65 m2·g-1,平均孔径达43.2 nm。表面积和孔径的增加提示了 印迹位点的形成。 Tan 等[19]用微乳液聚合法制备超顺磁性亚微粒。预先制备 Fe3O4 磁性纳米粒, 将功能单体甲基丙烯酸甲酯和交联剂乙二醇二 甲基丙烯酸分散在油相中, 用微乳液聚合法制备表面印迹核糖核酸 酶A(ribonuclease A, RNase A) 的亚微粒。与非印迹材料相比, 印 迹材料在混合蛋白溶液中对模板蛋白有很好的选择性。
分子印迹聚合物简介PPT课件

第2页/共27页
2 、分子印迹技术基本原理
分子印迹就是将模板分子与功能单体通过共价、非共价 或金属协同作用形成预聚合物,在交联剂的作用下功能单体 发生聚合,将模板分子固定在聚合物中,最后脱除模板分子, 即聚合物材料上留下与模板分子在大小、形状和官能团的方 向上都互补的空穴结构。空穴不仅保留了与模板分子化学结 构互补的官能团的有序排列,也维持了它的整个空间构象, 所以当材料再次遇到模板分子时,可发生特异性的结合。
Tan 等以甲基丙烯酸甲酯为功能单体, 乙二醇二甲基丙烯酸为交联剂, 用微乳液 (W/O/W 复乳)聚合法制备了印迹RNase A 的纳米粒。该法中 使用了较高浓度的SDS 和聚乙烯醇作为乳化剂。作者认为, 当两亲性的蛋 白被加入预聚合微乳液后, 蛋白会吸附于表面活性剂形成的胶束中并被分 配到油-水两相的界面上。聚合反应引发后,蛋白便被“束缚”在胶束的表 面了。研究表明, 蛋白和表面活性剂的相互作用有助于蛋白停留在纳米粒 表面, 然而太剧烈的作用却会导致蛋白明显的构象变化, 甚至变性, 造成错 误的印迹。
第7页/共27页
3.2 表面印迹 在聚合物的表面或近表面构造模板蛋白的结合位点称为“表面印迹”。与
整体印迹旨在构造蛋白特异性三维结构不同的是,表面印迹的特点是在材料 的表面构建蛋白的“二维印迹”。这样的二维阴极材料从某种程度上解决了 生物大分子难以进出聚合物材料的问题,可大大缩短蛋白扩散进入材料并达 到平衡的时间。然而,与“三维印迹”材料性比,“二维印迹”材料可能会 出现对模板蛋白选择性降低的问题。
Tan 等[19]用微乳液聚合法制备超顺磁性亚微粒。预先制备Fe3O4 磁性纳米粒, 将功能单体甲基丙烯酸甲酯和交联剂乙二醇二甲基丙烯 酸分散在油相中, 用微乳液聚合法制备表面印迹核糖核酸酶 A(ribonuclease A, RNase A) 的亚微粒。与非印迹材料相比, 印迹 材料在混合蛋白溶液中对模板蛋白有很好的选择性。
2 、分子印迹技术基本原理
分子印迹就是将模板分子与功能单体通过共价、非共价 或金属协同作用形成预聚合物,在交联剂的作用下功能单体 发生聚合,将模板分子固定在聚合物中,最后脱除模板分子, 即聚合物材料上留下与模板分子在大小、形状和官能团的方 向上都互补的空穴结构。空穴不仅保留了与模板分子化学结 构互补的官能团的有序排列,也维持了它的整个空间构象, 所以当材料再次遇到模板分子时,可发生特异性的结合。
Tan 等以甲基丙烯酸甲酯为功能单体, 乙二醇二甲基丙烯酸为交联剂, 用微乳液 (W/O/W 复乳)聚合法制备了印迹RNase A 的纳米粒。该法中 使用了较高浓度的SDS 和聚乙烯醇作为乳化剂。作者认为, 当两亲性的蛋 白被加入预聚合微乳液后, 蛋白会吸附于表面活性剂形成的胶束中并被分 配到油-水两相的界面上。聚合反应引发后,蛋白便被“束缚”在胶束的表 面了。研究表明, 蛋白和表面活性剂的相互作用有助于蛋白停留在纳米粒 表面, 然而太剧烈的作用却会导致蛋白明显的构象变化, 甚至变性, 造成错 误的印迹。
第7页/共27页
3.2 表面印迹 在聚合物的表面或近表面构造模板蛋白的结合位点称为“表面印迹”。与
整体印迹旨在构造蛋白特异性三维结构不同的是,表面印迹的特点是在材料 的表面构建蛋白的“二维印迹”。这样的二维阴极材料从某种程度上解决了 生物大分子难以进出聚合物材料的问题,可大大缩短蛋白扩散进入材料并达 到平衡的时间。然而,与“三维印迹”材料性比,“二维印迹”材料可能会 出现对模板蛋白选择性降低的问题。
Tan 等[19]用微乳液聚合法制备超顺磁性亚微粒。预先制备Fe3O4 磁性纳米粒, 将功能单体甲基丙烯酸甲酯和交联剂乙二醇二甲基丙烯 酸分散在油相中, 用微乳液聚合法制备表面印迹核糖核酸酶 A(ribonuclease A, RNase A) 的亚微粒。与非印迹材料相比, 印迹 材料在混合蛋白溶液中对模板蛋白有很好的选择性。
分子印迹技术-PPT课件

北京市植物资源研究开发重点实验室
三、分子印迹技术的原理
当模板分子(印迹分子)与功能单体接触时会形 成多重作用点,通过聚合过程这种作用会被记忆 下来,当模板分子除去后,聚合物中就形成了与 模板分子空间构型相匹配的具有多重作用点的空 穴,这样的空穴将对模板分子及其类似物具有选 择识别特性。
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
一、什么是分子印迹技术
分子印迹技术是二十世纪八十年代迅速 发展起来的一种化学分析技术,通常被人 们描述为创造与识别“分子钥匙”的人工 “锁”技术。
分子识别技术
分子模板技术
北京市植物资源研究开发重点实验室
弱相互作用 超分子化学 聚合、交联 高分子化学
超分子化学和高分子化学是分子印迹技术的重要基础
北京市植物资源研究开发重点实验室
主要内容
一、什么是分子印迹技术 二、分子印迹技术的产生和发展 三、分子印迹的基本原理 四、分子印迹的分类 五、分子印迹的步骤 六、分子印迹技术的特点 七、分子印迹技术的应用 八、展望
北京市植物资源研究开发重点实验室
四、分子印迹的分类
种类
功能单体和模板分子间的作用形式
共价印迹法 杂化印迹法 非共价印迹法
北京市植物资源研究开发重点实验室
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. Logo Logo
四、分子印把模迹板分聚子、功合能单物体、的交联合剂和引成方法
一种介于本体聚合和悬浮聚合之发剂按一定比例溶于惰性溶剂中,以
间的聚合方法。反应开始前,单光照或加热的方式引发自由基进行聚
体、引发剂、分散剂、是交把联模剂板等合分,子得和到功的能块单状体聚在合物经粉碎、过筛、
都溶于分散介质中,体溶系剂为中均形相成,洗的脱复等合得物到与所表需面粒径的MIP颗粒。本
80年代
Wulff G研究小组首次成功制备 出MIP
1972年
奠定基础
当时Pauling 首次提出抗体形成学说 40年代
. Logo Logo
三、分子印迹聚合物的合成原理
基本原理:当模板 分子(印迹分子)与聚 合物单体接触时会形成 多重作用点,通过聚合 过程这种作用就会被记 忆下来,当模板分子除 去后,聚合物中就形成 了与模板分子空间构型 相匹配的具有多重作用 点的空穴,这样的空穴 将对模板分子及其类似 物具有选择识别特性。
四、分子印迹聚合物的合成
印迹 聚合 萃取
. Logo Logo
与天然的生物分子识别系统相比,
五、分子印迹聚合物的特性 MIP是用化学合成的方法制备的, 因此还具有天然分子识别系统所不
具备的抗恶劣环境的能力,从而表
由于聚合物上预留的
现出高度的物理、化学稳定性,如
空穴与模板分子完美匹配,
耐高温、高压,能抵抗很强的机械
悬浮聚本合体聚合 聚 方合 法 硅和术胶溶等表牺 胶面牲 -聚凝载合胶体技 分引 合 分 接 成 不 长 微 工 且散发。子在球断并球艺能剂剂当链一形有缠从简制的分反生起的分接聚单备性大解应长,核子,合,不聚分产进到在,链直相可同合又种有径一再子生行一搅随在至中适粒物称子/较定通链自一定拌着已最析用径微为溶无小的过舒由定长作反形后出于级球多胀皂的乳还展基程度用应成形。各别。步悬乳微液原活丙等中紧与溶特是性在获M后度就下的的成分种的I溶浮液球进剂化烷介对而完胀点可,溶得P引 后 相 逐 进 核 完 散 单 单采全聚度前用分合形研相胀聚聚作行的过三质模无全系。以通剂的发,互渐行上整聚体分用氟合范制的离方溶成磨比悬合合为多加的丙反板法用数这利过中M聚高缠形,生的合,散剂与烃物围备方效式乳和I,浮,法种次入硅烯应分洗高小种用对,法过数P的一为表分聚法能仅液筛解这聚即合子溶,胶酸接子脱分、方粒粒合程M非般分面布合之高限,分决种合采成,胀经、酯枝包完子传法子子I成繁P极有散活窄物一,于聚的了聚或用粒用,光聚粒聚埋全单质最的本的条琐性机介性,微。但能合步传合三子合过的体速大机身制件,的溶质剂形球这水溶后骤统物羟、。深问合度的械性备简所分模剂,使态最种包于得,方具甲玻这或题成快优稳能都单得离板皆加印规简方油疏到制法有基璃样过,的的点定的采,粒能分不入迹则便法的水的备用操子力子互特混,、省悬性M的此作的I。。溶制合是最去浮有MP法易不I粒的的物目常了聚机P,于 规但控则后制低处,了理多其 引发或热引发制调得节M来I适P微应球需。要。 这种方法可以得到粒径均匀
分子印迹聚合物的特性及其应用
21100817 李敏婷 中药化学 导师:朱全红
分子印迹聚合物
一. 定义 二. 进程 三. 原理 五. 合成 六. 特性 六. 应用
. Logo Logo
一、分子印迹聚合物的定义
❖分子印迹聚合物(Molecular Imprinted Polymer ,MIP):是一种在空间结构和结合位 点上与模板分子完全匹配的高分子聚合物,该 聚合物留有模板分子的“印迹”,因此对模板 分子具有专一的选择性结合能力。
. Logo Logo
六、分子印迹聚合物的应用
分子印迹聚合物的应用领域包括: 1、中药研究 2、分析化学 3、天然药物化学 4、医药学 5、生物学
. Logo Logo
六、分子印迹聚合物的应用
1、在中药研究上的应用
以中药活性物质为模板制备的MIP,正是具有其他 分离材料所不具备的强特异性和高选择性,因此在中药 活性成分的分离、分析中具有很好的应用前景。目前用 MIT研究的中药有效成分包括黄酮、生物碱、香豆素、 木脂素等。主要应用在以下几个方面: (1)有效成分的分离; (2)有效组分群的分离; (3)活性成分的筛选; (4)复杂样品的预处理以及目标分子的测定;
到动力学平衡。
3.高度的 稳定性.
和性
2.适当的刚性 和一定的柔韧
性
. Logo Logo
六、分子印迹聚合物的应用
近年来分子印迹技术已经被广泛地研究并 应用于多个学科领域之中。其在各类物质的分 离分析上展示了良好的性能与应用前景。2000 年以后,国内外均涌现出大量应用分子印迹技 术的专利,并呈现逐年增多的趋势。分子印迹 技术的应用方式大多为制备色谱柱填料、传感 器涂层、分子印迹薄膜等。
❖分子印迹技术(Molecular Imprinting Technique ,MIT ):是制备空间结构和结合 位点与模板分子完全匹配的聚合物技术。
. Logo Logo
二、分子印迹聚合物的研究进程
得到世界关注并迅速发展 进一步发展 突破性进展
使其成为化学和生物学交 叉的新兴领域之一
1993年
非共价型模板聚合物的出现
中加入交联剂
和引发剂,通
过聚合反应在
Tex模t 板分子周围
二是聚合
形成高度交即联采用适当的方
的高分子聚法合将模板分子从
物。 聚合物中抽提或
解离出来,在聚
合物上就留有模
板分子的“印
迹”,其在空间
Txt 结构上与模板分
三是萃取 子完美匹配且能
专一性识别模板
分子,这样的聚
合物称为分子印
迹聚合物。
. Logo Logo
分的散聚聚合物合颗粒,但是步骤较 为复杂。
溶胀聚合
. Logo Logo
四、分子印迹聚合物的合成步骤
分子印迹聚合物 的合成步骤
即以特定的目
标分子为模板, 一是印迹
选择具有适T当ext 功能基的功能
单体,使二者
之间通过共价
或非共价键作
用形成模板分 子-功能单体分子-功
能单体复合物
分子印迹 因此MIP对模板分子表现
作用力及酸、碱和有机溶剂的作用,
聚特合性物的 出特殊的识别性能。
子后聚因合具物有在刚脱性去仍模能且板保能分持多次重复记使忆用效而应不。损失其分子
1.特定的 选择性和 高度的亲
印迹孔穴的构型和互补官 能团的位置。而MIP所具 有的柔韧性能使模板分子 与印迹空穴的结合快速达