Direct and inverse spectral transform for the relativistic Toda lattice and the connection

合集下载

小波变换-分段直接校正法用于近红外光谱模型传递研究

小波变换-分段直接校正法用于近红外光谱模型传递研究
2005-09-22 收稿;2006-01-09 接受 本文系国家自然科学基金资助项目( No. 2007523)
928
分析化学
第 34 卷

Dif
2 s,un 转换为与源机上测得的光谱一致的光谱数据
Dif
2
( p
s,un
理论上),即:
Dif
2P s,un
=
Dif
2 s,un F
转换矩阵 F 的计算公式为:
红外光谱仪。其中 3 台为总后油料研究所研制的便携式油料质量分析仪,编号为 Zh3-1、Zh3-2 和 Zh33;2 台为北京英贤仪器有限公司生产的 NIR3000 型近红外光谱仪,编号为 Nir8 和 Nir33。其中 Zh3-3 为 源机,其余 4 台为目标机。上述 5 台仪器均为 CCD2048 象元检测器,分辨率优于 1. 5 nm,光谱采集范围 700 ~ 1100 nm,数据间隔 0. 2 nm。 3. 2 光谱测量和基础数据测定方法
第7 期 927 ~ 932
小波变换-分段直接校正法用于近红外光谱模型传递研究
田高友#1 褚小立2 袁洪福2 陆婉珍2
(1 解放军总后勤部油料研究所,北京 102300) (2 石油化工科学研究院,北京 100083)
摘 要 提出了一种新的传递算法( WT-PDS)———小波变换-分段直接校正法,并详细讨论了模型传递参数和 传递结果。首先利用小波变换对光谱进行压缩处理,采用 PDS 算法消除不同仪器之间压缩数据的差异,最后 利用经校正的压缩数据进行分析,实现模型传递。本方法能够扣除不同仪器之间的大部分差异,大幅度改善 分析精度。传递后模型分析精度与源机模型稳健性紧密相关。如果源机模型稳健性强,则能够实现不同仪器 之间的共享。本方法能够实现源机的 0# 轻柴十六烷值、凝点、馏出温度;-10# 轻柴十六烷值、凝点以及-10# 军 柴凝点和馏出温度共 10 个模型在 5 台仪器之间共享,简化了建模的成本。与传统的 PDS 相比,WT-PDS 方法 具有传递和建模变量少、速度快、光谱校正性能高等优点,而其模型分析精度与传统 PDS 基本一致。

三阶红外导数英文名称

三阶红外导数英文名称

三阶红外导数英文名称Title: Third-Order Infrared Derivative: An Introduction and Its Applications.In the field of spectroscopy, infrared (IR)spectroscopy is a crucial technique for analyzing the chemical structure and properties of molecules. Among various IR spectroscopic methods, the third-order derivative, commonly known as the third-order IR derivative, has emerged as a powerful tool for enhancing spectral resolution and providing detailed information about molecular vibrations. This article aims to provide a comprehensive overview of the third-order IR derivative,its principles, and various applications in various fields.First and foremost, let's delve into the basics of IR spectroscopy. IR spectroscopy is based on the absorption of infrared radiation by molecules, resulting in theexcitation of vibrational modes within the molecules. Each molecule has a unique IR spectrum, which reflects itsunique chemical structure and vibrational frequencies. However, IR spectra can often be complex and overcrowded, making it difficult to identify specific vibrational modes. This is where the third-order IR derivative comes into play.The third-order IR derivative is a mathematical transformation of the original IR spectrum. It involves calculating the third derivative of the absorptionintensity with respect to wavenumber. This transformation effectively enhances spectral resolution by suppressing background noise and enhancing weak absorption bands. The resulting third-order derivative spectrum provides aclearer and more detailed representation of the molecular vibrations, making it easier to identify specific bands and assign them to particular vibrational modes.One of the primary applications of the third-order IR derivative is in polymer research. Polymers are complex macromolecules composed of repeating units. Their IRspectra can be extremely broad and overlapping, making it challenging to identify specific vibrational modes. By applying the third-order derivative, researchers can obtaina more resolved spectrum, enabling them to study the structure and dynamics of polymers in greater detail.Another application of the third-order IR derivative is in the field of biochemistry. Proteins and other biomolecules have complex IR spectra due to their diverse chemical structures and interactions. The third-order derivative can help in disentangling these spectra, revealing specific vibrational modes that are associated with specific functional groups or conformational changes within the biomolecule. This information is crucial for understanding the structure and function of biomolecules.Moreover, the third-order IR derivative has found applications in materials science, environmental science, and forensic science. In materials science, it can be used to study the composition and structure of materials, such as ceramics, metals, and alloys. In environmental science, it can help in monitoring and identifying pollutants and contaminants. In forensic science, it can aid in the identification of unknown substances and materials, such as explosives or drugs.In conclusion, the third-order IR derivative is a powerful tool for enhancing spectral resolution and obtaining detailed information about molecular vibrations. Its applications span various fields, including polymer research, biochemistry, materials science, environmental science, and forensic science. As the demand for more accurate and detailed spectroscopic analysis increases, the third-order IR derivative will continue to play a crucial role in advancing our understanding of molecular structure and properties.。

地理信息科学专业英语书后单词

地理信息科学专业英语书后单词
Overlay analysis 叠加分析 connectivity analysis 连通性分析
Spatial interpolation 空间插值 standard query language(SQL)标准化查询语言
Polygon 多边形 proximity analysis 邻近域分析
Data structures 数据结构 information retrieval 信息检索
Topological modeling 拓扑建模 network analysis网络分析
Overlay 叠置 data output 数据输出
7、remote sensing 遥感 பைடு நூலகம் sensor 传感器
Electromagnetic radiation 电磁辐射 radiometer 辐射计
Electro-optical scanner 光学扫描仪 radar system 雷达系统
high resolution visible(HRV)sensors 高分辨可视成像传感器
Charge-coupled devices (CCDs)电荷耦合器件
panchromatic(PLA)全色 multispectral(MLA)多波段
WFI(Wide Field Imager)广角成像仪 earth observing system(EOS)地球观测系统
CBERS(China-Brazil Erath Resources Satellite)中巴地球资源卫星
IRMSS(Infrared Multispectral Scanner) 红外多光谱扫描仪
Disaster management 灾害管理 public health 公共卫生

高光谱数据分析ENVI操作手册

高光谱数据分析ENVI操作手册

高光谱数据分析ENVI操作手册1.常见参数选择主菜单→File→Preferences●用户自定义文件(User Defined Files)图形颜色文件,颜色表文件,ENVI的菜单文件,地图投影文件等。

需重启ENVI ●默认文件目录(Default Directories)默认数据目录,临时文件目录,默认输出文件目录,ENVI补丁文件、光谱库文件、备用头文件目录等,需重启ENVI。

●显示设置(Display Default)可以设置三窗口中各个分窗口的显示大小,窗口显示式样等。

其中可以设置数据显示拉伸方式(Display Default Stretch),默认为2%线性拉伸。

●其他设置(Miscollaneous)制图单位(Page Unit),默认为英寸(Inches),可设置为厘米(Centimeters)还有缓冲大小(cache size),可以设置为物理内存的50-75%左右。

Image Tile Size不能超过4M。

2.显示图像及其波谱2.1.打开文件●主菜单,Open Image File→文件名.raw。

●或Window→Available Bands List→File →Open Image File→文件名.raw。

2.2.显示图像●显示单波段灰度级图像:Gray color,选择的波段一般是图像显示最清晰的波段。

●显示伪彩色图像:RGB color,选择具有明显吸收谷、强烈反射作用和所含信息量较大的波段作为彩色合成RGB波段。

●显示真彩色图像:波段列表(Available Bands List)中,右键→Load TrueColor 。

●图像保存:Display窗口,File→Save Image As→Image File,选择输出格式、路径和名称,OK。

●动画显示:Display窗口,Tools→Animation,动态显示各波段图像,能很快的分辨出包含信息量较多的波段。

部分命令译文

部分命令译文

一、文件存取与显示Open Image File (打开图像文件)可用矢量列表(Available Vectors List)打开文件列表(Open Files List)输入IDL 变量(Import IDL Variables)输出为IDL 变量(Export to an IDL Variable)执行启动批处理文件(Execute Startup Script)将Session 存为批处理文件(Save Session to Script)关闭所有文件(Close All Files)文件选择(File Selection)对ENVI 影像取子区(Standardized ENVI Spatial Subsetting)标准ENVI 波谱子集(Standardized ENVI Spectral Subsetting)标准ENVI 掩膜(Standardized ENVI Masking)二、ENVI 交互功能剖面和波谱图(Profiles and Spectral Plots)彩色制图(Color Mapping)控制RGB 图象通道(Control RGB Image Planes)82分类彩色制图(Class Color Mapping)显示增强(Display Enhancements)默认(快速)拉伸选项(Default (Quick)Stretching Options)交互式拉伸(Interactive Stretching)滤波(Filter)直方图匹配(Histogram Matching)感兴趣区(Region of Interest)定义感兴趣区(Defining Regions of Interest)感兴趣区控制(ROI Controls)感兴趣区类型(ROI Types)感兴趣区- 测量工具(ROI - Measurement Tool)·恢复保存的ROI 文件(Restore Saved ROI File)保存ROIs 到文件(Save ROIs to File)删除ROIs (Delete ROIs)协调ROIs (Reconcile ROIs)通过地图协调ROIs(Reconcile ROIs via Map)用图象阈值定义ROI(Image Threshold to ROI)交互式分析(Interactive Analysis)光标位置/值(Cursor Location/Value)像素定位器(Pixel Locator)空间像元编辑器(Spatial Pixel Editor)·波谱像元编辑器(Spectral Pixel Editor动画(Animation)注记(Annotation)2-D 散点图(2-D Scatter Plots)3-D 曲面图(3-D Surface Plots and Image Draping)极化信号(Polarization Signatures)叠加(Overlays)等高线(Contour Lines)编辑等高线间距(Edit Contour Levels)删除层(Delete Level(s))矢量层(Vector Layers)矢量窗口的光标功能(Cursor Functions in Vector Windows)矢量属性(Vector Attributes)网格线(Grid Lines)网格类型(Grid Types)网格线参数(Grid Line Parameters)输出网格线(Output Grid Lines分类(Classification)输出显示(Output the Display)显示窗口特征(Display Characteristics)定位缩放和滚动窗口(Positioning the Zoom and Scroll Windows)改变显示参数(Change Display Parameters)显示输出选项(Display Output Options)图象文件(Image File)·缩放窗口输出(Zoom Window Output)·三、基本工具显示控制(Display Controls)启动新显示(Start New Display)启动新的矢量窗口(Start New Vector Window)启动新的绘图窗口(Start New Plot Window)打开显示最大化(Maximize Open Displays)链接显示(Link Displays)关闭所有显示(Close All Displays)关闭所有绘图窗口(Close All Plot Windows)鼠标按键描述(Mouse Button Descriptions)显示信息(Display Information)光标位置/值(Cursor Location/Value)测量工具(Measurement Tool)感兴趣区域(Region of Interest)定义感兴趣区(Define Region of Interest)恢复保存的ROI 文件(Restore Saved ROI File)将ROIs 保存到文件(Save ROIs to File)通过地图调整ROIs(Reconcile ROIs via Map)用图象阈值定义ROI(Image Threshold to ROI)掩膜(Masking)建立掩膜(Build Mask)应用掩膜(Apply Mask)统计(Statistics)计算统计(Compute Statistics)浏览统计文件(View Statistics File)3-D 曲面飞行(3-D SurfaceView)3-D 曲面飞行中的光标功能(Cursor Functions in the 3-D SurfaceView Plot)波段运算(Band Math)可利用波段运算功能(Available Band Math Functions)拉伸数据(Stretch Data)四、Utilities (工具)File Utilities (文件工具)Rotae/Flip Images (旋转/镜像图像)·Mosaic Images (图像镶嵌)Generate Test Image (生成测试图像)Data Viewer (数据浏览器)Create New File (建立新文件)Output Data to Extenal File (将数据输出到外部文件)··Vector Utilities (矢量工具)Raster to Vector Conversion (栅格到矢量的转换) Irregular Points to Grid (不规则点栅格化)·Convert ROI to DXF (将感兴趣区转换为DXF ) Convert ANN to DXF (将ANN 格式转换为DXF 格式)·Convert EVF to DXF (将EVF 格式转换为DXF 格式)Tape Utilities (磁带工具)Read Known Tape Formats (读取已知的磁带格式)Read/Write ENVI Tapes (读/写ENVI 磁带)·Dump Tape (转储磁带)General Purpose Utilities (通用工具)·Replace Bad Lines (坏行修补)·Dark Subtraction (黑区调整)··Destripe Data (数据去条带)··Cross-Track Illumination Correction (轨道照度修正)·Display HDF Global Attributes (显示HDF 整体属性)·Digital Elevation (数字高程)Convert Complex Data (转换复数型数据) Calibration Utilities (校准工具)Flat Field Calibration (平面场校准) Empirical Line Calibration (经验行校准) Conversion Utilities (转换工具)·8Map Projection Utilities (地图投影工具)Map Coordinate Converter (地图坐标转换器) Build Customized Map Projection (建立自定义的地图投影)Convert Map Projection (转换地图投影)·ASCII Coordinate Conversions (坐标转换) Merge Old Projection File (合并旧的投影文件) Running Included User Functions (运行内含的用户函数)Munsell Color Transforms (孟塞尔彩色变换) Gain and Offset Program (增益和偏移程序)3-D Image Cube (三维图像立方体)·五、Transforms (变换)Band Ratios (波段比)Principal Component Analysis (主成分分析) Forward PC Rotation (正向的PC 旋转)·Inverse PC Rotation (反向PC 旋转) Minimum Noise Fraction Rotation (最低噪声分离旋转)Forward MNF Transform (正向的MNF 变换)··Inverse MNF Transform (反向的MNF 变换) Apply Forward MNF to Spectra (把正向的MNF 应用到波谱)Apply Inverse MNF to Spectra (将反向的MNF 应用到波谱)Color Transfroms (颜色变换)Forward - to Color Space (向前到彩色空间) Reverse - to RGB (反向到RGB)Image Sharpening (图像锐化)·Color Normalized (Brovey) Sharpening (彩色标准化锐化)·Decorrelation Stretch (去相关拉伸)·Saturation Stretch (饱和度拉伸)Synthetic Color Image (合成彩色图像) Tasseled Cap (缨帽变换)六、Filetering (滤波)Convolution Filtering (卷积滤波)High Pass Filter (高通滤波器)Low Pass Filter (低通滤波器)Laplacian Filter (拉普拉斯滤波器)·Directional (直通滤波)·Gaussian Filter (高斯滤波器)·Median Filter (中值滤波器)·User Defined Convolution Filters (用户自定义的卷积滤波)Dilate (扩大)Erode (侵蚀)·Opening (开放)Closing (封闭)·Texture 滤波器·Occurrence Measures(概率统计)Co-occurrence Measures(二阶概率统计)Adaptive Filtering (自适应滤波)·Frequency Filtering (频率域滤波,FFTs) Forward FFT (正向的FFT)Interactive FFT Filter Definition (交互式FFT 滤波器的定义)七、Classification (分类)Endmember Collection (收集终端单元)·Endmember Collection 对话框·Apply (应用)Supervised Classification (监督分类) Parallelepiped (平行六面体)Minimum Distance (最小距离)·Mahalanobis Distance (马氏距离)Maximum Likelihood (最大似然分类) Spectral Angle Mapper (波谱角度映射表) Binary Encoding (二进制编码) Unsupervised Classification (非监督分类)·Rule CalssifierClass Statistics (分类统计)Confusion(Contingency) Matrix (混淆矩阵) Changing Class Colors (改变类颜色)Clump Classes(类别集群)Sieve Classes (筛选类)Combine Classes (结合并类)·Overlay Classes (叠置类)Classses To Vector Layers (类到矢量层)八、配准和镶嵌Select Ground Control Points (选择地面控制点) Image-to-Image Registration (图像-图像的配准) Image-to-Map Registration (图像-地图配准) Warping 和Resampling 选项Warp from Pre-existing GCPs(用已存地面控制点纠正影像)Image-to-Image (图像-图像)Image-to-Map(图像-地图)Orthorectification (正射投影纠正)·Rotate/Flip Data (旋转/镜像数据)·Image Mosaicking (图像镶嵌)·Pixel-Based Mosaics (基于像元的镶嵌) Georeferenced 镶嵌·Feathering (羽化)Convert Map Projection (转换地图投影)九、pectral Tools (波谱工具)Spectral Libraries (波谱谱库)·Spectarl Library Viewer (波谱库浏览)··Spectral Library Resampling (波谱库重采样)·Spectral Resampling (波谱重采样)·Spectral Library Builder (创建波谱库)·Spectral Slices (波谱分割)Horizontal Slice (水平切片)·Vertical Slice (垂直切片)·Arbitrary Slice (任意方向的切片)·Spectral Math (波谱运算)·Pixel Purity Index (纯净像元指数)FAST Pixel Purity Index (快速纯净像元指数) New Output Band (新的输出波段)·Existing Output Band (现有的输出波段) Endmember Collection (收集终端单元) Mapping Methods (制图方法)Binary Encoding (二进制编码)·Spectral Angle Mapper (波谱角度制图仪) Linear Spectral Unmixing (线性波谱分离)·Mixture Tuned Matched Filtering(混合匹配滤波)Mixture Tuned Matched Filtering 的结果Continuum Removal (闭联集去除)Spectral Feature Fitting (波谱特征拟合)·Spectral Analyst (波谱分析)十、Radar Tools (雷达工具)Antenna Pattern Correction (天线阵列校正) Slant to Ground Range (斜距校正)Synthetic Color Image(合成彩色图像) Incidence Angle Image (入射角图像)Adaptive Filters (自适应滤波器)Texture Filters (纹理滤波器)Polarimetric Tools (极化工具)解压-合成图像(Decompress-Synthesize Images)Multilook Compressed Data (多视压缩数据) Pedestal Height Image (幅度图像)Extract Polarization Signatures(提取极化信号)。

NH3-SCR反应过程中NH3和NOx在Cu_SAPO-34分子筛催化剂上的吸附特性和作用

NH3-SCR反应过程中NH3和NOx在Cu_SAPO-34分子筛催化剂上的吸附特性和作用

NH 3-SCR 反应过程中NH 3和NO x 在Cu/SAPO-34分子筛催化剂上的吸附特性和作用石琳1于铁1王欣全1王军1沈美庆1,2,*(1天津大学化工学院,绿色合成与转化教育部重点实验室,天津300072;2天津大学内燃机国家重点实验室,天津300072)摘要:通过离子交换法制得Cu/SAPO-34菱沸石分子筛催化剂,同时研究了NH 3和NO x (NO 和NO 2)在该催化剂上的吸附位、吸附强度、吸附量和吸附速率,得到了不同反应气氛在Cu/SAPO-34上的吸附性能及其在NH 3选择性催化还原(NH 3-SCR)反应中的作用.研究采用瞬态实验、程序升温脱附(TPD)和漫反射傅里叶变换红外光谱(DRIFTS)等方法进行表征实验.瞬态实验结果表明NH 3是吸附性气体.程序升温脱附实验和红外漫反射实验结果表明NH 3可以吸附在布朗斯特和路易斯酸性位上形成不同的NH 3物种,它们显示不同的SCR 活性.NH 3在Cu 2+上的吸附速率最快,且键强最强.NO x 可以氧化并以硝酸盐/亚硝酸盐的形式吸附在Cu 物种上.最后,本文讨论了NH 3选择性催化还原反应过程中在Cu 物种上的中间物种并推测反应机理.关键词:NH 3选择性催化还原;NO x (NO 和NO 2);Cu/SAPO-34;漫反射傅里叶变换红外光谱;吸附物种中图分类号:O643Properties and Roles of Adsorbed NH 3and NO x over Cu/SAPO-34Zeolite Catalyst in NH 3-SCR ProcessSHI Lin 1YU Tie 1WANG Xin-Quan 1WANG Jun 1SHEN Mei-Qing 1,2,*(1Key Laboratory for Green Chemical Technology of State Education Ministry,School of Chemical Engineering &Technology,Tianjin University,Tianjin 300072,P .R.China ;2State Key Laboratory of Engines,Tianjin University,Tianjin 300072,P .R.China )Abstract:To investigate the adsorption properties and roles of different feed gases in the selective catalytic reduction by ammonia (NH 3-SCR),the adsorption sites,strength,and amount as well as reaction rates of NH 3and NO x (a mixture of NO and NO 2)on exchanged Cu/SAPO-34(chabazite zeolite)catalyst were studied.Transient response,temperature programmed desorption (TPD),and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)experiments were performed to characterize the catalyst.Transient response experiments showed that NH 3was adsorbed by the catalyst.TPD and DRIFTS indicated that NH 3can be adsorbed at both Br ønsted and Lewis acid sites to form various NH 3adsorption species that show different SCR activities.The adsorption rate of NH 3by Cu 2+cations was the fastest and the adsorption bond strength of NH 3-Cu 2+was the strongest between NH 3and the Cu/SAPO-34catalyst.NO x can be oxidized and stored as nitrates and nitrites on the Cu catalyst.The intermediate species formed at Cu active sites during the NH 3-SCR reaction are discussed,allowing SCR reaction mechanisms to be inferred.Key Words:Ammonia selective catalytic reduction;NO x (NO and NO 2);Cu/SAPO-34;Diffusereflectance infrared Fourier transform spectrum;Adsorption species[Article]doi:10.3866/PKU.WHXB201304283物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2013,29(7),1550-1557JulyReceived:February 15,2013;Revised:April 27,2013;Published on Web:April 28,2013.∗Corresponding author.Email:mqshen@;Tel:+86-22-27892301.The project was supported by the National High-Tech Research and Development Program of China (863)(2011AA03A405).国家高技术研究发展计划项目(863)(2011AA03A405)资助ⒸEditorial office of Acta Physico-Chimica Sinica1550SHI Lin et al.:Properties and Roles of Adsorbed NH3and NO x over Cu/SAPO-34Zeolite Catalyst in NH3-SCR Process No.71IntroductionSelective catalytic reduction with ammonia(NH3-SCR)or with hydrocarbons(HC-SCR)has been extensively studied for lean NO x(NO and NO2)control.Due to the high decrease NO x efficiency,NH3-SCR has been mainly used for NO x control in stationary sources1and diesel vehicle emissions.2-9Many re-searches have reported that transition metal ion exchanged zeo-lite catalysts,such as Cu/Y,Cu/ZSM-5,and Cu/beta,show su-perior activity and N2selectivity.10-12However the narrow activ-ity window and hydrothermal deterioration have restricted their commercial applications.13,14Recently,many researches have reported that Cu2+ion-exchanged SAPO-34(Cu/SAPO-34)shows high NO x conver-sion,N2selectivity(φ(N2O)<1×10-5(volume fraction)),and ex-cellent hydrothermal stability in NH3-SCR.15,16And,it has been reported that the Cu2+species are the active sites for the NH3-SCR reaction.17-19However,the NH3and NO x adsorption behav-iors on Cu/SAPO-34have been less researched.In this report,the adsorption properties of NH3and NO x in the NH3-SCR reaction were investigated.The adsorption sites, amounts,strength were tested through transient response exper-iments,temperature programmed desorption(TPD),and dif-fuse reflectance infrared Fourier transform spectra(DRIFTS). The intermediate species,activity sites,and reaction mecha-nism of NH3-SCR were discussed.2Experimental2.1Catalyst preparationCu/SAPO-34catalyst was prepared by liquid-phase ion-ex-change method using H-SAPO-34,which was supplied by Tianjin Chemist Scientific Limited.The procedure contains two steps:NH+4species exchange and Cu2+species exchange. The detailed procedures were described in our previous study.20 Cu loading was2.25%(w)tested by inductively coupled plas-ma and atomic emission spectrometry(ICP-AES).In addition, it was not seen the diffraction peaks of copper species(CuO, Cu2O)in XRD patterns of Cu/SAPO-34,18,20meaning that cop-per was well-dispersed or existed as isolated ions at the ex-change sites.2.2Transient response experimentTransient response experiments were tested in a stainless steel reactor using0.5g catalysts mixed with1.5g quartz at 300°C.The catalyst was sealed in the tube with quartz wool. The temperature was obtained by a type K thermocouple insert-ed into the center of the powder catalyst.The inlet composition was controlled by mass flow controllers.FTIR-Nicolet IS10 was used to measure the concentration of NO,NO2,N2O,and NH3.Prior to all the following experiments,the samples were pretreated at500°C in10%(φ)O2for30min to remove ad-sorbed H2O or other gases.After the sample was cooled to 300°C in N2,4×10-4(φ)NO(or NH3)and10%(φ)O2were in-troduced in until the concentration got stabilization.Then NH3 (or NO)was cut in an instant.After the SCR reaction reached equilibrium,NH3(or NO)was turned off.The gas flow and the space velocity in all experiments were controlled at1000mL·min-1and35000h-1,respectively.2.3TPDTemperature programmed desorption(TPD)experiments were performed in a stainless steel reactor.Firstly,5×10-4(φ) NH3(or NO or NO+10%(φ)O2)/N2was adsorbed until the out-let NH3(or NO or NO+10%(φ)O2)concentration was stable. Then,the catalysts were purged with N2to remove any weakly adsorbed species until NH3(or NO or NO+10%(φ)O2)concen-tration was lower than1×10-5(φ).At last,the catalysts were heated from30to600°C at a ramping rate of10°C·min-1. The total flow rate was1000mL·min-1and the balance gas was N2.2.4DRIFTSDiffuse reflectance infrared Fourier transform spectra (DRIFTS)were performed on Nicolet6700FTIR equipped with a MCT detector at a resolution of1cm-1.Ten scans were operated for each spectrum.The total flow rate was100mL·min-1.Before all the experiments,the samples were pretreated with10%(φ)O2in He at500°C for30min and the back-ground spectra were collected under He at the test temperature. For the adsorption experiments,the samples were exposed to4×10-4(φ)of NH3or NO or NO+10%(φ)O2for1h at30, 100,160,and300°C.For the surface SCR experiments,the catalyst was first purged under4×10-4(φ)NH3(or NO+10%(φ)O2)till the spec-tra were stable.Then,the catalyst was exposed to4×10-4(φ) NO(or NH3)and10%(φ)O2until the stabilization.The experi-ments were performed at100,160,and300°C.3Results and discussion3.1NH3adsorbed sites and speciesThe result of NH3transient response over Cu/SAPO-34is shown in Fig.1.Upon the NH3step addition,the ammonia out-let concentration slowly increases with time,approaching to steady state.However NO concentration fast declines.Upon the ammonia shut-off,the outlet NH3concentration slowly de-creases with time due to the desorption of previously adsorbedFig.1Curves of NH3transient response experiment at300°CoverCu/SAPO-34Acta Phys.-Chim.Sin.2013Vol.29ammonia.The NO concentration slowly increases to the maxi-mum due to the reaction between NO and adsorbed NH 3spe-cies.This clearly indicates that ammonia is involved in adsorp-tion-desorption processes at the catalyst surface.Due to exis-tence of some NH 3oxidation or other reactions at 300°C,theNH 3concentration could not reach 4×10-4(φ)and has larger de-crease than NO.NH 3-TPD profiles over Cu/SAPO-34and H-SAPO-34are shown in Fig.2.The TPD profiles show three NH 3desorption peaks centered at 100,250,and 350°C.The total amount of NH 3storage is calculated based on the time integration of NH 3-TPD curves and the results are listed in Table 1.For Cu/SAPO-34,the amount of desorption NH 3at high temperature (HT)and low temperature (LT)is less than that of H-SAPO-34due to the occupation of acid sites in SAPO-34by Cu species.NH 3has been extensively used as a probe molecule to identi-fy the types of surface acidic sites.Fig.3illustrates the DRIFT spectra of H-SAPO-34and Cu/SAPO-34for NH 3adsorption.As shown in Fig.3A,three distinct regions at 3800-3100,1700-1400,and 1000-800cm -1are appeared,which are as-signed to NH 3species adsorbed on Br ønsted acid sites and Lewis acid sites over Cu/SAPO-34.The negative peaks at 3737,3670,and 3605cm -1are assigned to the OH vibrations of P-OH,Si-OH,and Al-OH-Si,respectively.19The strong band at 1489cm -1is related to asymmetric vibration of NH +4groups.In addition,four kinds of adsorbed NH 3species on Lewis acid are observed.According to the literature,21-28the peak at 1630cm -1is attributed to N-H deformation,and the bands at 3356,3275cm -1are assigned as molecule adsorption.The band at 3179cm -1is attributed to NH 3-Cu +species on the exchanged sites.The bands at 899and 858cm -1are related to internal asymmetric framework vibrations perturbed by copper cations to form NH 3-Cu 2+.It should be noted that the intensities of peaks at 899and 858cm -1(NH 3-Cu 2+)reach steady after 1min over Cu/SAPO-34,however other peak intensities reach steady after 10min.It is inferred that NH 3can be adsorbed on Cu 2+cations easily and fast.As shown in Fig.3B,H-SAPO-34has the same NH 3adsorption species as Cu/SAPO-34.However,the intensities of total peaks are higher than that of Cu/SAPO-34and the NH 3species on Cu species are not appeared.As Lewis acid sites,the introduction of Cu cations increases two new types of NH 3adsorption sites (Cu +and Cu 2+species)and reduces the Br ønsted acid sites.Fig.4presents the results of NH 3adsorption under 30,100,160,and 300°C over Cu/SAPO-34.It is seen that the peak inten-sities of NH 3adsorption on Br ønsted acid sites (3800-3500and 1489cm -1)begin to reduce at 100°C and all other peak intensi-ties start to reduce at higher temperature.Whereas those of NH 3-Cu 2+(899,858cm -1)start to reduce at 300°C.It indicates that the bond strengths of NH 3adsorption on Br ønsted acid sites areFig.2NH 3-TPD profiles over Cu/SAPO-34(A)and H-SAPO-34(B)3DRIFT spectra of NH 3adsorption over Cu/SAPO-34(A)and H-SAPO-34(B)at 30°C for 0,1,2,5,10minTable 1Quantitative analyses of NH 3-TPD over H-SAPO-34and1552SHI Lin et al .:Properties and Roles of Adsorbed NH 3and NO x over Cu/SAPO-34Zeolite Catalyst in NH 3-SCR Process No.7weaker than those of NH 3-Cu 2+species.For H-SAPO-34,withthe temperature increasing,most peak intensities are decrease.However,the intensity of peak at 3605cm -1has some increase and still some NH 3molecules are adsorbed over H-SAPO-34.It is in accordance with the phenomena in Fig.2.3.2NO x adsorption sites and species 3.2.1NO adsorption sites and speciesFig.5illustrates the NO transient response experiment over Cu/pared with the NH 3transient response ex-periment,the NO response is quick due to the fact that NO is hardly involved in adsorption-desorption processes.NO-TPD profiles over Cu/SAPO-34and H-SAPO-34are shown in Fig.6.There is only NO 2detected.In addition,the de-sorption peaks of NO 2show two distinct peaks at 80and 350°C,respectively.The amounts of NO 2desorption are calculated based on the time integration of TPD results.Quantitative analyses of NO-TPD over H-SAPO-34and Cu/SAPO-34are shown in Table 2,and the total NO 2desorption amounts over H-SAPO-34and Cu/SAPO-34are 0.008122and 0.021952mmol ·g -1,respectively.It confirms that less NO could be adsorbed.Fig.7illustrates the NO adsorption behaviors over samples.For Cu/SAPO-34,the spectra are mainly divided into two re-Fig.4DRIFT spectra of NH 3adsorption over Cu/SAPO-34(A)and H-SAPO-34(B)at differenttemperatures5Curves of NO transient response experiment at 300°CoverCu/SAPO-346NO-TPD profiles over Cu/SAPO-34andH-SAPO-34Table 2Quantitative analyses of NO-TPD over H-SAPO-34andFig.7DRIFT spectra of NO adsorption over Cu/SAPO-34(A)and H-SAPO-34(B)at 30°C for 0,1,2,5,10,30,60min1553Acta Phys.-Chim.Sin.2013Vol.29gions:1200-1300and 1450-1600cm -1.The peaks at 1291,1280cm -1are assigned to nitrites.The species at 1595,1575,and 1480cm -1are related to chelate nitrates and monodentate nitrates,respectively.29-35In addition,a peak at 1747cm -1ap-pears,which is assigned to Cu +(NO 2)species.The vibration peaks of NO x adsorption sites over Cu/SAPO-34are summa-rized in Table pared with the spectra of NO adsorption over Cu/SAPO-34,no Cu +(NO 2)peak exists for H-SAPO-34and all peak intensities of adsorbed NO x species are lower (Fig.7B).It implies that Cu 2+cations can promote NO oxidi-zation and storage of NO 2on Cu sites as nitrates/nitrites.36,37Because no O 2exists in the inlet gas,the NO may be oxidized by the oxygen species ([O]x -species)in samples.1,38Combining the results of DRIFTS and TPD,it can be inferred that Cu species are the active sites for NO oxidation and the amount of stored nitrates/nitrites over catalyst is more than that on H-SAPO-34.Fig.6and Fig.7clearly present that NO can be oxidized to NO 2,and O 2exists in real working condition.So the adsorption behaviors of NO+O 2are studied and the results are shown in Figs.8-10and Table pared with the NO-TPD results (Fig.6),the intensities of peak at LT over Cu/SAPO-34have risen in NO+O 2TPD (Fig.8).It is seen oxygen is favorable for NO oxidation and storage.39In addition,the nitrates/nitrites spe-cies oxidized by oxygen desorb at LT,presents that they are weakly adsorption species.Relativel nitrates/nitrites oxidized by [O]x -species in samples are strong adsorption species.3.2.2NO+O 2adsorption sites and speciesThe DRIFTS results of NO +O 2adsorption are shown inpared with the NO adsorption over Cu/SAPO-34,the intensity of peak at 1480cm -1(monodentate nitrates)is higher due to the existence of O 2.Further,a new peak at 2050cm -1related to Cu 2+(NO 2)appears.However,there is no differ-ence between NO and NO +O 2adsorption over H-SAPO-34.The DRIFTS results of NO+O 2adsorption can indicate that the oxygen in feed gas promotes NO oxidization to NO 2and NO 2could be stored as nitrates/nitrites on Cu species.Fig.10presents the DRIFT spectra of NO+O 2adsorption un-der different temperatures.As the temperature above 100°C,it is seen that only the peak at 1595cm -1(chelate nitrates)exists.It suggests that the chelate nitrates are the stronger adsorption species than monodentate nitrates and nitrites over Cu/SAPO-34.3.3Roles of adsorption species in NH 3-SCRFig.8NO+O 2-TPD profiles over Cu/SAPO-34and H-SAPO-34Fig.9DRIFT spectra of NO+O 2adsorption over Cu/SAPO-34(A)and H-SAPO-34(B)at 30°C for 0,1,2,5,10,30,60minTable 4Quantitative analyses of NO+O 2-TPD over H-SAPO-34Fig.10DRIFT spectra of NO+O 2adsorption over Cu/SAPO-34at different temperatures1554SHI Lin et al .:Properties and Roles of Adsorbed NH 3and NO x over Cu/SAPO-34Zeolite Catalyst in NH 3-SCR ProcessNo.7Fig.11illustrates the adsorbed NH 3species reacting with NO +O 2over Cu/SAPO-34under different temperatures.Line at 0min represents the spectra of NH 3species adsorption satu-ration.At 100°C (Fig.11A),when NO+O 2are cut in,the peak intensities at 899,858cm -1(NH 3-Cu 2+)decrease with time and become a line in 30min (Fig.11A(30min)).Further,the peaks at 1450-1600cm -1(nitrates)and 1200-1300cm -1(nitrites)ap-pear after 6min.As the reaction continues,other peak intensi-ties of adsorbed NH 3species reduce a little (Fig.11A(15min,30min)).As these peak intensities reaching steady state,the NH 3species adsorbed over Cu ions are consumed completely,while the ones on other adsorbed sites still exist.When the ex-periments are carried out at 160°C (Fig.11B)and 300°C (Fig.11C),the NH 3species adsorbed on Cu 2+cations also take part in SCR reaction firstly.These phenomena indicate that the NH 3species over Cu 2+sites show the best SCR activity and Cu 2+species are activate sites.40Above 100°C,the peak intensi-ties of all others adsorbed NH 3species decrease with time in-creasing.These species are likely to be involved in the SCR re-action upon “migration ”to near-by reactive Cu 2+cations once these sites are available.It is inferred that the NH 3adsorption on other sites,which represents that the major fraction of ad-sorbed NH 3species over Cu/SAPO-34,does not act simply as “spectators ”in the SCR reaction but is involved in the NO con-sumption.At 160°C,the peaks of nitrates/nitrites appear and intensi-ties reach the highest in 15min (Fig.11B(15min)).Moreover the peak intensities at 1480,1291,1280cm -1reduce as SCR re-action proceeds.It indicates that some NH 4NO x (NH 4NO 2/NH 4NO 3)species are formed due to the reaction of adsorbed NH 3species with nitrates/nitrates on Cu cations.At 300°C,the DRIFT result (Fig.11C)shows no nitrates/nitrites.It suggested that nitrates/nitrites are consumed immediately as formed.Fig.12shows the results of adsorbed NO+O 2species react-ing with NH 3+O 2over Cu/SAPO-34under 100and 160°C.At 100°C (Fig.12A),the intensities of peak at 1595cm -1(chelate nitrates)and 2050cm -1Cu +(NO 2)decline immediately when NH 3+O 2is introduced.Then,the peak intensities of all other ni-Fig.11DRIFT spectra of 4×10-6(φ)NO+O 2/He following exposure of Cu/SAPO-34to 4×10-6(φ)NH 3/He at 100°C for 30min (A),160°C for 40min (B),and 300°C for 35min (C)Fig.12DRIFT spectra of 4×10-6(φ)NH 3+O 2/He following exposure of Cu/SAPO-34to 4×10-6(φ)NO+O 2at 100°C for30min (A)and 160°C for 30min(B)Acta Phys.-Chim.Sin.2013Vol.29trates/nitrites decrease subsequently.After1-min reaction (Fig.12A(1min)),the peaks of all NH3adsorption species(ex-cept NH3-Cu2+species)appear and reach steady state in3min. At the same time,the peaks of NH3-Cu2+species appear and steady state is achieved until nitrates/nitrites species are con-sumed completely(Fig.12A(30min)).It has verified that NH3 can be adsorbed on Cu2+cations firstly over clean catalyst in Fig.3A.So it indicates that the emergence of NH3-Cu2+species lastly over NO x storage catalyst is due to the immediate reac-tion of nitrates/nitrites with NH3-Cu2+species as formed.3.4Mechanism discussionFig.13displays the proposed mechanism of NH3-SCR reaction over Cu/SAPO-34.Firstly,NH3can be adsorbed on Brønsted ac-id sites and Lewis acid sites over Cu/SAPO-34to form several NH3adsorption species.Secondly,NO can be oxidized to NO2 by[O]x-species in SAPO-34or O2in feed gas on Cu ions.1,32,41 Thirdly,NO2could be stored as nitrites/nitrates on Cu ions to form NO-2-Cu p+/NO-3-Cu q+,which might be oxidized to NO-2-Cu2+/NO-3-Cu2+.The electrons of NO oxidization may easily come from Cu ions and Cu2+ions reduced to Cu p+or Cu q+.Be-cause low reduction ability of NO,so the ranges of p,q are1 to2.In addition,NH3-Cu2+would react with the nitrites/nitrates on Cu ions to form NH4NO2and NH4NO3.And some NH4NO3 may react with NO to form NH4NO2again.Finally,NH4NO2 would generate N2,H2O,and little NH4NO3would generate lit-tle N2O.4ConclusionsThe transient response experiments show that NH3is the ad-sorption gas over Cu/SAPO-34during NH3-SCR process, while NO could not be adsorbed appreciably on the catalyst surface.H-SAPO-34contains two kinds of acid sites:Brønsted acid sites and Lewis acid sites.The Brønsted acid sites may ad-sorb NH3to form M-O-NH+4(M=P,Si,Al)and asymmetric vibra-tion of NH+4groups.The NH3can be adsorbed on Lewis acid sites as N-H deformation and NH3molecule.Over Cu/SAPO-34,NH3can not only be absorbed on the adsorption sites of H-SAPO-34,but also can be adsorbed on Cu+and Cu2+species. In addition,the adsorption rate of NH3on Cu2+cations is the fastest and the adsorption bond strength of NH3-Cu2+is the strongest.Cu species can promote the oxidization of NO to NO2by the [O]x-species in SAPO-34and O2in feed gas.The NO2could be stored on Cu sites as nitrates/nitrites..Cu2+species are the active sites for NH3-SCR reaction over Cu/SAPO-34.NH4NO x(NH4NO2/NH4NO3)species stored on Cu ions may be the SCR intermediate species and promote NH3-SCR reaction.References(1)Busca,G.;Lietti,L.;Ramis,G.;Berti,F.Appl.Catal.B:Environ.1998,18,1.doi:10.1016/S0926-3373(98)00040-X (2)Qi,G.S.;Yang,R.T.;Chang,R.Appl.Catal.B:Environ.2004,51,93.doi:10.1016/j.apcatb.2004.01.023(3)Si,Z.C.;Weng,D.;Wu,X.D.;Li,J.;Li,G.J.Catal.2010,271,43.doi:10.1016/j.jcat.2010.01.025(4)Lobree,L.J.;Hwang,I.C.;Reimer,J.A.;Bell,A.T.J.Catal.1999,186,242.doi:10.1006/jcat.1999.2548(5)Liu,C.C.;Teng,H.Appl.Catal.B:Environ.2005,58,69.doi:10.1016/j.apcatb.2004.12.002(6)Sjövall,H.;Blint,R.J.;Olsson,L.Appl.Catal.B:Environ.2009,92,138.doi:10.1016/j.apcatb.2009.07.020(7)Praliaud,H.;Mikhailenko,S.;Chajar,Z.;Primet,M.Appl.Catal.B:Environ.1998,16,359.doi:10.1016/S0926-3373(97)00093-3(8)Centi,G.;Perathoner,S.Appl.Catal.A:Gen.1995,132,179.doi:10.1016/0926-860X(95)00154-9(9)Seyedeyn-Azad,F.;Zhang,D.K.Catal.Today2001,68,161.doi:10.1016/S0920-5861(01)00308-X(10)Kagawa,S.;Yokoo,S.;Iwamoto,M.J.Chem.Soc.Chem.Commun.1978,23,1058.(11)Li,Y.;Hall,W.K.J.Phys.Chem.1990,94,6145.doi:10.1021/j100379a001(12)Dltri,J.L.;Sachtler,W.M.H.Catal.Lett.1992,15,289.doi:10.1007/BF00765273(13)Kwak,J.H.;Tonkyn,R.G.;Kim,D.H.;Szanyi,J.;Peden,C.H.F.J.Catal.2010,275,187.doi:10.1016/j.jcat.2010.07.031(14)Fickel,D.W.;DʹAddio,E.;Lauterbach,J.A.;Lobo,R.F.Appl.Catal.B:Environ.2011,102,441.doi:10.1016/j.apcatb.2010.12.022(15)Ishihara,T.;Kagawa,M.;Hadama,F.;Takita,Y.J.Catal.1997,169,93.doi:10.1006/jcat.1997.1681(16)Pastore,H.O.;Coluccia,S.;Marchese,L.A.Rev.Mater.Res.2005,35,351.doi:10.1146/annurev.matsci.35.103103.120732 (17)Deka,U.;Lezcano-Gonzalez,I.;Warrender,S.J.;Picone,A.L.;Wright,P.A.;Weckhuysen,B.M.;Beale,A.M.MicroporousFig.13Proposed mechanism of NH3-SCR reaction overCu/SAPO-341556SHI Lin et al.:Properties and Roles of Adsorbed NH3and NO x over Cu/SAPO-34Zeolite Catalyst in NH3-SCR Process No.7Mesoporous Mat.2013,166,144.doi:10.1016/j.micromeso.2012.04.056(18)Xue,J.J.;Wang,X.Q.;Qi,G.S.;Wang,J.;Shen,M.Q.;Li,W.J.Catal.2013,297,56.doi:10.1016/j.jcat.2012.09.020 (19)Wang,L.;Li,W.;Qi,G.S.;Weng,D.J.Catal.2012,289,21.doi:10.1016/j.jcat.2012.01.012(20)Wang,J.;Yu,T.;Wang,X.Q.;Qi,G.S.;Xue,J.J.;Shen,M.Q.;Li,W.Appl.Catal.B:Environ.2012,127,137.doi:10.1016/j.apcatb.2012.08.016(21)Martins,G.V.A.;Berlier,G.;Bisio,C.;Coluccia,S.;Pastore,H.O.;Marchese,L.J.Phys.Chem.C2008,112,7193.doi:10.1021/jp710613q(22)Onida,B.;Gabelica,Z.;Lourenco,J.;Garrone,E.J.Phys.Chem.1996,100,11072.doi:10.1021/jp9600874(23)Sun,Q.;Gao,Z.X.;Wen,B.;Sachtler,W.M.H.Catal.Lett.2002,78,1.doi:10.1023/A:1014981206924(24)Hadjiivanov,K.;Klissurski,D.;Ramis G.;Busca,G.Appl.Catal.B:Environ.1996,7,251.doi:10.1016/0926-3373(95)00034-8(25)Centi,G.;Perathoner,S.;Biglino D.;Giamello,E.J.Catal.1995,152,75.doi:10.1006/jcat.1995.1062(26)Valyon,J.;Onyestyak,G.;Rees,L.V.C.J.Phys.Chem.B1998,102,8994.doi:10.1021/jp981872e(27)Qi,G.S.;Gatt,J.E.;Yang,R.T.J.Catal.2004,226,120.doi:10.1016/j.jcat.2004.05.023(28)Jentys,A.;Warecka,G.;Lercher,J.A.J.Mol.Catal.A:Chem.1989,51,309.doi:10.1016/0304-5102(89)80010-0(29)Centi,G.;Perathoner,S.Catal.Today1996,29,117.doi:10.1016/0920-5861(95)00289-8(30)Hadjiivanov,K.;Klissurski,D.;Ramis,G.;Busca,G.Appl.Catal.B:Environ.1996,7,251.doi:10.1016/0926-3373(95)00034-8(31)Adelman,B.J.;Beutel,T.;Lei,G.D.;Sachtler,W.M.H.J.Catal.1996,158,327.doi:10.1006/jcat.1996.0031(32)Poignant,F.;Freysz,J.L.;Daturi,M.;Saussey,J.Catal.Today2001,70,197.doi:10.1016/S0920-5861(01)00418-7(33)Sjövall,H.;Fridell,E.;Blint,R.J.;Olsson,L.Top Catal.2007,42,113.doi:10.1007/s11244-007-0162-6(34)Qi,G.S.;Yang,R.T.J.Phys.Chem.B2004,108,15738.doi:10.1021/jp048431h(35)Trovarelli,A.Catal.Rev.-Sci.Eng.1996,38,439.doi:10.1080/01614949608006464(36)Centi,G.;Perathoner,S.Catal.Today1996,29,117.doi:10.1016/0920-5861(95)00289-8(37)Konduru,M.V.;Chuang,S.S.C.J.Catal.2000,196,271.doi:10.1006/jcat.2000.3046(38)Sjövall,H.;Blint,R.J.;Olsson,L.J.Phys.Chem.C2009,113,1393.doi:10.1021/jp802449s(39)Lin,T.;Li,W.;Gong,M.C.;Yu,Y.;Du,B.;Chen,Y.Q.ActaPhys.-Chim.Sin.2007,23,1851.[林涛,李伟,龚茂初,喻瑶,杜波,陈耀强.物理化学学报,2007,23,1851.]doi:10.1016/S1872-1508(07)60089-8(40)Korhonen,S.T.;Fickel,D.W.;Lobo,R.F.;Weckhuysenb,B.M.;Beale,mun.2010,47,800(41)Brandenberger,S.;Kröcher,O.;Tissler A.;Althoff,R.Catal.Res.2008,50,492.doi:10.1080/016149408024801221557。

情感语音信号中共振峰参数的提取方法毕业论文[管理资料]

太原理工大学毕业设计(论文)任务书第1页第2页第3页第4页情感语音信号中共振峰参数的提取方法摘要语音情感识别是新型人机交互技术的研究热点之一,在人工智能方面有着较广泛的应用前景。

共振峰频率是反映声道谐振特性的重要特征,它代表了发音信息的最直接的来源。

所以研究情感语音信号中共振峰参数是有很大意义的。

基于共振峰参数在情感语音信号中的重要性,本文主要研究了情感语音信号中共振峰参数的提取方法。

提取共振峰的常用方法包括:谱包络提取法、倒谱法和LPC法。

由于倒谱法根据对数功率谱的逆傅立叶变换,能够分离频谱包络和细微结构,很精确地得到共振峰信息,所以本文重点研究倒谱法提取共振峰。

本文通过MATLAB软件利用倒谱法实现了对高兴、生气、中立三种情感状态的共振峰参数的提取。

分析提取结果,得到了下面的一些结论:相对于中立发音而言,高兴和生气的第一共振峰频率相对升高,从人的发音特点来看,人们在表达高兴和生气时,嘴比平静发音时张得更大,因此会出现这样的结果。

所以说,可以用共振峰作为区分不同情感语音的手段。

关键词:语音情感识别;共振峰参数;共振峰提取方法;倒谱法Extraction method of emotional speech signal of the formantparametersAbstractSpeech emotion recognition is one of the hot research of new human-computer interaction technology, which has a wide application prospect in artificial intelligence. Formant frequency is an important characteristic of reflecting the resonant characteristics of channel, it represents the pronunciation of the most direct source of information. So the research of emotional speech signal of the formant parameters is of great significance.Based on the importance of formant parameter in the emotional speech signals, this paper mainly studied the extraction method of emotional speech signal of the formant parameters. Several main methods of extraction of formant are: spectral envelope extraction, cepstrum method and LPC method. Since cepstrum based on the number of inverse Fourier transform power spectrum, it can separate spectral envelope and the fine structure and get very precise information on the formant, so this paper focuses on research cepstrum formant extraction.This paper use MATLAB software cepstrum emotional state to achieve happy, angry and neutral three formant parameter extraction. Analysis to extract a result, I get some of the following conclusions: Relative to the neutral pronunciation, the happy and angry the first formant frequency is relatively increased. Pronunciation features from the human point of view, people are happy and angry expression, mouth to pronounce than when Zhang was more calm, so there will be such an outcome. So, you can use the formant speech as a means to distinguish between different emotions.Key Words: Speech Emotion Recognition; Formant parameters; Formant extraction method; Cepstrum目录摘要 ..................................................................... Abstract .. (I)第1章绪论 0选题意义 0情感语音识别技术的国内外发展现状 0国际情感语音识别发展现状 0国内情感语音识别发展现状 (1)本文的主要研究内容及结构安排 (2)本文的主要研究内容 (2)本文的结构安排 (2)第2章情感的分类与语音情感识别 (3)情感的分类 (3)情感语音数据库 (4)语音情感识别系统 (5)第3章共振峰的基本概念 (5)共振峰参数的概念及产生原理 (5)共振峰参数的研究意义 (6)提取共振峰参数所遇到的问题 (6)第4章共振峰的提取方法及分析 (7)谱包络提取法 (7)倒谱法提取共振峰 (8)LPC法提取共振峰 (9)求根法提取共振峰 (10)LPC倒谱法提取共振峰 (10)几种提取方法分析比较 (12)同类文章提取方法比较 (13)第5章倒谱法提取共振峰的实现 (15)倒谱的定义 (15)倒谱法提取共振峰原理 (16)倒谱法提取情感语音共振峰具体实现过程 (16)共振峰提取结果及结论分析 (18)情感语音原始波形 (18)情感语音共振峰提取结果 (19)结论分析 (21)第6章总结与展望 (22)全文总结 (22)展望 (22)参考文献 (23)致谢 (24)外文原文 (25)中文翻译 (35)第1章绪论选题意义随着多模态人机交互技术的发展,新型人机交互模式的应用前景更加广阔。

磁共振中一些常用简化附缩写用语

COSY
( Homonuclear chemical shift ) COrrelation SpectroscopY
CP
Cross Polarization
CPD
Composite-Pulse Decoupling
CP/MAS
Cross Polarization/Magic Angle Spinning
BBDR
Broad Band Double Resonance
BIRD
Bilinear Rotation Decoupling
BOLD
Blood Oxygenation Level Dependent
BR-24
Burum & Rhim (pulse sequence)
CAMELSPIN
Cross-relaxation Appropriate for Minimolecules Emulated by Locked SPNs
GRASS
Gradient-Recalled Acquisition in the Steady State
GRASP
Gradient-Accelerated Spectroscopy
GROPE
Generalized compensation for Resonance Offset and Pulse length errors
MQ(C)
Multiple-Quantum ( Coherence )
MQF
Multiple-Quantum Filter
MQMAS
Multiple-Quantum Magic-Angle Spinning
MQS
Multi Quantum Spectroscopy

Matlab的第三方工具箱大全

Matlab的第三方工具箱大全(按住CTRL点击连接就可以到达每个工具箱的主页面来下载了)Matlab Toolboxes∙ADCPtools - acoustic doppler current profiler data processing∙AFDesign - designing analog and digital filters∙AIRES - automatic integration of reusable embedded software∙Air-Sea - air-sea flux estimates in oceanography∙Animation - developing scientific animations∙ARfit - estimation of parameters and eigenmodes of multivariate autoregressive methods∙ARMASA - power spectrum estimation∙AR-Toolkit - computer vision tracking∙Auditory - auditory models∙b4m - interval arithmetic∙Bayes Net - inference and learning for directed graphical models∙Binaural Modeling - calculating binaural cross-correlograms of sound∙Bode Step - design of control systems with maximized feedback∙Bootstrap - for resampling, hypothesis testing and confidence interval estimation ∙BrainStorm - MEG and EEG data visualization and processing∙BSTEX - equation viewer∙CALFEM - interactive program for teaching the finite element method∙Calibr - for calibrating CCD cameras∙Camera Calibration∙Captain - non-stationary time series analysis and forecasting∙CHMMBOX - for coupled hidden Markov modeling using max imum likelihood EM ∙Classification - supervised and unsupervised classification algorithms∙CLOSID∙Cluster - for analysis of Gaussian mixture models for data set clustering∙Clustering - cluster analysis∙ClusterPack - cluster analysis∙COLEA - speech analysis∙CompEcon - solving problems in economics and finance∙Complex - for estimating temporal and spatial signal complexities∙Computational Statistics∙Coral - seismic waveform analysis∙DACE - kriging approximations to computer models∙DAIHM - data assimilation in hydrological and hydrodynamic models∙Data Visualization∙DBT - radar array processing∙DDE-BIFTOOL - bifurcation analysis of delay differential equations∙Denoise - for removing noise from signals∙DiffMan - solv ing differential equations on manifolds∙Dimensional Analysis -∙DIPimage - scientific image processing∙Direct - Laplace transform inversion via the direct integration method∙DirectSD - analysis and design of computer controlled systems with process-oriented models∙DMsuite - differentiation matrix suite∙DMTTEQ - design and test time domain equalizer design methods∙DrawFilt - drawing digital and analog filters∙DSFWAV - spline interpolation with Dean wave solutions∙DWT - discrete wavelet transforms∙EasyKrig∙Econometrics∙EEGLAB∙EigTool - graphical tool for nonsymmetric eigenproblems∙EMSC - separating light scattering and absorbance by extended multiplicative signal correction∙Engineering Vibration∙FastICA - fixed-point algorithm for ICA and projection pursuit∙FDC - flight dynamics and control∙FDtools - fractional delay filter design∙FlexICA - for independent components analysis∙FMBPC - fuzzy model-based predictive control∙ForWaRD - Fourier-wavelet regularized deconvolution∙FracLab - fractal analysis for signal processing∙FSBOX - stepwise forward and backward selection of features using linear regression∙GABLE - geometric algebra tutorial∙GAOT - genetic algorithm optimization∙Garch - estimating and diagnosing heteroskedasticity in time series models∙GCE Data - managing, analyzing and displaying data and metadata stored using the GCE data structure specification∙GCSV - growing cell structure visualization∙GEMANOVA - fitting multilinear ANOVA models∙Genetic Algorithm∙Geodetic - geodetic calculations∙GHSOM - growing hierarchical self-organizing map∙glmlab - general linear models∙GPIB - wrapper for GPIB library from National Instrument∙GTM - generative topographic mapping, a model for density modeling and data visualization∙GVF - gradient vector flow for finding 3-D object boundaries∙HFRadarmap - converts HF radar data from radial current vectors to total vectors ∙HFRC - importing, processing and manipulating HF radar data∙Hilbert - Hilbert transform by the rational eigenfunction expansion method∙HMM - hidden Markov models∙HMMBOX - for hidden Markov modeling using maximum likelihood EM∙HUTear - auditory modeling∙ICALAB - signal and image processing using ICA and higher order statistics∙Imputation - analysis of incomplete datasets∙IPEM - perception based musical analysisJMatLink - Matlab Java classesKalman - Bayesian Kalman filterKalman Filter - filtering, smoothing and parameter estimation (using EM) for linear dynamical systemsKALMTOOL - state estimation of nonlinear systemsKautz - Kautz filter designKrigingLDestimate - estimation of scaling exponentsLDPC - low density parity check codesLISQ - wavelet lifting scheme on quincunx gridsLKER - Laguerre kernel estimation toolLMAM-OLMAM - Levenberg Marquardt with Adaptive Momentum algorithm for training feedforward neural networksLow-Field NMR - for exponential fitting, phase correction of quadrature data and slicing LPSVM - Newton method for LP support vector machine for machine learning problems LSDPTOOL - robust control system design using the loop shaping design procedure LS-SVMlabLSVM - Lagrangian support vector machine for machine learning problemsLyngby - functional neuroimagingMARBOX - for multivariate autogressive modeling and cross-spectral estimation MatArray - analysis of microarray dataMatrix Computation- constructing test matrices, computing matrix factorizations, visualizing matrices, and direct search optimizationMCAT - Monte Carlo analysisMDP - Markov decision processesMESHPART - graph and mesh partioning methodsMILES - maximum likelihood fitting using ordinary least squares algorithmsMIMO - multidimensional code synthesisMissing - functions for handling missing data valuesM_Map - geographic mapping toolsMODCONS - multi-objective control system designMOEA - multi-objective evolutionary algorithmsMS - estimation of multiscaling exponentsMultiblock - analysis and regression on several data blocks simultaneously Multiscale Shape AnalysisMusic Analysis - feature extraction from raw audio signals for content-based music retrievalMWM - multifractal wavelet modelNetCDFNetlab - neural network algorithmsNiDAQ - data acquisition using the NiDAQ libraryNEDM - nonlinear economic dynamic modelsNMM - numerical methods in Matlab textNNCTRL - design and simulation of control systems based on neural networks NNSYSID - neural net based identification of nonlinear dynamic systemsNSVM - newton support vector machine for solv ing machine learning problems NURBS - non-uniform rational B-splinesN-way - analysis of multiway data with multilinear modelsOpenFEM - finite element developmentPCNN - pulse coupled neural networksPeruna - signal processing and analysisPhiVis- probabilistic hierarchical interactive visualization, i.e. functions for visual analysis of multivariate continuous dataPlanar Manipulator - simulation of n-DOF planar manipulatorsPRT ools - pattern recognitionpsignifit - testing hyptheses about psychometric functionsPSVM - proximal support vector machine for solving machine learning problems Psychophysics - vision researchPyrTools - multi-scale image processingRBF - radial basis function neural networksRBN - simulation of synchronous and asynchronous random boolean networks ReBEL - sigma-point Kalman filtersRegression - basic multivariate data analysis and regressionRegularization ToolsRegularization Tools XPRestore ToolsRobot - robotics functions, e.g. kinematics, dynamics and trajectory generation Robust Calibration - robust calibration in statsRRMT - rainfall-runoff modellingSAM - structure and motionSchwarz-Christoffel - computation of conformal maps to polygonally bounded regions SDH - smoothed data histogramSeaGrid - orthogonal grid makerSEA-MAT - oceanographic analysisSLS - sparse least squaresSolvOpt - solver for local optimization problemsSOM - self-organizing mapSOSTOOLS - solving sums of squares (SOS) optimization problemsSpatial and Geometric AnalysisSpatial RegressionSpatial StatisticsSpectral MethodsSPM - statistical parametric mappingSSVM - smooth support vector machine for solving machine learning problems STATBAG - for linear regression, feature selection, generation of data, and significance testingStatBox - statistical routinesStatistical Pattern Recognition - pattern recognition methodsStixbox - statisticsSVM - implements support vector machinesSVM ClassifierSymbolic Robot DynamicsTEMPLAR - wavelet-based template learning and pattern classificationTextClust - model-based document clusteringTextureSynth - analyzing and synthesizing visual texturesTfMin - continous 3-D minimum time orbit transfer around EarthTime-Frequency - analyzing non-stationary signals using time-frequency distributions Tree-Ring - tasks in tree-ring analysisTSA - uni- and multivariate, stationary and non-stationary time series analysisTSTOOL - nonlinear time series analysisT_Tide - harmonic analysis of tidesUTVtools - computing and modifying rank-revealing URV and UTV decompositions Uvi_Wave - wavelet analysisvarimax - orthogonal rotation of EOFsVBHMM - variation Bayesian hidden Markov modelsVBMFA - variational Bayesian mixtures of factor analyzersVMT- VRML Molecule Toolbox, for animating results from molecular dynamics experimentsVOICEBOXVRMLplot - generates interactive VRML 2.0 graphs and animationsVSVtools - computing and modifying symmetric rank-revealing decompositions WAFO - wave analysis for fatique and oceanographyWarpTB - frequency-warped signal processingWAVEKIT - wavelet analysisWaveLab - wavelet analysisWeeks - Laplace transform inversion via the Weeks methodWetCDF - NetCDF interfaceWHMT - wavelet-domain hidden Markov tree modelsWInHD - Wavelet-based inverse halftoning via deconvolutionWSCT - weighted sequences clustering toolkitXMLTree - XML parserYAADA - analyze single particle mass spectrum dataZMAP - quantitative seismicity analysis。

ENVI主菜单中英文对照

文件Open image file 打开图像文件Open vector file 打开矢量文件Open remote file 打开远程文件Open exteral file 打开特定文件Open previous file 最近使用文件Launch ENVI zoom 启动ENVI zoomEdit ENVI header 编辑头文件Generate test data 生成测试数据Data view 数据浏览Save file as 另存为Import from IDL variable 导入IDL变量Export to IDL variable 导出为IDL变量Compile IDL module 编译IDL程序IDL CPU parameters IDL CPU参数设置Tape utilties:磁带工具Read known tape formats 磁带格式读取各种传感器Read/write ENVI tapes ENVI磁带读写Read ENVI tape 磁带读取Write ENVI files to tape 写入磁带Scan tape and customize dump 浏览磁带并保存Dump tape 转储磁带Scan directory list 扫描目录Change output directory 更改扫描目录Save session to script 作业保存Execute startup script 脚本执行Restore display group 显示恢复ENVI queue manager ENVI队列管理ENVI log manager ENVI日志管理Close all files 关闭所有文件Preferences 参数设置 Exit 退出tools 基本工具Resize data(spatial/spectral) 数据重采样(空间子集/光谱子集)Subset data via ROIs 通过感兴趣区裁剪数据(选取子集)Rotate/flip data 旋转/翻转数据Layer stacking 图层堆栈Convert data(BSQ ,BIL ,BIP ) 数据格式转换Stretch data 数据拉伸Statistics 统计Compute statistcs 统计计算View statistics 查看统计文件Sum data bands 数据波段求和Generate random sample 生成随机样本Using ground truth classification 基于地表真实分类影像Using ground truth ROIs 基于地表真实感兴趣区Spactial statistics 空间统计Compute global spatial statistics 全局统计Compute local spatial statistics 局部统计Change detection 变化检测Measurement tool 量测工具Band math 波段运算Spectral math 光谱运算Segmentation image 图像分割Region of interest 感兴趣区Rool tool 感兴趣区Restore saved ROI file 打开感兴趣区文件Save ROIs to file 保存为感兴趣区文件Delete ROIs 删除感兴趣区Export ROIs to EVF 将感兴趣区导出为EVFExport ROIs to n-D visualizer 将感兴趣区导出进行n维散度分析Export ROIs to training data 将感兴趣区导出为矢量训练样本Output ROIs to ASCII 将感兴趣区导出为ASCII码文件Reconcile ROIs 调整感兴趣区Reconcile ROIs via map 利用地图调整感兴趣区Band threshold to ROI 利用波段阈值定义感兴趣区Creat class image from ROIs 利用感兴趣区生成分类图像Creat buffer zone from ROIs 利用感兴趣区生成缓冲区Compute ROI separability 计算感兴趣区分离度Mosaicking 图像镶嵌Pixel based 基于像素镶嵌Georeferenced 基于地理坐标镶嵌Tiled quickbird product 产品镶嵌Tiled worldview product 产品镶嵌Masking 掩膜Build mask 建立掩膜Apply mask 应用掩膜Preprocessing 预处理Calibration utilities 定标工具AVHRR Landsat calibration landsat 定标Quickbird radianceWorldview radianceFLAASH 大气纠正Quick atmospheric correction 快速大气校正Flat filed 平面场定标Log residuale 对数残差定标IAR reflectance IAR 反射率定标Empirical line 经验线性定标Thermal atm correction 热红外大气校正TIMS radiance 热红外多波段扫描仪定标Calculate emissivity 发射率计算General purpose utilities 通用工具Replace bad lines 坏行修补Dark substract 黑暗像元法Apply gain and offset 应用增益和偏移校正Destripe 多带噪声去除Cross-tarck Illumination correction 轨道光照修正Convert complex data complex转换Convert vax to IEEE vax转换为IEEEData-specific utilities 特定数据处理工具分类Supervised 监督分类Parallelepiped 平行六面体Minimum distance 最小距离法Mahalanobis distance 马氏距离法Maximum distance 最大似然法Spectral angle mapper 波谱角制图Spectral information divergence 光谱信息散度Binary encoding 二进制编码Netural net 神经网络Support vector machine 支持向量机Unsupervised 非监督分类IsodataK-MeansDecision tree 决策树分类Build new decision tree 新建决策树Edit existing decision tree 编辑决策树Execute existing decision tree 执行决策树Endmember collection 端元收集器Create class image from ROIs 利用感兴趣区生成分类图像Post classification 分类后处理Assign class colors 分类颜色设置Rule classifier 规则分类器Class statistics 分类结果统计Change detection statistics 变化监测统计Confusion matrix 混淆矩阵分析Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真实感兴趣区ROC curves ROC曲线Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真实感兴趣区Generate random sample 生成随机样本Using ground truth image 基于地表真实影像Using ground truth ROIs 基于地表真是感兴趣区Majority/minority analysis 主要/次要分析Clump classes 分类集群Sieve classes 分类筛选Combine classes 分类合并Overlay classes 分类叠加Buffer zone image 缓冲区分析Segmentation image 图像分割Classification to vector 分类结果转换为矢量变换Image sharpening 图像融合HSV融合Color normalized(Brovey) Brovey融合Gram-schmidt spectral shapening Gram-schmidt融合PC spectial sharpening 主成分分析CN spectial sharpening CN波谱融合Band ratios 波段比Principal components 主成分分析Forward PC rotation 正向主成分分析Compute new statistics and rotate 计算统计值分析PC rotation from existing stats 现有统计值分析Inverse PC rotation 反向主成分分析变换Independent components独立主成分分析Forward IC rotation 独立主成分分析Compute new stats and rotate 计算统计值分析IC rotation from existing stats 现有统计值分析IC rotation from existing transform Inverse IC rotation 反向独立主成分分析变换MNF rotation MNF变换(最小噪声分离)Forward MNF 正向MNF变换Estimate noise statistics from data 估算噪声分析Previous noise statistics 历史噪声统计Noise statistics from dark data 黑区图像估计噪声Inverse MNF transform 反向MNF变换Apply forward MNF to spectra 波谱应用正向MNF变换Apply inverse MNF to spectra 波谱应用反向MNF变换Color transforms 颜色空间变换RGB to HSVHSV to RGBHLS to RGBHSV to RGBDecorrelation stretch 去相关拉伸Photographic stretch 摄影拉伸Saturation stretch 饱和度拉伸Synthetic color image 合成彩色影像NDVITasseled cap 缨帽变换过滤器Convolutions and morphology 卷积滤波Texture 纹理分析Occurrence measures 概率统计Co-occurrence measures 二阶概率统计Adaptive 自适应滤波Lee Enhanced lee增强 lee 滤波Frost Enhanced frost 增强 forst 滤波Grmma、Kuan、Local sigma、Bit errorsFFT filtering 傅立叶变换滤波Forward EET 正向傅立叶变换Filter definition 滤波器自定义Inverse FFT 反向傅立叶变换波谱工具SPEAR tools SPEAR工具THOR workflows 流程化高光谱工具Target detection wizard 目标检测向导Spectial libraries 波谱库Spectial slices 波谱切割MNF rotation MNF变换(最小噪声分离)Pixel purity index 纯净像元指数PPIn-Dimensional visualizer n维数据可视化Mapping methods 制图方法Vegetation analysis 植被分析Vegetation suppression 植被抑制SAM target finder with bandmax 基于bandMax的SAM目标查找提取RX anomaly detection RX异常检测Spectral hourglass wizard 波谱沙漏向导Automated spectial hourglass 自动波谱沙漏向导Spectral analyst 波谱分析Multi range SFF 多谱段SFFSMACC endmember extraction SMACC端元提取Spectial math 波谱运算Spectral resampling 波普重采样Gram-schmidt spectial sharpening Gram-schmidt 波谱融合PC spectial sharpening PC波段融合CN spectial sharpening CN波段融合EFFORT polishing EFFORT 波谱打磨FLAASH FLAASH大气校正Quick atmospheric correction 快速大气校正Build 3D cube 建立3D立方体Preprocessing 预处理Calibration utilitiesAVHRRLandsat calibrationQUickbird radianceWorldview radianceFLAASHQuick atmospheric correctionFlat filedLog residualeIAR reflectanceEmpirical lineThermal atm correctionTIMS radianceCalculate emissivityGeneral purpose utilitiesReplace bad linesDark substractApply gain and offsetDestripeCross-tarck illumination correctionConvert complex dataConvert vax to IEEEData-specific utilities(配准与镶嵌)Registration 几何校正Rigorous orthorectification 严格模型正射校正Orthorectification 正射校正Mosaicking 图像镶嵌Georeference from input geometry 输入几何文件进行几何校正 Georeference SPOT SPOT几何校正Georeference SeaWiFS SeaWiFS几何校正Georeference ASTER ASTER几何校正Georefencece AVHRR AVHRR几何校正Georeference ENVISAT ENVISAT几何校正Georeference MODIS MODIS几何校正Georeference COSMO-SkyMed(DGM) DGM几何校正Georeference RADARSAT RADARSAT几何校正Build RPCs 构建RPCsCustomize map projections 自定义地图投影Convert map projection 地图投影转换Layer stacking 波段组合Map coordinate converter 地图坐标转换ASCII coordinate conversion ASCII坐标转换Merge old “” file 合并原有文件GPS-Link GPS连接矢量工具Open vector image 打开矢量文件Create new vector layer 新建矢量层Using existing vector layer 基于现有矢量层Using raster image file 基于栅格图像文件Using user defined parameters 基于用户自定义参数Create world boundaries 创建世界边界Available vectors list 当前矢量列表Intelligent digitizer 智能数字化工具Raster to vector 栅格转矢量Classification to vector 分类结果矢量化Rasterize point data 离散点栅格化Convert contours to DEM 等高线转为DEM地形工具Open topographic file 打开地形文件Topographic modeling 地形模型Topographic features 地貌特征分析DEM extraction DEM提取DEM提取向导;提取向导;使用现有文件;选择立体控制点对;选择立体匹配点;构建核面图像;提取DEM;编辑DEM;立体3D测量;3D核面指针Create hill shade image 山体阴影图生成Replace bad values 坏值替换Rasterize point data 离散点栅格化Convert contours to DEM 等高线转为DEM3D SurfaceView 3D曲面浏览Outil bathym rie雷达工具Open/prepare radar file 打开/预处理雷达数据文件Calibration 定标Beta noughtSigma noughtAntenna pattern correction 天线阵列校正Slant-to-ground range 斜地校正Incidence angle image 入射角图像Adaptive filters 自适应滤波Texture filters 纹理滤波Synthetic color image 彩色图像合成Polarimetric tools 极化分析工具Synthesize AIRSAR Data AIRSAR数据合成Synthesize SIR-C data SIR-C数据合成Extract polarization sigbatures 极化信号提取Multilook compressed data 数据压缩多视Phase image 相位图像Pedestal height image 图像消隐脉冲高度AIRSAR scattering classification AIRSAR散射机理分析TOPSAR tools TOPSAR工具Open TOPSAR file 打开TOPSAR文件Convert TOPSAR data 打开TOPSAR数据DEM replace bad value DEM坏值替换窗口Window finder 查找窗口Start new display window 新建显示窗口Start new vector window 新建矢量窗口Start new plot window 新建绘图窗口Start 3D liDAR viewer LiDAR三维浏览器Available files list 当前文件列表Available bands list 当前波段列表Available vectors list 当前矢量列表Remote connection manager 远程连接管理Mouse button descriptions 鼠标按键说明Display information 显示信息Cursor location/value 光标定位/数值信息Point collection 点收集Maximize open displays 显示窗口最大化Link diaplays 关联显示Close all display windows 关闭所有显示窗口Close all plot windows 关闭所有绘图窗口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. Introduction The relativistic Toda lattice (RTL) was introduced by Ruijsenaars [17] and studied in [1, 2, 4, 14, 18], for a review see [12]. The finite RTL is defined by the system of equations q ¨n = ǫ2 q ˙n q ˙n−1 exp(qn − qn+1 ) exp(qn−1 − qn ) −q ˙n+1 2 1 + ǫ exp(qn−1 − qn ) 1 + ǫ2 exp(qn − qn+1 ) , (1.1)
b1 a2
(1.5)
Then A = −(L−1 M )− and B = −(ML−1 )− , where we use X− to denote the strictly lower triangular part of X . The other system (1.3) can also be written in the form (1.5)
-
matrix data at t
6
direct spectral problem
?
inverse spectral problem evolution of the spectral data
spectral data at t = 0
-
spectral data at t
ቤተ መጻሕፍቲ ባይዱ
Figure 1. The scheme of the direct and inverse spectral problem.
A=
0 . . . 0
0 .. .. . . .. .. . . ··· 0
··· ···
···
..
.
0 . . . . . . . . . 0

bN −1 aN
,
B=

0
b1 a1
0 . . . 0
0 .. .. . . .. .. . . ··· 0
both with an > 0 for 1 ≤ n ≤ N , bn > 0 for 1 ≤ n ≤ N − 1, and b0 ≡ 0, bN ≡ 0. The systems (1.2) and (1.3) can also be written in matrix form. Define two bidiagonal matrices L and M by a1 1 0 ··· ··· 0 . . 0 a2 1 . . 0 0 a ... . . 3 L= . , . . . . . .. .. .. . . . . .. . . aN −1 1 . 0 ··· ··· ··· 0 aN 1 0 0 ··· ··· 0 . . −b1 1 0 . . .. . . . 0 −b2 1 (1.4) M = . . . .. .. .. . . . . . . . . .. . . 1 0 . 0 · · · · · · · · · −bN −1 1 Then Suris [18] noted that (1.2) can be written in the Lax form ˙ = LA − BL L where M ˙ = MA − BM, 0
with N ∈ N, 1 ≤ n ≤ N and the convention q0 ≡ −∞ and qN +1 ≡ +∞. Here the qn are functions in the time parameter t. The system (1.1) is the Newtonian form of a Hamiltonian system with Hamiltonian
··· ···
···
..
.
0 . . . . . . . . . 0

bN −1 aN −1
.
(1.6)
The relativistic Toda lattice and Laurent orthogonal polynomials
3
but now A = −(M −1 L)− and B = −(LM −1 )− , see Remark 3.4 below. In Section 3.1 we show that (1.2) and (1.3) are special cases of a generalized form of the finite RTL, namely ˙ = F (LM −1 ) L L − L F (M −1 L) − − (1.7) M ˙ = F (LM −1 ) M − M F (M −1 L)
To the best of our knowledge, the only transform methods that have been explicitly introduced in the study of the RTL are the ones by Ragnisco and Bruschi [14] for the periodic RTL, by Ruijsenaars [17], and the scattering transform of Cosentino [4] for the infinite RTL. The Laurent orthogonal polynomials Pn are defined by where Ln and Mn are the n × n upper left corner blocks of L and M , respectively. They satisfy the recurrence relation Pn (z ) = (z − an )Pn−1 (z ) − bn−1 zPn−2 (z ), 1 ≤ n ≤ N, P0 ≡ 1 , Pn (z ) = det(zMn − Ln ), 1 ≤ n ≤ N, (1.8)
− −
where F : R+ → R is an arbitrary function on R+ . For F (x) = 1/x, we obtain (1.2) and for F (x) = x, we obtain (1.3). The main goal of this paper is to solve the finite RTL in its general form (1.7) with the aid of a direct and inverse spectral transform, in a similar way as was done by Moser [13] for the nonrelativistic case. While the spectral transform for the nonrelativistic case is based on the spectral theory of tridiagonal (Jacobi) matrices and is connected with orthogonal polynomials, we will show that in the relativistic case, the spectral transform is based on the spectral theory of pairs of bidiagonal matrices (1.4) and Laurent orthogonal polynomials [10, 16, 20, 6]. See Figure 1 for the general scheme of the direct and inverse spectral problem. matrix data at t = 0
arXiv:math/0204155v1 [math.CA] 11 Apr 2002
Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials
N
H (q1 , . . . , qN , p1 , . . . , pN ) = √
n=1
epn h(qn−1 − qn )h(qn − qn+1 ),
˙ n + 1/ǫ and letting ǫ → 0, one can easily check where h(x) = 1 + ǫ2 ex . Setting q ˙n = Q that (1.1) reduces to the equations of motion of the finitie nonrelativistic Toda lattice, ¨ n = exp(Qn−1 − Qn ) − exp(Qn − Qn+1 ), Q so that (1.1) is a one-parameter perturbation. 1 ≤ n ≤ N,
The relativistic Toda lattice and Laurent orthogonal polynomials
2
In analogy with the Flaschka variables for the nonrelativistic Toda lattice one can use a (non-invertible) change of variables to prove integrability. Bruschi and Ragnisco [1, 2], see also [12, 18], obtain the two forms bn−1 bn −a , 1 ≤ n ≤ N, ˙ n = an a +1 n−1 (1.2) b ˙ n = bn 1 − 1 , 1 ≤ n ≤ N − 1 , an an+1 and a ˙ n = an (bn−1 − bn ), 1 ≤ n ≤ N, 1 ≤ n ≤ N − 1, b ˙ n = bn (an − an+1 + an−1 − an+1 ), (1.3)
相关文档
最新文档