2020年广西柳州市中考数学试卷

合集下载

广西柳州市2020版中考数学试卷(II)卷

广西柳州市2020版中考数学试卷(II)卷

广西柳州市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)的倒数是()A .B .C . 3D . -32. (2分)(2020·资兴模拟) 下列计算中,正确的是()A .B .C .D .3. (2分)温家宝总理在2009年政府工作报告中提出,今后三年内各级政府拟投入医疗卫生领域的资金将达到8500亿元人民币,用科学记数法表示“8500”亿为().A .B .C .D .4. (2分)(2017·青山模拟) 如图是一个直三棱柱的立体图和主视图、俯视图,根据立体图上的尺寸标注,它的左视图的面积为()A . 24B . 30C . 18D . 14.45. (2分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计。

下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本,其中正确的判断有()。

A . 1个B . 2个C . 3个D . 4个6. (2分)抛物线y=x2﹣8x+m的顶点在x轴上,则m等于()A . -16B . -4C . 8D . 167. (2分)(2017·昌乐模拟) 在平面直角坐标系内,把抛物线y=(x﹣1)2+3向下平移2个单位,那么所得抛物线的解析式是()A . y=(x﹣3)2B . y=(x+1)2C . y=(x﹣1)2+5D . y=(x﹣1)2+18. (2分)关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A . 2B . 1C . 0D . ﹣19. (2分)矩形具有而菱形不具有的性质是()A . 对角线相等B . 对角线互相垂直C . 对角线互相平分D . 对角线平分一组对角10. (2分)已知函数,则使y=k成立的x值恰好有三个,则k的值为()A . 2B . 3C . 8D . 9二、填空题 (共6题;共7分)11. (1分)(2016·广州) 代数式有意义时,实数x的取值范围是________.12. (1分) (2017七下·江苏期中) 已知一个多边形的每一个内角都是,则这个多边形的边数为________.13. (1分) (2020七下·青岛期中) 在同一平面内,两个角的两边分别垂直,其中一个角的度数是另一个角的倍少,那么这两个度数分别是________(只写数字,不写单位).14. (1分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF =3,则CE的长度为________.15. (1分) (2019九上·泰山期末) 二次函数的图象如图所示,以下结论:① ;②顶点坐标为;③ ;④ ;⑤ .正确有________.(填序号)16. (2分) (2016八上·顺义期末) 一列有规律的数:,2,,2 ,,…,则第6个数是________,第n个数是________(n为正整数).三、解答题 (共4题;共25分)17. (5分)(2019·云南) 计算: .18. (5分)先化简,再求值:+,其中x=2sin30°﹣1.19. (5分)已知,如图,△ABC中,∠BAC=60°,AD平分∠BAC,AC=AB+BD,求∠B的度数.20. (10分) (2017八下·昆山期末) 如图在平面直角坐标系xOy中,函数()的图象与一次函数的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图像直接写出使得的的取值范围;四、实践应用题 (共4题;共35分)21. (10分)(2017·江阴模拟) 为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表:处理方式直接丢弃直接做垃圾袋再次购物使用其它选该项的人数占总人数的百分比5%35%49%11%请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.22. (10分)一个电器超市购进A、B两种型号的电风扇后进行销售,若一台A种型号的电风扇进价比一台B 种型号的电风扇进价多30元,用2000元购进A种型号电风扇的数量是用3400元购进B种型号电风扇的数量的一半.(1)求每台A种型号电风扇和B种型号的电风扇进价分别是多少?(2)该超市A种型号电风扇每台售价260元,B种型号电风扇每件售价190元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A种型号的电风扇至少是多少台?23. (5分)(2017·五华模拟) 小宇想测量位于池塘两端的A,B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A,B两点的距离.24. (10分) (2019八上·杨浦月考) 已知∠ABC=30°,点D在射线BC上,且到A点的距离等于线段a的长.(1)用圆规和直尺在图中作出点D:(不写作法,但须保留作图痕迹,且说明结果(2)如果AB=8,a=5.求△ABD的面积.五、推理论证题 (共1题;共10分)25. (10分)(2019·上海模拟) 如图,在△ABC中,AB=AC,点D在边AB上,以点A为圆心,线段AD的长为半径的⊙A与边AC相交于点E,AF⊥DE,垂足为点F,AF的延长线与边BC相交于点G,联结GE.已知DE=10,cos∠BAG= ,.求:(1)⊙A的半径AD的长;(2)∠EGC的余切值.六、拓展探索题 (共1题;共15分)26. (15分)(2011·金华) 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB 于点E、F,点E为垂足,连接CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共4题;共25分)17-1、18-1、19-1、20-1、20-2、四、实践应用题 (共4题;共35分)21-1、21-2、22-1、22-2、23-1、24-1、24-2、五、推理论证题 (共1题;共10分)25-1、25-2、六、拓展探索题 (共1题;共15分)26-1、。

2020学年广西柳州市中考数学试题(含答案)

2020学年广西柳州市中考数学试题(含答案)

广西柳州市2020年中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中只有一项是正确的,每小题选对得3分,选错、不选或多选均得0分)1.(3分)某几何体的三视图如图所示,则该几何体是()A.正方体B.长方体C.三棱柱D.三棱锥2.(3分)计算﹣10﹣8所得的结果是()A.﹣2 B.2C.18 D.﹣183.(3分)在﹣3,0,4,这四个数中,最大的数是()A.﹣3 B.0C.4D.4.(3分)如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.(3分)下列计算正确的是()A.3a•2a=5a B.3a•2a=5a2C.3a•2a=6a D.3a•2a=6a26.(3分)在下列所给出坐标的点中,在第二象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)7.(3分)学校舞蹈队买了8双舞蹈鞋,鞋的尺码分别为:36,35,36,37,38,35,36,36,这组数据的众数是()A.35 B.36 C.37 D.388.(3分)下列四个图中,∠x是圆周角的是()A.B.C.D.9.(3分)下列式子是因式分解的是()A.x(x﹣1)=x2﹣1 B.x2﹣x=x(x+1)C.x2+x=x(x+1)D.x2﹣x=x(x+1)(x﹣1)10.(3分)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米11.(3分)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3B.4C.D.12.(3分)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD 的长为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分,请将答案直接填写在答题卡中相应的横线上,在草稿纸上、试题上答题无效)13.(3分)不等式4x>8的解集是x>2.14.(3分)若分式有意义,则x≠2.15.(3分)一个袋中有3个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的条件下,随机摸出一个红球的概率是,则袋中有7个白球.16.(3分)学校组织“我的中国梦”演讲比赛,每位选手的最后得分为去掉一个最低分、一个最高分后的平均数.7位评委给小红同学的打分是:9.3,9.6,9.4,9.8,9.5,9.1,9.7,则小红同学的最后得分是9.4.17.(3分)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.18.(3分)有下列4个命题:①方程x2﹣(+)x+=0的根是和.②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,则CD=3.③点P(x,y)的坐标x,y满足x2+y2+2x﹣2y+2=0,若点P也在y=的图象上,则k=﹣1.④若实数b、c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1.上述4个命题中,真命题的序号是①②③④.三、解答题(本大题共8小题,满分66分.解答时应写出必要的文字说明、验算步骤或推理过程.请将解答写在答题卡中相应的区域内,画图或作辅助线时使用铅笔画出,确定后必需使用黑色字迹的签字笔秒黑.在草稿纸、试题上答题无效)19.(6分)计算:(﹣2)2﹣()0.20.(6分)解方程:3(x+4)=x.21.(6分)韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法或树状图表示出所有可能出现的游戏结果;(2)求韦玲胜出的概率.22.(8分)如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.23.(8分)某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:时间x(分钟)…10 20 30 40 …水量y(m3)…3750 3500 3250 3000 …(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.24.(10分)如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC 沿BC翻折得到△EBC.(1)四边形ABEC一定是什么四边形?(2)证明你在(1)中所得出的结论.25.(10分)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=.(1)求OD、OC的长;(2)求证:△DOC∽△OBC;(3)求证:CD是⊙O切线.26.(12分)已知二次函数y=ax2+bx+c(a≠0)的图象经过点(1,0),(5,0),(3,﹣4).(1)求该二次函数的解析式;(2)当y>﹣3,写出x的取值范围;(3)A、B为直线y=﹣2x﹣6上两动点,且距离为2,点C为二次函数图象上的动点,当点C运动到何处时△ABC的面积最小?求出此时点C的坐标及△ABC面积的最小值.一、选择题1-6 CDCAD B 7-12 BCCADA二、填空题13、x>214、215、716、9.417、2018、①②③④三、解答题19、解答:解:原式=4﹣1=3.20、解答:解:去括号得:3x+12=x,移项合并得:2x=﹣12,解得:x=﹣6.21、解答:解:(1)画树状图得:则有9种等可能的结果;(2)∵韦玲胜出的可能性有3种,故韦玲胜出的概率为:.22、解答:解:(1)小旗A′C′D′B′如图所示;(2)点A′(6,0),C′(0,﹣6),D′(0,0);(3)∵A(﹣6,12),B(﹣6,0),∴AB=12,∴线段BA旋转到B′A′时所扫过的扇形的面积==36π.23、解答:解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得,所以,y=﹣250+4000.24、解答:(1)解:四边形ABEC一定是平行四边形;(2)证明:∵四边形ABCD为等腰梯形,AD∥BC,∴AB=DC,AC=BD,由折叠的性质可得:EC=DC,DB=BE,∴EC=AB,BE=AC,∴四边形ABEC是平行四边形.25、解答:(1)解:∵AD、BC是⊙O的两条切线,∴∠OAD=∠OBC=90°,在Rt△AOD与Rt△BOC中,OA=OB=3,AD=2,BC=,根据勾股定理得:OD==,OC==;(2)证明:过D作DE⊥BC,可得出∠DAB=∠ABE=∠BED=90°,∴四边形ABED为矩形,∴BE=AD=2,DE=AB=6,EC=BC﹣BE=,在Rt△EDC中,根据勾股定理得:DC==,∵===,∴△DOC∽△OBC;(3)证明:过O作OF⊥DC,交DC于点F,∵△DOC∽△OBC,∴∠BCO=∠FCO,∵在△BCO和△FCO中,,∴△BCO≌△FCO(AAS),∴OB=OF,则CD是⊙O切线.26、解答:解:(1)∵点(1,0),(5,0),(3,﹣4)在抛物线上,∴,解得.∴二次函数的解析式为:y=x2﹣6x+5.(2)在y=x2﹣6x+5中,令y=﹣3,即x2﹣6x+5=﹣3,整理得:x2﹣6x+8=0,解得x1=2,x2=4.结合函数图象,可知当y>﹣3时,x的取值范围是:x<2或x>4.(3)设直线y=﹣2x﹣6与x轴,y轴分别交于点M,点N,令x=0,得y=﹣6;令y=0,得x=﹣2.∴M(﹣3,0),N(0,﹣6),∴OM=3,ON=6,由勾股定理得:MN=3,∴tan∠MNO==,sin∠MNO==.设点C坐标为(x,y),则y=x2﹣6x+5.过点C作CD⊥y轴于点D,则CD=x,OD=﹣y,DN=6+y.过点C作直线y=﹣2x﹣6的垂线,垂足为E,交y轴于点F,在Rt△CDF中,DF=CD•tan∠MNO=x,CF====x.∴FN=DN﹣DF=6+y﹣x.在Rt△EFN中,EF=FN•sin∠MNO=(6+y﹣x).∴CE=CF+EF=x+(6+y﹣x),∵C(x,y)在抛物线上,∴y=x2﹣6x+5,代入上式整理得:CE=(x2﹣4x+11)=(x﹣2)2+,∴当x=2时,CE有最小值,最小值为.当x=2时,y=x2﹣6x+5=﹣3,∴C(2,﹣3).△ABC的最小面积为:AB•CE=×2×=.∴当C点坐标为(2,﹣3)时,△ABC的面积最小,面积的最小值为.。

广西柳州市中考数学试卷(附答案解析)

广西柳州市中考数学试卷(附答案解析)

2020年广西柳州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合要求的。

)1.−15的绝对值是()A.5B.﹣5C.−15D.152.如图,这是一个由5个完全相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.下列四个图案中,是中心对称图形的是()A.B.C.D.4.2020年是我国全面建成小康社会收官之年,我市将全面完成剩余19700贫困人口脱贫的任务.用科学记数法将数据19700表示为()A.0.197×105B.1.97×104C.19.7×103D.197×1025.为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()A.14%B.16%C.20%D.50%6.如图,点A 、B 、C 在⊙O 上,若∠BOC =70°,则∠A 的度数为( )A .35°B .40°C .55°D .70°7.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .8.如图,在Rt △ABC 中,∠C =90°,AB =4,AC =3,则cos B =BCAB=( )A .35B .45C .√74D .349.2ab •a 2的计算结果是( ) A .2abB .4abC .2a 3bD .4a 3b10.如图是甲、乙两名射击运动员10次射击成绩的折线统计图,根据折线图判断下列说法正确的是( )A .甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定11.下列多项式中,能用平方差公式进行因式分解的是()A.a2﹣b2B.﹣a2﹣b2C.a2+b2D.a2+2ab+b2 12.甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.90x−6=60xB.90x=60x+6C.90x+6=60xD.90x=60x−6二、填空题(共6小题,每小题3分,满分18分)13.如图,直线l1,l2被直线l3所截,l1∥l2,已知∠1=80°,则∠2=.14.一元一次方程2x﹣8=0的解是x=.15.分式1x−2中,x的取值范围是.16.点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为.17.如图,每一幅图中有若干个菱形,第1幅图中有1个菱形,第2幅图中有3菱形.第3幅图中有5个菱形,依照此规律,第6幅图中有个菱形.18.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰好落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的H处,有下列结论:①∠EBG=45°;②2S△BFG=5S△FGH;③△DEF∽△ABG;④4CE=5ED.其中正确的是.(填写所有正确结论的序号)三、解答题(本大题共8小题,共60分,解答时应写出必要的文字说明,演算步骤或推理过程)19.(6分)计算:16×12−8+2√4.20.(6分)如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB . 求证:△AOC ≌△BOC .21.(8分)解不等式组{x +2>1,①1−2x ≥−3,②请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:(Ⅳ)原不等式组的解集为 .22.(8分)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A 、B 、C 、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是 ;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)23.(8分)如图,已知▱ABCD的对角线AC、BD相交于点O,AD=12,BD=10,AC=26.(1)求△ADO的周长;(2)求证:△ADO是直角三角形.24.(10分)如图,平行于y轴的直尺(部分)与反比例函数y=mx(x>0)的图象交于A、C两点,与x轴交于B、D两点,连接AC,点A、B对应直尺上的刻度分别为5、2,直尺的宽度BD=2,OB=2.设直线AC的解析式为y=kx+b.(1)请结合图象,直接写出:①点A的坐标是;②不等式kx+b>m x的解集是;(2)求直线AC的解析式.25.(10分)如图,AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,OD⊥BC于点E,交⊙O于点D,连接CD、AD,AD与BC交于点F,CG与BA的延长线交于点G.(1)求证:△ACD∽△CFD;(2)若∠CDA=∠GCA,求证:CG为⊙O的切线;(3)若sin∠CAD=13,求tan∠CDA的值.2020年广西柳州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。

广西柳州市2020年中考数学试卷A卷

广西柳州市2020年中考数学试卷A卷

广西柳州市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2015七上·海棠期中) 下列正确的是()A . ﹣2的相反数是B . |﹣2|=2C . ﹣2的倒数是D . ﹣2>02. (2分)(2011·徐州) 下列事件中属于随机事件的是()A . 抛出的篮球会落下B . 从装有黑球,白球的袋里摸出红球C . 367人中有2人是同月同日出生D . 买1张彩票,中500万大奖3. (2分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A .B .C .D .4. (2分) (2017八上·乌拉特前旗期末) 下列美丽的图案中,是轴对称图形的是()A .B .C .D .5. (2分)若3 + =5 ,则m的值为()A . 56B . 34C . 28D . 146. (2分)(2016·福田模拟) 景新中学为了了解学生体育中考备考情况,随机抽查了10名学生的引体向上,结果如下表:引体向上(次)181920学生数262则关于这10名学生的引体向上数据,下列说法错误的是()A . 极差是2B . 众数是19C . 平均数是19D . 方差是47. (2分) (2018八上·江干期末) 如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是()A .B .C .D .8. (2分)对于命题“若a2=b2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A . a=3,b=3B . a=﹣3,b=﹣3C . a=3,b=﹣3D . a=﹣3,b=﹣29. (2分)二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是()A . -1<x<3;B . x<-1;C . x>3;D . x<-1或x>3.10. (2分) (2019七下·长春月考) 如图,把一张长方形纸片ABCD沿EF折叠后,点C , D分别落在C , D 的位置上,EC交AD于点G ,已知∠EFG=58°,则∠BEG等于()A . 58°B . 116°C . 64°D . 74°二、填空题 (共6题;共6分)11. (1分) 2013年我市财政收入继续领跑嘉兴县(市)区,达到94.3亿元,这个数可用科学记数法表示为________元.12. (1分) (2018九上·山东期中) 如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;①②GP=GD;③点P是△ACQ的外心,其中结论正确的是________ (只需填写序号).13. (1分) (2016九上·仙游期中) 关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是________.14. (1分)某班45名同学哎学习举行的“爱心涌动校园”募捐活动中捐款情况如下表所示捐款数(元)1020304050捐款人数(人)8171622则该班捐款的平均数为________ 元.15. (1分)(2019·嘉善模拟) 在矩形ABCD中,∠ABC的平分线交边AD于点E,∠BED的平分线交直线CD 于点F.若AB=3,CF=1,则BC=________.16. (1分)若关于x的方程的解为正数,则m的取值范围是________ .三、解答题: (共9题;共90分)17. (5分)先化简代数式÷ ,再选择方程x2+2x﹣3=0的一个根计算该代数式的值.18. (10分) (2015九上·罗湖期末) 如图,把带有指针的圆形转盘A、B分别分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).小明、小乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为3的倍数,则小明胜;否则,小乐胜.(若有指针落在分割线上,则无效,需重新转动转盘)(1)试用列表或画树状图的方法,求小明获胜的概率;(2)请问这个游戏规则对小明、小乐双方公平吗?做出判断并说明理由.19. (15分)(2016·河池) 如图,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于A(﹣3,2),B(2,n).(1)求反比例函数y= 的解析式;(2)求一次函数y=ax+b的解析式;(3)观察图象,直接写出不等式ax+b<的解集.20. (5分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.求△ABC的内切圆☉O的半径r.21. (15分) (2019九上·孝南月考) 如图,AB是⊙O的直径,点D在AB的延长线上,点C、E是⊙O上的两点,CE=CB,,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF(3)若BD=1, ,求直径AB的长.22. (10分)为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.(1)求篮球、足球的单价分别为多少元?(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?23. (10分) (2017八上·云南期中) 如图,AB是⊙O的直径,∠BAC=45°,AB=BC.(1)求证:BC是⊙O的切线;(2)设阴影部分的面积为a,b,⊙O的面积为S,请写出S与a,b的关系式.24. (10分)(2017·黄冈模拟) 如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.25. (10分)(2017·道外模拟) 图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题: (共9题;共90分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。

2020年广西柳州市初中毕业升学考试初中数学

2020年广西柳州市初中毕业升学考试初中数学

2020年广西柳州市初中毕业升学考试初中数学数学试卷〔考试时刻共120分钟,全卷总分值120分〕第一卷〔选择题,共18分〕本卷须知:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第一卷为第1页至第二页.答题时,请用2B 铅笔把各小题正确答案序号填涂在答题卡对应的题号内.如需改动,须用橡皮擦洁净后,再填涂其它答案.在第Ι卷上答题无效.一、选择题〔本大题共6小题,每题3分,总分值18分.在每个小题给出的四个选项中,只有一项为哪一项正确的,每题选对得3分,选错、不选或多项选择均得零分〕1.在3,0,2-,2四个数中,最小的数是〔 〕A .3B .0C .2-D .22.如以下图所示,图中三角形的个数共有〔 〕A .1个B .2个C .3 个D .4个3.假设b a <,那么以下各式中一定成立的是〔 〕A .11-<-b aB .33b a >C .b a -<-D .bc ac <4.某学习小组7个男同学的身高〔单位:米〕为:1.66、1.65、1.72、1.58、1.64、1.66、1.70,那么这组数据的众数为〔 〕A .1.65B .1.66C .1.67D .1.70 5.分式方程3221+=x x 的解是〔 〕 A .0=xB .1=xC .2=xD .3=x 6.一根笔直的小木棒〔记为线段AB 〕,它的正投影为线段CD ,那么以下各式中一定成立的是〔 〕A .AB=CDB .AB ≤CDC .CD AB > D .AB ≥CD第二卷〔非选择题,总分值102分〕二、填空题〔本大题共10小题,每题3分,总分值30分. 请将答案直截了当填写在题中横线上的空白处〕7.运算:2)5(0+-= . 8.请写出一个是轴对称图形的图形名称。

答: .9.运算:312-= .10.在如以下图中,直线AB ∥CD ,直线EF 与AB 、CD 分不相交于点E 、F ,假如∠1=46°,那么∠2= °.11.一个物表达在的速度是5米/秒,其速度每秒增加2米/秒,那么再过 秒它的速度为15米/秒.12.因式分解:22x x -= .13.反比例函数 xm y 1+=的图象通过点〔2,1〕,那么m 的值是 . 14.在一个不透亮的口袋中装有假设干个只有颜色不同的球,假如袋中只有4个红球,且摸出红球的概率为31,那么袋中的球共有 个. 15.如以下图,︒=∠30MAB ,P 为AB 上的点,且6=AP ,圆P 与AM 相切,那么圆P 的半径为 .16.矩形内有一点P 到各边的距离分不为1、3、5、7,那么该矩形的最大面积为 平方单位.三、解答题〔本大题10小题,总分值72分.解承诺写出必要的文字讲明、演算步骤或推理过程〕17.〔此题总分值6分〕先化简,再求值:)5()1(3---x x ,其中2=x .18.〔此题总分值6分〕解不等式组⎩⎨⎧>+<+② 392① 31x x ,并把它的解集表示在数轴上.19.〔此题总分值6分〕某学习小组对所在城区初中学生的视力情形进行抽样调查,图1是这些同学依照调查结果画出的条形统计图.请依照图中信息解决以下咨询题:〔1〕本次抽查活动中共抽查了多少名学生?〔2〕请估算该城区视力不低于4.8的学生所占的比例,用扇形统计图在图2中表示出来. 〔3〕假设该城区八年级共有4000名学生,请估量这些学生中视力低于4.8的学生约有多少人?20.〔此题总分值6分〕如以下图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,3 ,6==AB BC ,求四边形ABCD 的周长.21.〔此题总分值6分〕如图,正方形网格中,△ABC 为格点三角形〔顶点差不多上格点〕,将△ABC 绕点A 按逆时针方向旋转90°得到11AB C △.〔1〕在正方形网格中,作出11AB C △;〔不要求写作法〕〔2〕设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.〔结果保留π〕22.〔此题总分值6分〕如以下图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m ,这栋高楼有多高?〔结果精确到0.1 m ,参考数据:73.13≈〕23.〔此题总分值8分〕如以下图,直线l 与x 轴、y 轴分不交于点) 0,8 ( M ,点) 6,0 ( N .点P 从点N 动身,以每秒1个单位长度的速度沿N →O 方向运动,点Q从点O 动身,以每秒2个单位长度的速度沿O →M 的方向运动.点QP 、同时动身,当点Q到达点M 时,QP 、两点同时停止运动,设运动时刻为t 秒.〔1〕设四边形...MNPQ 的面积为S ,求S 关于t 的函数关系式,并写出t 的取值范畴. 〔2〕当t 为何值时,QP 与l 平行?24.〔此题总分值8分〕某校积极推进〝阳光体育〞工程,本学期在九年级11个班中开展篮球单循环竞赛〔每个班与其它班分不进行一场竞赛,每班需进行10场竞赛〕.竞赛规那么规定:每场竞赛都要分出胜负,胜一场得3分,负一场得1-分。

广西柳州市2019-2020学年中考数学试卷(含答案)

广西柳州市2019-2020学年中考数学试卷(含答案)

广西柳州市2019-2020学年中考数学试卷(含答案)一、单选题1.计算:()A. B. 2 C. 0 D.【答案】A【考点】有理数的加法2.下列图形中,是中心对称图形的是()A. B. C. D.【答案】B【考点】中心对称及中心对称图形3.现有四张扑克牌:红桃、黑桃、梅花和方块.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃的概率为()A. 1B.C.D.【答案】B【考点】简单事件概率的计算4.世界人口约7000000000人,用科学记数法可表示为()A.B.C.D.【答案】C【考点】科学记数法—表示绝对值较大的数5.如图,在中,,,,则()A. B. C. D.【答案】A【考点】勾股定理,锐角三角函数的定义6.如图,,,,是上的四个点,,,则的度数为()A.B.C.D.【答案】 D【考点】圆周角定理7.苹果原价是每斤元,现在按8折出售,假如现在要买一斤,那么需要付费()A. 元B. 元C. 元D. 元【答案】A【考点】列式表示数量关系8.如图是某年参加国际教育评估的15个国家学生的数学平均成绩的扇形统计图,由图可知,学生的数学平均成绩在之间的国家占()A. B. C. D.【答案】 D【考点】利用统计图表分析实际问题9.计算:()A. B. C. D.【答案】B【考点】单项式乘单项式10.已知反比例函数的解析式为,则的取值范围是()A. B. C. D.【答案】C【考点】反比例函数的定义二、填空题11.如图,,若,则________ .【答案】46【考点】平行线的性质12.如图,在平面直角坐标系中,点的坐标是________.【答案】(﹣2,3)【考点】点的坐标13.不等式的解集是________.【答案】x≥﹣1【考点】解一元一次不等式14.一元二次方程的解是________.【答案】x1=3,x2=﹣3【考点】直接开平方法解一元二次方程15.篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为________.【答案】【考点】二元一次方程组的实际应用-鸡兔同笼问题16.如图,在中,,,,,则的长为________.【答案】5【考点】含30度角的直角三角形,勾股定理,相似三角形的判定与性质三、解答题17.计算:2 +3.【答案】解:2 +3=4+3=7.【考点】实数的运算18.如图,和相交于点,,.求证:.【答案】解:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【考点】三角形全等的判定19.一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.【答案】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m【考点】平均数及其计算20.解方程:.【答案】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.【考点】解分式方程21.如图,四边形是菱形,对角线,相交于点,且.(1)求菱形的周长;(2)若,求的长.【答案】(1)解:∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8(2)解:∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO ,∴BD=2【考点】勾股定理,菱形的性质22.如图,一次函数的图象与反比例函数的图象交于,,两点.(1)求该反比例函数的解析式;(2)求的值及该一次函数的解析式.【答案】(1)解:∵反比例函数y 的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y ;(2)解:把B(,n)代入反比例函数解析式,可得n=3,解得n=﹣6,∴B(,﹣6),把A(3,1),B(,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5【考点】待定系数法求一次函数解析式,待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题23.如图,为的内接三角形,为的直径,过点作的切线交的延长线于点.(1)求证:;(2)过点作的切线交于点,求证:;(3)若点为直径下方半圆的中点,连接交于点,且,,求的长.【答案】(1)证明:∵AB是⊙O直径,∴∠ACD=∠ACB=90°.∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°.∵∠D=∠D,∴△DAC∽△DBA;(2)证明:∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA.∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE AD(3)解:如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD 2,过点G作GH⊥BD于H,∴tan∠ABD 2,∴GH=2BH.∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH.在Rt△ABC中,tan∠ABC 2,∴AC=2BC,根据勾股定理得:AC2+BC2=AB2,∴4BC2+BC2=9,∴BC ,∴3BH ,∴BH ,∴GH=2BH .在Rt△CHG中,∠BCF=45°,∴CG GH .【考点】圆周角定理,切线的性质,相似三角形的判定与性质,解直角三角形的应用,切线长定理24.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.【答案】(1)解:由题意A(,0),B(﹣3 ,0),C(0,﹣3),设抛物线的解析式为y=a (x+3 )(x ),把C(0,﹣3)代入得到a ,∴抛物线的解析式为y x2x﹣3 (2)解:在Rt△AOC中,tan∠OAC ,∴∠OAC=60°.∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y x﹣1,由题意P(m,m2m﹣3),H(m,m﹣1),F(m,0).∵FH=PH,∴1 m﹣1﹣(m2m﹣3)解得m 或(舍弃),∴当FH=HP时,m的值为(3)解:如图,∵PF是对称轴,∴F(,0),H(,﹣2).∵AH⊥AE,∴∠EAO=60°,∴EO OA=3,∴E(0,3).∵C(0,﹣3),∴HC 2,AH=2FH=4,∴QH CH=1,在HA上取一点K,使得HK ,此时K().∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴.∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQ AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,相似三角形的判定与性质,二次函数与一次函数的综合应用,二次函数的实际应用-动态几何问题。

2020年广西柳州市中考数学试卷(含答案解析)

2020年广西柳州市中考数学试卷(含答案解析)

2020年广西柳州市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.12的绝对值是()A. −12B. 12C. −2D. 22.如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是()A.B.C.D.3.下列几种汽车标志图案是中心对称图形的是()A. B. C. D.4.500米口径球面射电望远镜简称FAST,被誉为“中国天眼”,历时22年建成,占地约25万平方米.其中数据“25万”可用科学记数法表示为()A. 2.5×105B. 2.2×106C. 5×105D. 2.5×1085.为了筹备班级毕业联欢会,班长对全班50名同学喜欢吃哪几种水果进行了民意调查,小明将班长的统计结果绘制成如图所示的条形统计图.下列结论错误的是()A. 一个人可以喜欢吃几种水果B. 喜欢吃葡萄的人数最多C. 喜欢吃苹果的人数是喜欢吃梨人数的3倍D. 喜欢吃香蕉的人数占全班人数的20%6.如图,A,B,C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是()A. 25°B. 50°C. 60°D. 90°AB;AB=2OB;AO+OB=AB中,能7.已知点O在线段A、B上,则在等式AO=OB;OB=12判定点O是线段AB中点的有()A. 1个B. 2个C. 3个D. 4个8.如图,在Rt△ABC中,∠C=90°,AC=2BC,则sin B的值为()A. 2√55B. 12C. √55D. 29.计算:−3x2⋅8xy2=()A. 5x2y2 B. 24x2y2C. 11x3y2 D. −24x3y2 10.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A. S1<S2B. S1>S2C. S1=S2D. S1≥S211.下列各式中能用平方差公式因式分解的是()A. −x2y2B. x2+y2C. x2−y2D. x−y12.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x个零件,则可以列出方程为()A. 480x =360140−xB. 480140−x=480xC. 480x +360x=140 D. 360x−140=4808x二、填空题(本大题共6小题,共18.0分)13.如图,直线AB,CD被直线AE所截,AB//CD,∠A=110°,则∠1=______度.14.一元一次方程6−8x=0的解是__________.15.(1)若分式2a+3a−1有意义,则a的取值范围是;(2)若分式2x+1无意义,则x的值为.16.已知点M(−1,5)向右平移3个单位长度,又向上平移4个单位长度得到点N的坐标为________.17.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有______个正方形.18.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为______.三、解答题(本大题共8小题,共66.0分)19.计算:(π−4)0+(−1)−2−|√2−2|.20. 已知:如图,点D ,C 在BF 上,且BD =CF ,∠B =∠F ,∠A =∠E .求证:△ABC≌△EFD .21. 解不等式组{x +11≥2x +3①x+72−1>2x −(3x −2)②并把解集在数轴上表示出来.22.有4张卡片,正面分别写上1,2,3,4,它们的背面都相同.现将它们背面朝上,先从中任意摸出一张,卡片不放回,再任意摸出一张.(1)请用树状图或列表法表示出所有可能的结果.(2)求摸出的两张卡片上的数之和大于5的概率.23.如图所示,▱ABCD的对角线AC,BD相交于点O,AE=EB,OE=3,AB=5.求▱ABCD的周长.x+2分别与x,y轴交于点B、A两点,与反比例函数24.如图在平面直角坐标系中,直线y=−12的图象分别交于点C、D两点,CE⊥x轴于点E,点E坐标为(−2,0)。

柳州市2020年中考数学试卷C卷

柳州市2020年中考数学试卷C卷

柳州市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2020·贵州模拟) 下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则 =﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A . 4个B . 5个C . 6个D . 7个2. (2分)(2020·乐清模拟) 下列计算中,正确的是()A .B .C .D .3. (2分) (2020八下·温州期中) 如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF 分别交AD于点E,BC于点F, ,则 ABCD的面积…()A . 24B . 32C . 40D . 484. (2分)二元一次方程组的解的情况是()A . 一个解B . 无数个解C . 有两个解D . 无解5. (2分) (2016七上·昌平期末) 如图所示的圆柱体从正面看得到的图形可能是()A .B .C .D .6. (2分) (2016九上·海原期中) 一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A .B .C .D .7. (2分) (2017九上·乌拉特前旗期末) 将函数y=﹣3x2+1的图象向右平移个单位得到的新图象的函数解析式为()A .B .C . y=﹣3x2+D . y=﹣3x2﹣8. (2分)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A . 1对B . 2对C . 3对D . 4对二、填空题 (共8题;共8分)9. (1分)(2018·哈尔滨模拟) 把多项式因式分解的结果为________.10. (1分)(2020·合肥模拟) 不等式组的解集是________.11. (1分)(2020·瑞安模拟) 某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如友表:则这20户家庭的该月平均用水量为________吨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

020年广西柳州市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合要求的。


1.(3分)﹣的绝对值是()
A.5B.﹣5C.﹣D.
2.(3分)如图,这是一个由5个完全相同的小正方体组成的立体图形,它的主视图是()
A.B.C.D.
3.(3分)下列四个图案中,是中心对称图形的是()
A.B.
C.D.
4.(3分)2020年是我国全面建成小康社会收官之年,我市将全面完成剩余19700贫困人口脱贫的任务.用科学记数法将数据19700表示为()
A.0.197×105B.1.97×104C.19.7×103D.197×102
5.(3分)为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()
A.14%B.16%C.20%D.50%
6.(3分)如图,点A、B、C在⊙O上,若∠BOC=70°,则∠A的度数为()
A.35°B.40°C.55°D.70°
7.(3分)通过如下尺规作图,能确定点D是BC边中点的是()
A.B.
C.D.
8.(3分)如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则cos B==()
A.B.C.D.
9.(3分)2ab•a2的计算结果是()
A.2ab B.4ab C.2a3b D.4a3b
10.(3分)如图是甲、乙两名射击运动员10次射击成绩的折线统计图,根据折线图判断下
列说法正确的是()
A.甲的成绩更稳定
B.乙的成绩更稳定
C.甲、乙的成绩一样稳定
D.无法判断谁的成绩更稳定
11.(3分)下列多项式中,能用平方差公式进行因式分解的是()
A.a2﹣b2B.﹣a2﹣b2C.a2+b2D.a2+2ab+b2 12.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.B.C.D.
二、填空题(共6小题,每小题3分,满分18分)
13.(3分)如图,直线l1,l2被直线l3所截,l1∥l2,已知∠1=80°,则∠2=.
14.(3分)一元一次方程2x﹣8=0的解是x=.
15.(3分)分式中,x的取值范围是.
16.(3分)点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为.
17.(3分)如图,每一幅图中有若干个菱形,第1幅图中有1个菱形,第2幅图中有3菱形.第3幅图中有5个菱形,依照此规律,第6幅图中有个菱形.
18.(3分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰好落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的H处,有下列结论:①∠EBG=45°;②2S△BFG=5S△FGH;③△DEF∽△ABG;④4CE=5ED.其中正确的是.(填写所有正确结论的序号)
三、解答题(本大题共8小题,共60分,解答时应写出必要的文字说明,演算步骤或推理过程)
19.(6分)计算:.
20.(6分)如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.求证:△AOC≌△BOC.
21.(8分)解不等式组请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;
(Ⅱ)解不等式②,得;
(Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:
(Ⅳ)原不等式的解集为.
22.(8分)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.
(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;
(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)
23.(8分)如图,已知▱ABCD的对角线AC、BD相交于点O,AD=12,BD=10,AC=26.(1)求△ADO的周长;
(2)求证:△ADO是直角三角形.
24.(10分)如图,平行于y轴的直尺(部分)与反比例函数(x>0)的图象交于A、C两点,与x轴交于B、D两点,连接AC,点A、B对应直尺上的刻度分别为5、2,直尺的宽度BD=2,OB=2.设直线AC的解析式为y=kx+b.
(1)请结合图象,直接写出:
①点A的坐标是;
②不等式的解集是;
(2)求直线AC的解析式.
25.(10分)如图,AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,OD⊥BC于点E,交⊙O于点D,连接CD、AD,AD与BC交于点F,CG与BA的延长线交于点G.(1)求证:△ACD∽△CFD;
(2)若∠CDA=∠GCA,求证:CG为⊙O的切线;
(3)若sin∠CAD=,求tan∠CDA的值.
26.(10分)如图①,在平面直角坐标系xOy中,批物线y=x2﹣4x+a(a<0)与y轴交于点A,与x轴交于E、F两点(点E在点F的右侧),顶点为M.直线与x轴、y轴分别交于B、C两点,与直线AM交于点D.
(1)求抛物线的对称轴;
(2)在y轴右侧的抛物线上存在点P,使得以P、A、C、D为顶点的四边形是平行四边形,求a的值;
(3)如图②,过抛物线顶点M作MN⊥x轴于N,连接ME,点Q为抛物线上任意一点,过点Q作QG⊥x轴于G,连接QE.当a=﹣5时,是否存在点Q,使得以Q、E、G为顶点的三角形与△MNE相似(不含全等)?若存在,求出点Q的坐标;若不存在,请说明理由.。

相关文档
最新文档