北师大初二相似三角形压轴题提高训练[1]

合集下载

中考数学复习《二次函数相似三角形综合压轴题》专项提升训练(附答案)

中考数学复习《二次函数相似三角形综合压轴题》专项提升训练(附答案)

中考数学复习《二次函数相似三角形综合压轴题》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________ 1.已知:二次函数y=x2−(m+2)x+m−1.(1)求证:该抛物线与x轴一定有两个交点;(2)设抛物线与x轴的两个交点是A、B(A在原点左边,B在原点右边),且AB=3,求此时抛物线的解析式;(3)在(2)的前提下,若抛物线与y轴交于点C,问在y轴的正半轴上是否存在点D,使△DOB 和△AOC相似?2.如图,抛物线:y=x2+bx+c的图像与x轴交于A和B(−3,0)两点,与y轴交于C(0,−3),直线y=x+m经过点B,且与y轴交于点D,与抛物线交于点E,与对称轴交于点F.(1)求抛物线的解析式和E点坐标;(2)在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△BOD相似,若存在,直接写出点P的坐标:若不存在,试说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+bx−3与x轴交于A(1,0)和B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)绕点A旋转的直线l:y=kx+b1与y轴相交于点D,与抛物线相交于点E,且满足AD=2AE时,求直线l的解析式;(3)点P为抛物线上的一点,点Q为抛物线对称轴上的一点,是否存在以点B,C,P,Q为顶点的平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.4.已知:抛物线y=ax2+bx+4与x轴相交于A(−2,0),B(8,0)两点,与y轴相交于点C,连接BC.(1)求抛物线的表达式并直接写出点C的坐标;(2)如图,点M是抛物线第一象限内的一点,连接MB,MC,求△MBC面积的最大值;(3)点P也是抛物线第一象限内的一点,过点P作PN⊥BC于N,连接PC,当以P、C、N为顶点的三角形与△BOC相似时,直接写出点P的坐标.5.在平面直角坐标系xOy中,已知抛物线y=ax2+3ax+c与x轴交于点A,B(点A 在点B的左边),与y轴负半轴交于点C,且OC=4,直线y=−x+b经过点A,C,点D为y轴左侧抛物线上一点,连接CD,AD.(1)求抛物线的函数表达式;(2)当点D在直线AC下方时,连接DB交AC于点E,求S△ADC−S△BDC的最大值及此时点D 的坐标;(3)是否存在点D,使∠CBA=45°+∠DCA?若存在,求点D的坐标;若不存在,请说明理由.6.如图,二次函数y=mx2+(m2+3)x−(6m+9)的图象与x轴交于点A、B,与y 轴交于点C.连接AC、BC,已知B(3,0).(1)求直线BC的函数表达式;(2)Q为抛物线上一点,若以B、C、Q为顶点的三角形和△OAC相似,求点Q的坐标;(3)P为抛物线上一点(异于A点),若S△PBC=S△ABC,请直接写出P点的坐标.7.如图,抛物线y1=ax2−6ax+c(a≠0)与x轴交于A、B两点,与y轴交于点C,连接BC、AC,设AC关系式为y2=kx+b.若OB=2,tan∠OBC=2,D是y轴右侧抛物线上一点,设其横坐标为m,DE⊥AC于点E.(1)求抛物线的函数关系式;(2)当点D位于直线AC下方时,求DE长度的最大值;(3)当△CDE与△AOC相似时,求m的值.8.如图,抛物线y=ax2+bx+c经过A(−6,0),B(2,0),C(0,6)三点.(1)求拋物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为15,求点P的坐标;2(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.9.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴分别相交于A(−2,0),B(8,0)两点(1)求a,b的值;(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.①求DE+BF的最大值;②G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.x2+bx+c与y轴交于点C(0,−4),与x轴交于点A,B,且B 10.如图,抛物线y=12点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.11.如图,抛物线y=−x2+bx+c的顶点D坐标为(1,4),且与x轴相交于A,B两点,点A在点B的左侧,与y轴相交于点C,点E在x轴上方且在对称轴左侧的抛物线上运动,点F在抛物线上并且和点E关于抛物线的对称轴对称,作矩形EFGH,其中点G,H都在x 轴上.(1)求抛物线解析式;(2)设点F横坐标为m①用含有m的代数式表示点E的横坐标为______(直接填空);②当矩形EFGH为正方形时,求点G的坐标;③连接AD,当EG与AD垂直时,求点G的坐标;(3)过顶点D作DM⊥x轴于点M,过点F作FP⊥AD于点P,直接写出△DFP与△DAM相似时,点F的坐标.12.如图,直线y=x−3与x轴,y轴分别交于点B(3,0),C(0,−3)过B,C两点的抛物线y=−x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)当0<x<3时,在抛物线上存在点E,使△CBE的面积有最大值,求点E坐标(3)连接AC,点N在x轴上,是否存在以B,P,N为顶点的三角形与△ABC相似?若存在,求出点N的坐标;若不存在,说明理由.13.如图1,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=−1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B,经过B、C两点作直线BC,点D为第二象限内抛物线上一动点.(1)求抛物线的函数表达式;(2)求△DBC面积最大值及此时点D坐标;(3)如图2,点M也是第二象限抛物线上一个动点,直线OM交BC于点N,是否存在这样的点M,使以B、O、N为顶点的三角形与△ACB相似?若存在,求出点M坐标,若不存在,请说明理由.x2+bx+c与x轴相交于点A,B,与y轴14.已知在平面直角坐标系中,抛物线y=−12相交于点C,直线y=x+4经过A,C两点(1)求抛物线的表达式;(2)如果点P,Q在抛物线上,并与对称轴对称,(P点在对称轴左边),且PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上且△ABC与△COM相似求点M的坐标.15.如图抛物线y=ax2+bx+2与x轴交于A B两点点A(2,0)且OA=2OB与y轴交于点C连接BC D为第一象限内抛物线上一动点过点D作DE⊥OA于点E 与AC交于点F设点D的横坐标为m.(1)求抛物线的表达式;(2)求△ACD面积的最大值及此时D点的坐标;(3)抛物线上是否存在点D使得以点O D E为顶点的三角形与△BOC相似?若存在求出m的值;若不存在请说明理由.16.已知抛物线y=x2+2x−3的图像经过点A(−3,0)点B(n,0)且与y轴交于点C.(1)求出点B的坐标;(2)若点P为x轴上方的抛物线上任意一点.①如图1 若点Q为线段BC上一点连接PQ PQ交x轴于点M连接CM当∠MCQ=45°时求点M的坐标;②如图2 连接BC、BP若满足∠ABP=2∠BCO求此时点P的坐标.17.已知直线l:y=kx+b(k>0)与抛物线C:y=ax2(a>0)有唯一公共点P直线l分别交x轴y轴于A,B两点.(1)如图1 当a=1k=1时求b的值;时过点A作直线l的垂线交y轴于点T求T坐标;(2)如图2 当a=12(3)如图3 当k=1时平移直线l使之与抛物线C交于M,N两点点P关于y轴的对称点为Q求证:∠MQP=∠NQP.18.在平面直角坐标系xOy中已知抛物线y=ax2−3ax+c与x轴分别交于A(−1,0) B两点与y轴交于点C(0,−2).(1)求抛物线的函数表达式;的最大值;(2)如图1 点D为第四象限抛物线上一点连接AD,BC交于点E求DEAE(3)如图2 连接AC,BC过点O作直线l∥BC点P Q分别为直线l和抛物线上的点试探究:在第一象限是否存在这样的点P Q使△PQB∽△CAB.若存在请求出所有符合条件的点P的坐标;若不存在请说明理由.19.如图1 已知二次函数y=x2+bx+c经过A(−2,0)C(0,−6)并交x轴于另一点B 点E是线段BC上的动点过A E两点的直线与抛物线在第四象限相交于点D.(1)求二次函数的解析式;取最大值时求点D的坐标;(2)当EDEA(3)如图2 连接AC在抛物线上存在点F使△OEF∽△COA求出所有点F的坐标;(4)如图3 过点E作EH⊥x轴于点H以EH为对角线作正方形EGHI当顶点G恰好落在抛物线上时请直接写出点G的坐标.20.已知在平面直角坐标系中抛物线y=ax2+bx+4与x轴交于点A(−2,0)点B(4,0)交y轴于点C.(1)求抛物线的解析式:(2)如图1 点P在抛物线第一象限上过点P作PD⊥x轴于点D交BC于点E设点P的横坐标为t PE的长为d求d与t的函数关系式:(不要求写出t的取值范围)(3)如图2 在(2)的条件下点Q在抛物线第四象限上连接AQ AP AP与BC交于点F∠CFA−∠BAQ=2∠PAB若FE=√2GO求点Q的坐标.参考答案1.(1)证明:∵Δ=(m+2)2−4(m−1)=m2+8>0故抛物线与x轴一定有两个交点;(2)解:令y=x2−(m+2)x+m−1=0解得:x=m+2±√m2+82则AB=|x1−x2|=√m2+8=3解得:m=1(舍去)或−1故抛物线的解析式为:y=x2−x−2;(3)解:存在理由:由抛物线的解析式知点C(0,−2)令y=0即x2−x−2=0解得x1=−1∵抛物线与x轴的两个交点是A B(A在原点左边B在原点右边)∵A(−1,0)∵OA=1∵C(0,−2)∵CO=2当△DOB∽△AOC时∵OD AO =OBOC即OD1=22解得OD=1∵D(0,1);当△DOB∽△COA时∵OD CO =OBOA即OD2=21解得:OD=4∵D(0,4).综上所述点D的坐标为:(0,1)或(0,4).2.解:(1)∵B(−3,0)C(0,−3)两点均在抛物线上∴{c=−39−3b+c=0解得{b =2c =−3∴抛物线的解析式为y =x 2+2x −3 ∵直线y =x +m 经过点B∴0=−3+m ∴m=3∴直线BE 的解析式为y =x +3 联立方程组{y =x +3y =x 2+2x −3解得{x 1=−3y 1=0∴点E 的坐标为(2,5);(2)存在点P 坐标为(0,5)或(0,7).理由:若存在这样的点P 使得以D E P 为顶点的三角形与△BOD 相似 如图所示 由于△BOD 是等腰直角三角形 则存在两种情况 即∠DP 1E =90° 或∠DEP 2=90°当∠DP 1E =90°时∵OD =3 ∴OP 1=5∴点P 1的坐标为(0,5); 当∠DEP 2=90°时∵EP 1⊥DP 2 ∴P 1P 2=DP 1=EP 1=2∴OP 2=7∴点P 2的坐标为(0,7);所以满足题意的点P 的坐标为(0,5)或(0,7).3.解:(1)∵抛物线y =ax 2+bx −3经过点A (1,0)和点B (3,0)∵{a +b −3=09a +3b −3=0解得{a =−1b =4∵抛物线的解析式为:y =−x 2+4x −3;(2)①当点D E 在点A 的异侧时 过点E 作EF ⊥x 轴于点F如图:∵∠AOD =∠AFE =90°∵∠OAD =∠FAE∵△AOD∽△AFE∵AFAO =AEAD∵AD =2AE∵AF AO =AE AD =12∵AF =12AO =12×1=12∵OF =32∵点F 与点E 的横坐标为32∵点E 的纵坐标为y =−x 2+4x −3=−(32)2+4×32−3=34∵点E 的坐标为(32,34)∵直线l :y =kx +b 1过点A (1,0)和点E(32,34)∵{k +b1=032k +b 1=34解得:{k=32b 1=−32 ∵直线l 的解析式为y =32x −32;②当点D E 在点A 的同侧时 过点E 作EF ⊥x 轴于点F 如图:∵∠AOD =∠AFE =90°∵∠OAD =∠FAE∵△AOD∽△AFE∵AFAO =AEAD∵AD =2AE∵AFAO =AEAD=12 ∵AF =12AO =12×1=12∵OF =12 ∵点F 与点E 的横坐标为12 ∵点E 的纵坐标为y =−(12)2+4×12−3=−54∵点E 的坐标为(12,−54) ∵直线l :y =kx +b 1过点A (1,0)和点E(12,−54) ∵{k +b 1=012k +b 1=−54 解得{k =52b =−52∵直线l 的解析式为y =52x −52综上所述:直线l 的解析式为y =32x −32或y =52x −52;(3)存在以点B C P Q 为顶点的平行四边形 理由如下:抛物线y =−x 2+4x −3对称轴为直线x =2设Q (2,t ),P (m,−m 2+4m −3)又B (3,0)①以PQ 、BC 为对角线 则PQ 、BC 的中点重合∵{2+m =3+0t −m 2+4m −3=−3 解得m =1∵P(1,0)②以BQ 、PC 为对角线∵{2+3=m +0t +0=−m 2+4m −3−3解得m =5∵P (5,−8);③以CQ 、BP 为对角线∵{2=m +3t −3=−m 2+4m −3解得m =﹣1∵P (−1,−8)综上所述 P 的坐标为(1,0)或(5,−8)或(−1,−8).4.解:(1)∵抛物线y =ax 2+bx +4与x 轴交于A(−2,0),B(8,0)两点代入 得{4a −2b +4=064a +8b +4=0 解得:{a =−14b =32∵抛物线的表达式为:y =−14x 2+32x +4当x =0时∵C(0,4);(2)过M 作ME ∥y 轴交BC 于点E设BC 的解析式为y =kx +b将B(8,0)和C(0,4)代入得解得{k=−12 b=4∵y=−12x+4设M(m,−14m2+32m+4)则E(m,−12m+4)∵ME=−14m2+32m+4−(−12m+4)=−14m2+2m∵S△MCB=12×8ME=−m2+8m=−(m−4)2+16当m=4时S取最大值16即△MBC面积的最大值为16;(3)①∵∠PNC=∠BOC=90°当∠PCN=∠OCB时作BD⊥CP交CP的延长线于点D作DF⊥y于点F作BE⊥FD交FD的延长线于点E则四边形OBEF是矩形∵OB=EF,BE=OF.∵∠PCN=∠OCB∵BD=BO∵△BOD≌△BDC(AAS)∵BD=CD.∵∠CDF+∠BDE=90°,∠DBE+∠BDE=90°∵∠CDF=∠DBE∵∠CFD=∠E=90°∵△CDF≌△BDE(AAS)∵CF=DE,DF=BE∵DF+DE=OB=8∵4+2CF=8∵CF=2∵DF=OF=4+2=6∵D(6,6).设直线CD的解析式为y=kx+4∵6=6k+4∵k=13∵y=13x+4解{y=13x+4y=−14x2+32x+4得{x1=143y1=509{x2=0y2=4(舍去)∵P(143,509);②∵∠PNC=∠BOC=90°当∠PCN=∠OBC时∵CP∥OB∵点P与点C的纵坐标相同当y=4时解得x1=6x2=0(舍去)∵P(6,4).综上可知点P的坐标为(143,509)或(6,4).5.(1)解:∵CO=4则点C(0,−4)将点C的坐标代入一次函数表达式得:−4=b 则一次函数表达式为:y=−x−4令y=−x−4=0得x=−4∵点A(−4,0)把A C两点坐标代入二次函数解析式中得:{c=−416a−12a+c=0解得:{a=1c=−4则抛物线的表达式为:y=x2+3x−4;(2)解:由y=x2+3x−4=0得x1=1,x2=−4∵点B(1,0)设直线BD交y轴于点N设点D(m,m2+3m−4)设直线BD的表达式为:y=kx+d则{k+d=0mk+d=m2+3m−4解得:{k=m+4d=−m−4直线BD的表达式为:y=(m+4)x−m−4令x=0,得y=−m−4∵点N(0,−m−4)过点D作DH∥y轴交AC于点H则点H(m,−m−4)则S△ADC−S△BDC=12×DH×OA−12×CN×(x B−x D)=12×(−m−4−m2−3m+4)×4−12×(−m)×(1−m)=−52m2−152m=−52(m+32)2+458∵−52<0则S△ADC−S△BDC有最大值当m=−32时S△ADC−S△BDC的最大值为458此时点D(−32,−254);(3)解:存在理由:当点D在AC下方时由点A C的坐标知∵∠CBA=45°+∠DCA∵∠CBA=∠DCO∵∠CBA+∠OCB=∠DCO+∠OCB即∠DCB=90°∵DC⊥CB;设点D(m,m2+3m−4)则DE=−m,CE=m2+3m−4−(−4)=m2+3m;过点D作DE⊥y轴于E如图∵∠DCB=∠BOC=∠DEC=90°∵∠BCO+∠DCE=∠DCE+∠CDE∵∠BCO=∠CDE∵△BCO∽△CDE∵CE DE =OBOC=14即4CE=DE∵4(m2+3m)=−m 解得:m=0(舍去)则点D(−134,−5116);当点D在AC的上方时如图设CD交x轴于点F ∵∠BFC=∠OAC+∠DCA=45°+∠DCA∵∠BFC=∠DCA∵CF=CB;∵CO⊥BF∵OF=OB=1∵F(−1,0);设直线CD 解析式为y =k 1x −4 把点F 坐标代入得:k 1=−4∵直线CD 的表达式为:y =−4x −4联立直线CD 的表达式与抛物线表达式得:x 2+3x −4=−4x −4 解得:x =−7 x =0(舍去)即点D (−7,24);综上 点D 的坐标为:(−134,−5116)或(−7,24). 6.(1)解:将B (3,0)代入y =mx 2+(m 2+3)x −(6m +9) 化简得m 2+m =0 则m =0(舍)或m =−1 ∵m =−1∵y=−x 2+4x −3当x =0时 y=−3 当y =0时 −x 2+4x −3=0 解得:x 1=3,x 2=1 ∵C (0,−3) A (1,0).设直线BC 对应的函数表达式为y =kx +b将B (3,0) C (0,−3)代入可得{0=3k +b −3=b 解得{k =1b =−3则直线BC 对应的函数表达式为y =x −3.(2)∵△OAC 为直角三角形∵OA =1,OC =3,tan∠OCA =OA OC =13当以B C Q 为顶点的三角形和△OAC 相似时 则:△BCQ 是直角三角形;设Q (t,−t 2+4t −3)①当∠CBQ=90°时如图:∵B(3,0)∵OB=OC=3∵∠OBC=∠OCB=45°∵∠OBQ=∠OBC=45°过点Q作QE⊥OB则:BE=QE∵3−t=−t2+4t−3解得:t=2或t=3(舍去);∵Q(2,1)当Q(2,1)时∵BC=3√2∵tan∠BCQ=13=tan∠OCA满足题意;②当∠CQB=90°时:如图:过点Q作EF∥OB过点B作BF⊥EF 则:∠CEQ=∠BFQ=90°∵∠CQE=∠QBF=90°−∠FQB∵△CEQ∽△QFB∵CE QF =EQBF即:−t2+4t3−t=t−t2+4t−3解得:t =3(舍去)或t =0(舍去)或t =5+√52或t =5−√52∵Q (5+√52,−1+√52)或Q (5−√52,√5−12)此时BQCQ =BF EQ =√5+15+√5=√55≠13不满足题意 舍去;③当∠QCB =90°时 如图:过点Q 作QF ⊥y 轴 则:∠BOC =∠QFC =90° ∵∠BCO =∠FQC =90°−∠FCQ∵∠FQC =45°∵CF =QF =t∵OF =3+t =−(−t 2+4t −3)解得:t =5或t =0(舍去);∵Q (5,−8)∵tan∠CQB =BC CQ =3√25√2=35≠13 不符合题意;∵Q (5,−8)不满足题意;综上:Q (2,1).(3)∵S △PBC =S △ABC∵点P 与点A 到BC 的距离相等如图 过点A 作AP 1∥BC 设直线AP 1与y 轴的交点为G将直线BC 向下平移GC 个单位 得到直线P 3P 2设直线AG 的解析式为:y =x +n 则:0=1+n 解得:n =−1 ∵直线AG 的表达式为y =x −1 联立{y =x −1y =−x 2+4x −3 解得:{x =1y =0 (舍) 或{x =2y =1∵P 1(2,1)∵直线AG 的表达式为y =x −1 ∵当x =0时 ∵G (−1,0) ∵GC =2∵直线P 3P 2的表达式为y =x −5 联立{y =x −5y =−x 2+4x −3解得:{x 1=3+√172y 1=−7+√17∵P 3(3+√172,−7+√172) ∵P (2,1)或P (3+√172,−7+√172)或P (3−√172,−7−√172).7.(1)解:∵tan∠OBC =2∴OCOB=2 ∵OB =2∴OC=4∴B(−2,0)把B(−2,0)C(0,−4)代入y1=ax2−6ax+c得{4a+12a+c=0c=−4解得{a=14 c=−4∴y1=14x2−32x−4;(2)解:作DF⊥x轴于点F交AC于点G∴∠BAC+∠AGF=90°∵DE⊥AC于点E∴∠EDF+∠EGD=90°∵∠AGF=∠EGD∴∠EDF=∠BAC∴tan∠EDF=tan∠BAC=OC OA=12∴cos∠EDF=cos∠BAC=2√5 5∴DE=2√55DG令14x2−32x−4=0解得x1=−2∴点A的坐标为(8,0)把A(8,0)和C(0,−4)代入y2=kx+b得{8k+b=0b=−4解得∴y 2=12x −4由题意 点D 坐标为(m,14m 2−32m −4) 点G 坐标为(m,12m −4)∴DG =(12m −4)−(14m 2−32m −4)=−14m 2+2m =−14(m −4)2+4∴DE =−√510(m −4)2+8√55 ∵−√510<0 ∴DE 有最大值为8√55; (3)解:由题意 ∠DCE =∠OCA 或∠DCE =∠OAC 时 △CDE 与△AOC 相似 ①当∠DCE =∠OCA 时∴∠OCA =∠DGC ∴∠DCE =∠DGC ∴DC =DG∵DE ⊥AC 于E∴EG =EC =12CG∵tan∠EDG =tan∠OAC =12∴sin∠EDG =√55∴EG =√55DG =√55(−14m 2+2m) ∵cos∠BAC =2√55AG =√52(8−m ) 在Rt △AOC 中 由勾股定理得∴CG =4√5−√52(8−m )=√52m ∴√55(−14m 2+2m)=12×√52m 解得m =3②当∠DCE =∠OAC 且D 位于x 轴下方时CD//OA ∴y D=−4令14x2−32x−4=−4解得x=0(舍去)或x=6即m=6;③当∠DCE=∠OAC且D位于x轴上方时如图设CE交x轴于M则MC=MA设OM=n则CM=AM=8−n在Rt△OCM中由勾股定理得n2+42=(8−n)2解得n=3∴M(3,0)同理直线CM函数关系式为y=43x−4令14x2−32x−4=43x−4解得x=0(舍去)或x=343即m=343综上m=3或6或343.8.(1)解:把A(−6,0),B(2,0),C(0,6)代入抛物线解析式y=ax2+bx+c得{36a −6b +c =04a +2b +c =0c =6解得{a =−12b =−2c =3∵抛物线的函数表达式为y =−12x 2−2x +6.(2)解:如解(2)图1 过P 点作PQ 平行y 轴 交AC 于Q 点设直线AC 的解析式为y =kx +6 把A (−6,0)代入得:0=−6k +6 解得:k =1∵直线AC 解析式为y =x +6设P 点坐标为(x,−12x 2−2x +6) 则Q 点坐标为(x,x +6)∵PQ =−12x 2−2x +6−(x +6)=−12x 2−3x∵S △PAC =12PQ ⋅OA∵12(−12x 2−3x)⋅6=152解得:x 1=−1 x 2=−5. 当x =−1时 P 点坐标为(−1,152) 当x =−5时 P 点坐标为(−5,72)综上所述:若△PAC 面积为152 点P 的坐标为(−1,152)或(−5,72);(3)解:如解(3)图1 过D 点作DF 垂直x 轴于F 点 过A 点作AE ⊥BC 于E 点∵D 为抛物线y =−12x 2−2x +6的顶点 ∵D 点坐标为(−2,8)设直线AD 的解析式为:y =mx +n把A (−6,0) D (−2,8)代入得:{−6m +n =0−2m +n =8解得:{m =2n =12∵直线AD 为y =2x +12 ∵B(2,0)∵同理可得:直线BC 的解析式为y =−3x +6 ∵AF =−2−(−6)=4 ∵tan∠DAB =DFAF =2 ∵B(2,0) C (0,6)∵tan∠ABC =OCOB =3 BC =√22+62=2√10 sin∠ABC =62√10=3√1010∵AB =2−(−6)=8 ∵AE =AB ⋅sin∠ABC =8×3√1010=12√105∵BE =√AB 2−AE 2=4√105∵CE =BC −BE =2√10−4√105=6√105∵tan∠ACB =AE CE=2∵tan∠ACB =tan∠DAB =2 ∵∠ACB =∠DAB ∵OA =OC=6∵∠ACO =∠CAO =45°;∵使得以M A O 为顶点的三角形与△ABC 相似 则有两种情况 如解(3)图2当∠AOM =∠CAB =45°时 即M 点在直线y =−x 上 联立{y =−xy =2x +12 解得{x =−4y =4即M 点为(−4,4).当∠AOM =∠CBA 即OM∥BC 时 ∵直线BC 解析式为y =−3x +6 ∵直线OM 为y =−3x 联立{y =−3x y =2x +12解得{x =−125y =365即M 点为(−125,365)综上所述:存在使得以M A O 为顶点的三角形与△ABC 相似的点M 其坐标为(−4,4)或(−125,365).9.解:(1)将A(−2,0) B(8,0)代入解析式得:{4a −2b +4=064a +8b +4=0解得:{a =−14b =32 ∴ a =−14 b =32;(2)①∵的值为−14b 的值为32抛物线的解析式为:y =−14x 2+32x +4;∴C(0,4)设直线BC 解析式为y =kx +c 将B(8,0) C(0,4)代入可得:{8k +c =0c =4解得{k =−12c =4∴直线BC 解析式为y =−12x +4设第一象限D(m,−14m 2+32m +4) 则E(m,−12m +4)∴DE =(−14m 2+32m +4)−(−12m +4)=−14m 2+2m∴DE +BF =(−14m 2+2m)+(8−m)=−14(m −2)2+9∴当m =2时 DE +BF 的最大值是9; ②∴A(−2,0)∴OA =2∴AC 2=OA 2+OC 2=20 ∴AC 2+BC 2=100而AB 2=102=100∴AC 2+BC 2=AB 2 ∴∠ACB =90° ∴∠CAB +∠CBA =90°∵DF ⊥x 轴于F∴∠FEB +∠CBA =90° ∴∠CAB =∠FEB =∠DEC以点C D E 为顶点的三角形与△AOG 相似 只需OADE =AGCE 或OACE =AGDE 而G 为AC 中点∴G(−1,2)由①知:DE=−14m2+2m∴CE=√m2+[4−(−12m+4)]2=√52m当OADE =AGCE时解得m=4或m=0(此时D与C重合舍去)∴D(4,6)当OACE =AGDE时解得m=3或m=0(舍去)∴D(3,25 4 )综上所述以点C D E为顶点的三角形与△AOG相似则D的坐标为(4,6)或(3,254).10.(1)解:把点C(0,−4)B(2,0)分别代入y=12x2+bx+c中得{c=−412×22+2b+c=0解得{b=1c=−4∵该抛物线的解析式为y=12x2+x−4.(2)解:令y=0即12x2+x−4=0解得x1=−4,x2=2∵A(−4,0)∵C(0,−4)∵AB=2−(−4)=6,OC=4∵S△ABC=12AB⋅OC=12.设P点坐标为(x,0)则PB=2−x∵PE∥AC∵∠BPE=∠BAC,∠BEP=∠BCA ∵△PBE∽△ABC∵S△PBE S△ABC =(PBAB)2即S△PBE12=(2−x6)2化简得:S△PBE=13(2−x)2∵S△PCE=S△PCB−S△PBE=12PB⋅OC−S△PBE=12×(2−x)×4−13(2−x)2 =−13x2−23x+83=−13(x+1)2+3∵当x=−1时S△PCE的最大值为3.(3)解:△OMD为等腰三角形可能有三种情形:①当DM=DO时如图①所示.则DO=DM=DA=2∵AO=CO=4,∠AOC=90°∵∠OAC=∠AMD=45°∵∠ADM=90°∵M点的坐标为(−2,−2);②当MD=MO时如图②所示.过点M作MN⊥OD于点N则点N为OD的中点∵DN=ON=1,AN=AD+DN=3又△AMN为等腰直角三角形∵MN=AN=3∵M点的坐标为(−1,−3);③当OD=OM时∵△OAC为等腰直角三角形×4=2√2即AC上的点与点O之间的最小距离为2√2.∵点O到AC的距离为√22∵2√2>2∵OD=OM的情况不存在.综上所述点M的坐标为(−2,−2)或(−1,−3).11.(1)解:∵抛物线y=−x2+bx+c的顶点D坐标为(1,4)∴y=−(x−1)2+4=−x2+2x−1+4=−x2+2x+3∴抛物线解析式为y=−x2+2x+3;(2)解:①当y=0时−x2+2x+3=0解得x1=−1则A(−1,0)∴1<m<3设E点的横坐标为t∵m−1=1−t∴t=2−m∴点E的横坐标为2−m;故答案为:2−m;②设F(m,−m2+2m+3)(1<m<3)则E(2−m,−m2+2m+3)∵矩形EFGH为正方形∴FG=FE即−m2+2m+3=m−(2−m)整理得:m2=5解得m1=−√5(舍去)∴G点坐标为(√5,0);③过点D作DM⊥x轴于M∵EG⊥AD而DM⊥x轴∴∠1=∠4∴Rt△GEH∽Rt△DAM∴EHAM =GHDM即EH2=GH4∴GH=2EH即2m−2=2(−m2+2m+3)整理得m2−m−4=0解得m1=1−√172(舍去)∴G点坐标为(1+√172,0);(3)解:设AD交EF于Q如图∵FP⊥AD∴∠DPF =90°∵△DFP 与△DAM 相似∴∠1=∠3∵∠1=∠2∴∠2=∠3而FP ⊥DQ∴△FDQ 为等腰三角形∴FD =FQ设直线AD 的解析式为y =px +q把A (−1,0) D (1,4)代入得{−p +q =0p +q =4解得{p =2q =2∴直线AD 的解析式为y =2x +2当y =−m 2+2m +3时 2x +2=−m 2+2m +3 解得x =−12m 2+m +12 则Q (−12m 2+m +12,−m 2+2m +3)∴FQ =m −(−12m 2+m +12)=12m 2−12=12(m +1)(m −1) 而DF 2=(m −1)2+(−m 2+2m +3−4)2=(m −1)2+(m −1)4∴(m −1)2+(m −1)4=(12(m +1)(m −1))2 而m ≠1∴1+(m −1)2=14(m +1)2 整理得3m 2−10m +7=0 解得m 1=1(舍去)∴F 点坐标为(73,209).12.(1)解:将点B(3,0),C(0,−3)代入y =−x 2+bx +c 得:{c =−3−9+3b +c =0 解得:{c =−3b =4∵y =−x 2+4x −3∵y =−x 2+4x −3=−(x −2)2+1.(2)解:如图1:在抛物线上取点E 连接CE 过E 作x 轴的垂线交直线BC 于点F设点F(x,x−3)则点E的坐标为(x,−x2+4x−3)∵EF=−x2+3x∵S△CBE=S△CEF+S△BEF=12EF·OB=−32x2+92x=−32(x−32)2+278∵当x=32时△CBE的面积有最大值此时点E的坐标为(32,34 ).(3)解:存在以B P N为顶点的三角形与△ABC相似如图2:连接BP设N(n,0)当y=0时−x2+4x−3=0解得x2=1,x2=3∵A(1,0)∵y=−x2+4x−3=−(x−2)2+1∵P(2,1)∵B(3,0),C(0,−3),P(2,1)∵∠CBA=∠ABP=45°①当BNBP =BCBA时∵3−n √2=3√22解得n=0所以点N的坐标为N1(0,0);②当BN BP =BA BC 时 ∵3−n√2=23√2 解得n =73 所以点N 的坐标为N 2(73,0).综上所述 点N 的坐标为N 1(0,0)或N 2(73,0).13.解:(1)∵抛物线y =ax 2+bx +c 经过A (1,0),C(0,3)两点 且对称轴为直线x =−1 ∵B(−3,0)设y =a (x +3)(x −1) 把C(0,3)代入得解得:a =−1∵抛物线解析式为y =−x 2−2x +3;(2)如图1 作DE ∥y 轴 交直线BC 于点E设直线BC 的函数解析式为y =px +q 可得:{−3p +q =0q =3 解得:{p =1q =3可得直线BC 的解析式为y =x +3设P (m,−m 2−2m +3)∵E (m,m +3)∵DE =−m 2−2m +3−(m +3)=−m 2−3m∵△DBC 的面积=12DE ×3=−32m 2−92m ∵a =−32<0 ∵m =−32时△DBC 的面积最大=278 此时点D 坐标为(−32,154); (3)存在 理由如下:∵A (1,0)∴AB =3−(−1)=4∵OB =OC =3∴BC =3√2设直线AC 解析式为y =mx +n∵A (1,0)∴{m +n =0n =3解得:{m =−3n =3∴直线AC 解析式为y =−3x +3①当OM ∥AC 时∴直线OM 的解析式为y =−3x结合抛物线的解析式为y =−x 2−2x +3 得:−3x =−x 2−2x +3 解得:x 1=1+√132(舍去) ∴M 坐标(1−√32,−3+3√132); ②当△BON ∽△BCA 时∴BN BA =BO BC∴BN =BA ⋅BO BC =4×33√2=2√2 如图 过点N 作NG ⊥x 轴于点G∵∠OBC =45°∴BG =NG =2∴OG =1∴N (−1,2)设直线OM 解析式为y =m 1x 将N (−1,2)代入得:m 1=−2∴直线OM 解析式为y =−2x结合抛物线的解析式为y =−x 2−2x +3 得:−2x =−x 2−2x +3 解得:x 1=√3舍去,x 2=−√3∴M 坐标 (−√3,2√3)综上 点M 的坐标为(1−√132,−3+3√132)或(−√3,2√3) 14.(1)解:当y =0=x +4时∵A (−4,0)当x =0时∵C (0,4)将点A C 的坐标代入y =−12x 2+bx +c 得{0=−12×16−4b +c 4=c 解得b =−1,c =4∵抛物线的表达式为y =−12x 2−x +4; (2)∵A (−4,0)∵OA =4∵PQ =2OA =8∵点P Q 关于对称轴直线x =−1对称∵PQ∥OA∵点P 的横坐标为−1−82=−5 点C 的横坐标为3 当x =−5时∵P (−5,−72),Q (3,−72); (3)∵A (−4,0)∵OA =4=OC∵对称轴直线x =−1对称∵B (2,0)∵AB =6∵∠AOC =90°∵∠OAC =∠OCA =45°①当△MCO ∽△CAB 时∵46=CM4√2∵CM =8√23 如图 过点M 作MG ⊥y 轴于点G∵MG =CG =√22CM =83当x =−83时∵M (−83,43);当△OCM ∽△CAB 时∵44√2=CM6∵CM =3√2如图 过点M 作MG ⊥y 轴于点G∵MG =CG =√22CM =3当x =−3时∵M (−3,1);综上 M 点的坐标为(−83,43)或(−3,1).15.(1)解:因为y =ax 2+bx +2过点A (2,0)且OA =2OB 则B (−1,0)则{4a +2b +2=0a −b +2=0解得:{a =−1b =1故抛物线的表达式为:y=−x2+x+2;(2)对于y=−x2+x+2令x=0则y=2故点C(0,2)设直线AC的解析式为y=kx+b由直线过点A C的坐标得{2k+b=0b=2解得{k=−1 b=2直线AC的表达式为:y=−x+2设点D的横坐标为m则点D(m,−m2+m+2)则点F(m,−m+2)则DF=−m2+m+2−(−m+2)=−m2+2m=−(m−1)2+1∵−1<0故DF有最大值则△ACD面积最大值为12×AO×DF=12×2×1=1此时m=1点D(1,2);(3)存在理由:点D(m,−m2+m+2)(m>0) 则OE=m 以点O D E为顶点的三角形与△BOC相似①当DEOE =OBOC时两三角形相似即DEOE=OBOC=12则−m 2+m+2m=12解得:m=1+√334或m=1−√334(舍去)经检验m=1+√334是原分式方程的解②当DEOE =OCOB时两三角形相似即DEOE=OCOB=2则−m 2+m+2m=2解得:m=1或m=−2(舍去)经检验m=1是分式方程的解故m=1+√334或m=1.16.(1)解:由y=x2+2x−3当y=0时即x2+2x−3=0解得:x1=−3,x2=1∵B(1,0).(2)解:①∵A(−3,0),C(0,−3),B(1,0)∵OA=OC=3,OB=1,则AB=OA+OB=4,BC=√OC2+OB2=√10∵∠OCA=∠OAC=45°∵∠MCQ=45°,∵∠MCQ=∠MAB=45°∵∠CBM =∠ABC∵△CBM∽△ABC∵CB :AB =BM :BC 即:BM =BC 2AB =104=52 ∵OM =BM −OB =32 ∵M 在x 轴负半轴∵M (−32,0);②如图:过点P 作PH ⊥x 轴 设P(m ,m 2+2m −3) (m <0)在线段OC 上取点D 使得DC =DB 则∠ODB =2∠BOC∵∠ABP =2∠BCO =∠ODB 且∠PHO =∠BOD =90°∵△PHB∽△BOD∵PH:BO =HB:OD设OD =a 则DC =CB =3−a在Rt △OBD 中 由勾股定理得 a 2+12=(3﹣a )2 解得a =43 即OD =43 ∵m 2+2m−31=1−m43 解得m =−154或m =1(舍去) 当m =−154时 ∵P (−154,5716). 17.(1)解:当a =1 k =1时 直线l:y =x +b 抛物线C:y =x 2联立{y =x +b y =x2 得:x 2−x −b =0 ∵直线l:y =x +b 与抛物线C:y =x 2有唯一公共点P∴(−1)2−4×1×(−b )=0解得:b =−14;(2)解:当a =12时 抛物线C:y =12x 2联立{y =12x 2y =kx +b得:12x 2−kx −b =0 ∵直线l:y =kx +b (k >0)与抛物线C:y =12x 2有唯一公共点P∴(−k )2−4×12×(−b )=0∴b =−12k 2∴y =kx −12k 2当x =0时 y =−12k 2 当y =0时 kx −12k 2=0 解得:x =k2∴A (k2,0)∴OA =k2∵过点A 作直线l 的垂线交y 轴于点T∴∠BAT =90° ∴∠ATB +∠ABT =90° ∵∠OBA +∠OAB =90° ∴∠OTA =∠OAB ∵∠AOB =∠TOA =90° ∴△AOB ∽△TOA∴OTOA =OABO 即OTk 2=k 2k 22∴OT =12∵ T 在y 轴的正半轴 ∴T (0,12);(3)证明:如图 令OM QP QN 与y 轴交点分别为D设M(m ,am 2) N(n ,an 2) MN 的解析式为:y =x +c 联立{y =x +b y =ax 2 得:ax 2−x −b =0 解得:x P =12a∴P (12a ,14a)∵点P 关于y 轴的对称点为Q∴Q (−12a ,14a) 联立{y =x +c y =ax 2 得:ax 2−x −c =0 ∵平移直线l 使之与抛物线C 交于M ,N 两点∴m +n =1a令QM 为y =k 1x +b 1 代入M(m ,am 2) Q (−12a ,14a )得:{14a =−k12a +b 1am 2=k 1m +b 1解得:{k 1=am −12b 1=m2∴QM :y =(am −12)x +m2 令x =0 则y =m 2∴D (0,m 2) 同理可得:QN :y =(an −12)x +n2∴DE =m 2−14a∴DE −EF =m +n 2−12a =12a −12a =0 ∴DE =EF∵QP ⊥DF∴∠MQP =∠NQP .18.(1)解:∵抛物线y =ax 2−3ax +c 与x 轴分别交于A(−1,0) B 两点 与y 轴交于点C(0,−2). ∴ a +3a +c =0 ∴ a =12∴设抛物线的解析式为y =12x 2−32x −2(2)解:过点D 作DG ⊥x 轴于点G 交BC 于点F 过点A 作AK ⊥x 轴交BC 的延长线于点K∴ AK∥DG△AKE ∽△DFE ∴DF AK =DEAE设直线BC 的解析式为y =kx +b 1∴{4k +b 1=0b 1=−2解得{k =12b 1=−2∴直线BC 的解析式为y =12x −2 ∵ A(−1,0)∴y =−12−2=−52∴AK =52设D (m,12m 2−32m −2) 则F (m,12m −2)∴DF=12m−2−12m2+32m+2=−12m2+2m∴DEAE =−12m2+2m52=−15m2+45m=−15(m−2)2+45∴当m=2时DEAE 有最大值最大值为45(3)解:符合条件的点P的坐标为(689,349)(6+2√415,3+√415)理由如下:∵l∥BC∴直线l的解析式为y=12x设P(a1,a12)当点P在直线BQ右侧时如图过点P作PN⊥x轴于点N过点Q作QM⊥PN 于点M∵A(−1,0)∴AC=√5∵AC2+BC2=AB2∴∠ACB=90°∵△PQB∽△CAB∴PQPB=ACBC=12∵∠QMP=∠BNP=90°∴∠MQP+∠MPQ=90°∴∠MQP=∠BPN∴△QPM∽△PBN∴QMPN=PMBN=PQPB=12∴QM =a 14∴MN =a 1−2BN −QM =a −BN −QM =a 1−4−a 4=34a 1−4 ∴Q (34a 1,a 1−2)将点Q 的坐标代入抛物线的解析式得12×(34a 1)2−32×34a 1−2=a 1−2 解得a 1=0(舍去)∴P (689,349) 当点P 在直线BQ 左侧时 由①的方法同理可得点Q 的坐标为(54a 1,2) 此时点P 的坐标为(6+2√415,3+√415) ∴综合所述 存在这样的点P 且坐标为为(689,349)或 (6+2√415,3+√415) 19.解:(1)∵抛物线经过A(−2,0) ∴ {4−2b +c =0c =−6 解得:{b =−1c =−6∴抛物线的表达式为:y =x 2−x −6; (2)y =x 2−x −6=(x +2)(x −3)∴A(−2,0)设直线BC 的解析式为y =px +q 由题意得{3p +q =0q =−6 解得:{p =2q =−6所以直线BC 的解析式为y =2x −6如图 分别过点A 和点D 作y 轴的平行线 交直线BC 于点M 和点N∴△NED ∽△MEA则EDEA =DNAM∵A(−2,0)∴点M 横坐标为−2将x =−2代入BC 的解析式y =2x −6 得y =−10∴M(−2,−10)∴AM =10为定值. ∴当DN 取最大值时ED EA取得最大值设D(t,t 2−t −6) 则N(t,2t −6)则DN =(2t −6)−(t 2−t −6)=−t 2+3t =−(t −32)2+94 ∴当t =32时 DN 取最大值 即EDEA取得最大值 此时D(32,−214);(3)∵△OEF ∽△COA∠OEF =∠COA =90°①如右图 当点F 在OE 左侧时 过点E 作EP ⊥x 轴于点P 过点F 作FQ ⊥PE 于点Q 则∠OPE =∠EQF =90°∵∠OEF =90°∴∠OEP +∠FEQ =90° ∵∠OEP +∠EOP =90° ∴∠FEQ =∠EOP ∴△OEP ∽△EFQ .OP EQ =PE QF =OE EF =31设E(m,2m −6) 则P(m,0)∵点E在第四象限∴OP=m∵EQ=13m,QF=2−23m∵F(53m−2,53m−6)将F(53m−2,53m−6)代入抛物线得:53m−6=(53m−2)2−(53m−2)−6解得:m1=9+3√35∴点F的坐标(1+√3,−3+√3)或(1−√3,−3−√3);②如右图当点F在OE右侧时过点E作EH⊥x轴于点H过点F作FG⊥EH于点G则∠OHE=∠EGF=90°则△OHE∽△EGFOH EG =HEGF=OEEF=31设OH=n则H(n,0)∵点E在线段BC上且在第四象限∴E(n,2n−6)GF=2−2 3 nA G(n,73n−6)F(13n+2,73n−6)将F(13n+2,73n−6)代入抛物线得:73n−6=(13n+2)2−(13n+2)−6解得:n1=6−3√2n1=6+3√2(舍去)∴点F的坐标(4−√2,8−7√2)综上所述:点F的坐标为(1+√3,−3+√3)或(1−√3,−3−√3)或(4−√2,8−7√2);(4)设点E(m,2m−6)则EH=6−2m则12EH=3−m则x G=m−(3−m)=2m−3即点G(2m−3,m−3)将点G的坐标代入抛物线表达式得:m−3=(2m−3)2−(2m−3)−6解得:m=3(舍去)或34则点G(−32−94).20.(1)解:将点A(−2,0)点B(4,0)代入y=ax2+bx+4{0=a(−2)2+b⋅(−2)+40=a⋅42+b⋅4+4解得:{a=−12b=1故答案为:抛物线的解析式:y=−12x2+x+4(2)解:由(1)结论可知点C坐标为(0,4)设直线BC解析式为:y=kx+4将点B(4,0)代入解得:k=−1∴直线BC解析式为:y=−x+4∵点P的横坐标为t则点P的纵坐标为−12t2+t+4∴点E的横坐标为t点E的纵坐标为−t+4∵点P在抛物线第一象限上∴PE=PD−ED即:d=−12t2+t+4−(−t+4)=−12t2+2t故答案为:d与t的函数关系式:d=−12t2+2t(3)解:∵GO⊥AB∴△GAO∽△PAD∴GOAO =PDAD即:GO2=−12t2+t+4t+2整理得:GO=4−t∴CG=CO−GO=4−(4−t)=t∵CO∥PD∴CEOD =CBOB=√2即:CEt=√2整理得:CE=√2t∵∠GCF=∠FEP∴△GCF∽△PEF∴CGPE =CFEF即:CGPE=EC−EFEF即:t−12t2+2t=√2t−(4√2−√2t)4√2−√2t解得:t=3或t=4(舍)∴GO=4−t=4−3=1∵∠CFA−∠BAQ=2∠PAB∴∠PAB+45°−∠BAQ=2∠PAB即:∠PAB+∠BAQ=45°作点H(1,−1)作HI⊥x轴垂足为I连接GH则:GI=OA=2∴△AGO≌△GHI(SAS)∴∠GAO=∠HGI∴∠AGH=90°∴∠GAH=45°∴∠PAB+∠BAH=45°=∠PAB+∠BAQ∴∠ABH=∠BAQ∴直线AH与抛物线交点即为点Q设直线AH解析式为:y=kx+b点A(−2,0)点Q(1,−1)在直线上∴{0=k⋅(−2)+b−1=k⋅1+b解得:{k=−13b=−23直线AH解析式为:y=−13x−23∴{y=−13x−23y=−12x2+x+4解得:{x1=−2y1=0∴(−2,0)为点A(143,−209)为点Q故答案为:Q(143,−209).。

北师大版八年级数学下册相似三角形练习试题及答案

北师大版八年级数学下册相似三角形练习试题及答案

4. 5相似三角形、目标导航1. 相似三角形的定义:三角对应相等,三边对应成比例的两个三角形叫做相似三角形;2 .相似三角形的对应角相等,对应边成比例.、基础过关1•如果两个三角形的相似比为1,那么这两个三角形__________ .2. 若△ AB3A ABC相似,一组对应边的长为AB=3 cm, AB= 4 cm,那么△ ARC与厶ABC的相似比是________ .3 .若△ ABC的三条边长的比为 3 : 5 : 6,与其相似的另一个△ A B'C'的最小边长为12 cm,那么△ A'B'C'的最大边长是_________ .4 •两个三角形相似,其中一个三角形两个内角分别是400、60°,那么另一个三角形的最大角为度,最小角为________度.三、能力提升5.已知△ ABC的三条边长分别为 3 cm, 4 cm, 5 cm , △ AB3A ABC,那么△ A’BC的形状是又知△ A/B/C/的最大边长为20 cm,那么△ A QC的面积为6.如图,△ ABS A ADE AE=3, EC=5 DE=1. 2,贝UBC的长度为 _______ .AC7 .下列说法正确的是()A相似三角形一定全等 BC.全等三角形不一定是相似三角形&下列命题错误的是()A两个全等的三角形一定相似 BC.两个相似三角形的对应角相等,对应边成比.不相似的三角形不一定全等.全等三角形一定是相似三角形.两个直角三角形一定相似D.相似的两个三角形不一定全等9.若厶AB3A DEF,它们的周长分别为 6 cm和8 cm,那么下式中一定成立的是(A 3AB=4DEB . 4AC=3DEC. 3/ A=4/ D D . 4 (AB+BC+AC =3 (DE+EF+DF10 .若厶 AB3A ARC,/ A=55°,Z B=100° 那么/ C 的度数是( )11.把厶ABC的各边分别扩大为原来的3倍得到△ A B' C',下列结论不成立的是(A 55°B . 100°C . 25°D .不能确定A △ AB3A A B' C'B . △ ABC与△ A B' C'的各对应角相等C. △ ABC与△ A B' C'的相似比为丄 D . △ ABC M^A B' C'的相似比为 -4 312 .已知△ ABC的三边长分别为 2 , .. 6 , 2, △ A B' C'的两边长分别是1和..3,如果△ ABC MAA'B'C'相似,那么AA 'B'C'的第三边长应该是()A 2B .二C . J-6D .仝2 2 313 . 一个钢筋三角架三长分别为20cm 50cm, 60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有()A. 一种 B .两种 C .三种 D.四种14 . △ ABC 中,AB=12 cm, BC=18 cm, AC=24。

2021年中考数学一轮复习《与相似三角形相关综合压轴题》培优提升专项训练【含答案】

2021年中考数学一轮复习《与相似三角形相关综合压轴题》培优提升专项训练【含答案】

2021 年中考数学一轮复习《与相似三角形相关综合压轴题》培优提升专项训练1.现有两块等腰直角形三角板,如图,把其中一块三角板A′B′C′的一个锐角顶点B'放在另一块三角板ABC 斜边AB 的中点处,并使三角板A′B′C′绕着点B′旋转.(1)当两块三角板相对位置如图①,即AC 与A′B′交于点D,BC 与B′C′交于点E 时,求证:△AB′D∽△BEB′:(2)当两块三角板相对位置如图②,即AC 边的延长线与A′B′交于点D,BC 与B′C′交于点E 时,△AB′D 与△BEB′还相似吗?(直接给出结论.不需证明)(3)在图②中,连结DE,试探究△AB′D 与△B′ED 是否相似,并说明理由或给出证明.(4)在图①中,若△ABC 改为角C 等于150°的等腰三角形,那么△A′B′C′只要满足∠A′B′C′=°时,仍有△AB′D∽△BEB′.2.已知Rt△ABC 中,AC=BC=2.一直角的顶点P 在AB 上滑动,直角的两边分别交线段AC,BC 于E.F 两点(1)如图1,当=且PE⊥AC 时,求证:=;(2)如图2,当=1 时(1)的结论是否仍然成立?为什么?(3)在(2)的条件下,将直角∠EPF 绕点P 旋转,设∠BPF=α(0°<α<90°).连结EF,当△CEF 的周长等于2+ 时,请直接写出α的度数.3.如图,在△ABC 中,∠B=90°,AB=6,BC=8,动点P 从A 点出发,沿AC 向点C移动,速度为每秒2 个单位长度,同时,动点Q 从C 点出发,沿CB 向点B 移动,速度为每秒1 个单位长度,当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)当t=2.5 秒时,求△CPQ 的面积;(2)求△CPQ 的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P、Q 移动的过程中,当t 为何值时,△CPQ 是等腰三角形?4.如图,在Rt△ABC 中,∠C=90°,AB=10cm,AC:BC=4:3,点P 从点A 出发沿AB方向向点B 运动,速度为1cm/s,同时点Q 从点B 出发沿B→C→A 方向向点A 运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC 的长;(2)当点Q 在BC 上运动时,若△PBQ 与△ABC 相似,求时间t 的值;(3)当点Q 在CA 上运动,使PQ⊥AB 时,△PBQ 与△ABC 是否相似,请说明理由.5.如图,在平面直角坐标系xOy 中,已知点B 的坐标为(2,0),点C 的坐标为(0,8),sin∠CAB=,E 是线段AB 上的一个动点(与点A、点B 不重合),过点E 作EF∥AC 交BC 于点F,连接CE.(1)求AC 和OA 的长;(2)设AE 的长为m,△CEF 的面积为S,求S 与m 之间的函数关系式;(3)在(2)的条件下试说明S 是否存在最大值?若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.6.如图1,等腰△ABC 中,AC=BC,DE∥AB,AD=DE=EB=5,AB=11.一个动点P从点A 出发,以每秒1 个单位长度的速度沿折线AD﹣DE﹣EC 方向运动,当点P 到达点C 时,运动结束,过点P 作PQ⊥AB 于点Q,以PQ 为斜边向右作等腰直角三角形PMQ,设点P 的运动时间为t 秒(t>0).(1)当t=时,点M 落在线段BD 上;当t=时,点P 到达点C;(2)在整个运动过程中,设△PMQ 与△ABD 重叠部分的面积为S,请直接写出S 与t的函数关系式和相应的自变量t 的取值范围;(3)如图2,当点P 在线段DE 上运动时,线段PQ 与对角线BD 交于点F,作点P 关于BD 的对称点G,连接FG、GQ,得到△FGQ.是否存在这样的t,使△FGQ 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.7.如图,已知在等腰Rt△ABC 中,∠C=90°,斜边AB=2,若将△ABC 翻折,折痕EF分别交边AC、边BC 于点E 和点F(点E 不与A 点重合,点F 不与B 点重合),且点C 落在AB 边上,记作点D.过点D 作DK⊥AB,交射线AC 于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y 关于x 的函数解析式并写出定义域;(3)联结CD,当=时,求x 的值.8.等边△ABC 的边长为2,P 是BC 边上的任一点(与B、C 不重合),连接AP,以AP 为边向两侧作等边△APD 和等边△APE,分别与边AB、AC 交于点M、N(如图1).(1)求证:AM=AN;(2)设BP=x.①若BM=,求x 的值;②记四边形ADPE 与△ABC 重叠部分的面积为S,求S 与x 之间的函数关系式,并写出自变量的取值范围;③如图2,当x 取何值时,∠BAD=15°?9.已知:如图①,△ABC 中,AI、BI 分别平分∠BAC、∠ABC.CE 是△ABC 的外角∠ACD 的平分线,交BI 延长线于E,联结CI.(1)设∠BAC=2α.如果用α表示∠BIC 和∠E,那么∠BIC=,∠E=;(2)如果AB=1,且△ABC 与△ICE 相似时,求线段AC 的长;(3)如图②,延长AI 交EC 延长线于F,如果∠α=30°,sin∠F=,设BC=m,试用m 的代数式表示BE.10.如图,已知△ABC 是等边三角形,AB=4,D 是AC 边上一动点(不与A、C 点重合),EF 垂直平分BD,分别交AB、BC 于点E、F,设CD=x,AE=y.(1)求证:△AED∽△CDF;(2)求y 关于x 的函数解析式.并写出定义域;(3)过点D 作DH⊥AB,垂足为点H,当EH=1 时,求线段CD 的长.11.(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ 时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5,点P 以每秒1 个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A,设点P 的运动时间为t(秒),当以D 为圆心,以DC 为半径的圆与AB 相切时,求t 的值.12.已知△ABC 中,∠ABC=90°,点M 为BC 上一点,点E、N 在AC 上,且EB=EM,NM=NC,(1)求证:∠EMN=∠BEC;(2)探究:AE、EN、CN 之间的数量关系,并给出证明;(3)如图2,过点B 作BH∥EM 交NM 的延长线于H,当=n 时,求的值.13.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC,以DC 为边在BC 上方作等边△DCF,连接AF.直接写出线段AF 与BD 之间的数量关系.(2)类比猜想:如图②,当△ABC 为以BC 为斜边的等腰直角三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC,以DC 为斜边在BC 上方作等腰直角△FDC,连接AF.请直接写出它们的数量关系.(3)深入探究:Ⅰ.如图③,当△ABC 为以BC 为底边的等腰三角形,D 是△ABC 边BA 上一动点(点D 与点B 不重合),连接DC,以DC 为底边在BC 上方作等腰△FDC,∠BC A=∠DCF,且∠BAC=α,连接AF.线段AF 与BD 之间的有什么数量关系?证明你发现的结论;Ⅱ.如图④,当△ABC 为任意三角形,D 是△ABC 边BA 上一动点(点D 与点 B 不重合),连接DC,以DC 为边在BC 上方作△FDC∽△ABC,且=k,连接AF.线段AF 与BD 之间的有什么数量关系?直接写出你发现的结论.14.已知矩形ABCD 的一条边AD=8cm,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处,已知折痕与边BC 交于点O,连结AP、OP、OA.(1)如图1,若点P 恰好是CD 边的中点,①判断△ADP 与△APO 是否相似,并说明理由;②求边AB 的长;(2)如图2,若△OCP 与△PDA 的面积比为1:4,动点G 从点D 出发以每秒1cm 的速度沿DP 向终点P 运动,同时动点H 从点P 出发以每秒2cm 的速度沿PA 向终点A 运动,运动的时间为t(0<t<5),①求边AB 的长;②问是否存在某一时刻t,使四边形ADGH 的面积S 有最小值?若存在,求出S 的最小值;若不存在,请说明理由.15.在△ABC 中,∠ACB=90°,BE 是AC 边上的中线.(1)如图1,点D 在BC 边上,=,AD 与BE 相交于点P,则的值为;(2)如图2,点D 在BC 的延长线上,BE 的延长线与AD 交于点P,DC:BC:AC=1:2:3.①求的值;②若CD=2,则BP=.16.如图所示,E 是正方形ABCD 的边AB 上的动点,正方形的边长为4,EF⊥DE 交BC于点F.(1)求证:△ADE∽△BEF;(2)AE=x,BF=y.当x 取什么值时,y 有最大值?并求出这个最大值;(3)已知D、C、F、E 四点在同一个圆上,连接CE、DF,若sin∠CEF=,求此圆直径.答案1.证明:(1)由等腰直角三角形的性质可知:∠A=∠B=∠A′B′C′=45°,∵∠BB′D=∠ADB′+∠A,∠BB′D=∠A′B′C′+∠EB′B,∴∠ADB′=∠BB′D﹣∠A=∠BB′D﹣45°,∠EB′B=∠BB′D﹣∠A′B′C′=∠BB′D﹣45°.∴∠ADB′=∠EB′B.又∵∠A=∠B,∴△AB′D∽△BEB′.(2)相似.如图:理由:由等腰直角三角形的性质可知:∠A=∠B=∠A′B′C′=45°,∵∠BB′D=∠ADB′+∠A,∠BB′D=∠A′B′C′+∠EB′B,∴∠ADB′=∠BB′D﹣∠A=∠BB′D﹣45°,∠EB′B=∠BB′D﹣∠A′B′C′=∠BB′D﹣45°.∴∠ADB′=∠EB′B.又∵∠A=∠B,∴△AB′D∽△BEB′.(3)由(2)可知∴△AB′D∽△BEB′,∴,又∵BB′=AB′,∴,又∵∠A=∠A′B′C′=45°.∴△AB′D∽△B′ED.(4)当∠A′B′C′=15°时,△AB′D∽△BEB′.理由:∵∠C=150°,AC=BC,∴∠A=∠B=15°.∵∠BB′D=∠ADB′+∠A,∠BB′D=∠A′B′C′+∠EB′B,∴∠ADB′=∠BB′D﹣∠A=∠BB′D﹣15°,∠EB′B=∠BB′D﹣∠A′B′C′=∠BB′D﹣15°.∴∠ADB′=∠EB′B.又∵∠A=∠B,∴△AB′D∽△BEB′.2.解:(1)如图1,∵PE⊥AC,∴∠AEP=∠PEC=90°.又∵∠EPF=∠ACB=90°,∴四边形PECF 为矩形,∴∠PFC=90°,∴∠PFB=90°,∴∠AEP=∠PFB.∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴∠FPB=∠B=45°,△AEP∽△PFB,∴PF=BF,=,∴==;(2)(1)的结论不成立,理由如下:连接PC,如图2.∵=1,∴点P 是AB 的中点.又∵∠ACB=90°,CA=CB,∴CP=AP=AB.∠ACP=∠BCP=∠ACB=45°,CP⊥AB,∴∠APE+∠CPE=90°.∵∠CPF+∠CPE=90°,∴∠APE=∠CPF.在△APE 和△CPF 中,,∴△APE≌△CPF,∴AE=CF,PE=PF.故(1)中的结论=不成立;(3)当△CEF 的周长等于2+ 时,α的度数为75°或15°.提示:在(2)的条件下,可得AE=CF(已证),∴EC+CF=EC+AE=AC=2.∵EC+CF+EF=2+ ,∴EF=.设CF=x,则有CE=2﹣x,在Rt△CEF 中,根据勾股定理可得x2+(2﹣x)2=()2,整理得:3x2﹣6x+2=0,解得:x1=,x2=.①若CF=,如图3,过点P 作PH⊥BC 于H,易得PH=HB=CH=1,FH=1﹣=,在Rt△PHF 中,tan∠FPH==,∴∠FPH=30°,∴α=∠FPB=30+45°=75°;②若CF=,如图4,过点P 作PG⊥AC 于G,同理可得:∠APE=75°,∴α=∠FPB=180°﹣∠APE﹣∠EPF=15°.3.解:(1)如图1,过点P,作PD⊥BC 于D.在Rt△ABC 中,AB=6 米,BC=8 米,由勾股定理得:AC=10 米由题意得:AP=2t,则CQ=t,则PC=10﹣2t∵t=2.5 秒时,AP=2×2.5=5 米,QC=2.5 米∴PD=AB=3 米.∴S=QC•PD=3.75 平方米;(2)如图1 过点Q,作QE⊥PC 于点E,∵∠C=∠C,∠QEC=∠ABC,∴Rt△QEC∽Rt△ABC.∴.解得:QE=,∴S=PC•QE=(10﹣2t)•=﹣t2+3t(0<t<5)(3)①当PC=QC 时,PC=10﹣2t,QC=t,即10﹣2t=t,解得t=秒;②当PQ=CQ 时,如图1,过点Q 作QE⊥AC,则CE==5﹣t,CQ=t,由(2)可知△CEQ∽△CBA,故,即,解得t=秒;③当PC=PQ 时,如图2,过点P 作PE⊥BC.∵PQ=PC,PE⊥QC,∴EC=.∴CE=.∵PE⊥QC,∴∠PEC=90°.∴∠PEC=∠ABC.∵∠C=∠C,∠PEC=∠ABC,∴△PCE∽△ACB.∴,即=,解得t=秒.4.解:(1)设AC=4x,BC=3x,在Rt△ABC 中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;(2)若△PBQ 与△ABC 相似,由已知条件得:AP=t,BQ=2t,∴PB=10﹣t,①如图1,∠PQB=∠C=90°,∴,即,解得:t=;②如图2,∠QPB=∠C=90°,∴,即,解得:t=>3.综上所述:当t=时,△PBQ 与△ABC 相似;(3)如图3,当点Q 在CA 上运动,使PQ⊥AB 时,以点B、P、Q 为顶点的三角形与△ABC 不相似.理由如下:∵AP=x,∴AQ=14﹣2x,∵PQ⊥AB,∴△APQ∽△ACB,∴=,即:,解得:x=,PQ=,∴PB=10﹣x=,∴==≠,∴当点Q 在CA 上运动,使PQ⊥AB 时,以点B、P、Q 为顶点的三角形与△ABC 不相似.5.解:(1)∵点B 的坐标为(2,0),点C 的坐标为(0,8),∴OB=2,OC=8,在Rt△AOC 中,sin∠CAB==,∴.∴AC=10,∴.(2)依题意,AE=m,则BE=8﹣m,∵EF∥AC,∴△BEF∽△BAC.∴=.即=,∴EF=,过点F 作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=,∴=,∴FG=×=8﹣m,∴S=S△BCE﹣S△BFE==﹣m2+4m,自变量m 的取值范围是0<m<8.(3)S 存在最大值.∵S=﹣m2+4m=,且﹣<0,∴当m=4 时,S 有最大值,S 最大值=8,∵m=4,∴点E 的坐标为(﹣2,0),∴△BCE 为等腰三角形.6.解:(1)如图1 中,作DT⊥AB 于T,EN⊥AB 于N,CH⊥AB 于H,MK⊥PQ 于K,则四边形DENT 是矩形,由△DTA≌△ENB,可得DE=NT=PQ=5,AT=BN=3,∵AD=EB=5,∴DT=EN=4,当点M 在BD 上时,∵PK=KQ,KM∥AB,∴DM=MB,易知KM=PK=KQ=2,DP=2,∴t=7 秒时,点M 在BD 上,∵EN∥CH,∴△ENB∽△CHB,∴=,∴=,∴BC=,EC=,∴点P 到达点C 时间为:5+5+ =秒.故答案为7 秒,秒.(2)①如图2 中,作DT⊥AB 于T,当0<t≤5 时,重叠部分是△PQM,∵sin A==,∴PQ=t,∴S=S△PQM=•t•t=t2.②如图3 中,当5<t≤7 时,重叠部分是四边形QMHK.取BD 的中点M′,作M′P′∥PM 交DE 于P′∵KQ∥DT,∴=,∴=,∴KQ=,PK=4﹣=,∵P′M′∥PH,∴=,∴=,∴DH=(t﹣5),∵DK=,∴HK=DH﹣DK=(t﹣5),∴S=S△PMQ﹣S△PKH=4﹣××=﹣t2+t+.③如图4 中,当7<t≤10 时,重叠部分是△QHK.GK,M′G′分别是△QHK、△Q′H′M′的高.由△QHK∽△Q′H′M′,得到,=,∴=,∴GK=,∴S=××=t2﹣t+.④如图5 中,10<t≤时,重叠部分是△QKH.由△QHK∽△Q′H′M′,得=,可得GK={5﹣,∴S=•HQ•GK=•{5﹣2=﹣t+ .综上所述,S=.(3)存在.①如图6 中,当FG=FQ 时,∵PF=FG=FQ=2,∴DP=4,∴t=5+4=9.②如图7 中,当GF=GQ 时,作GK⊥PQ,DN⊥AB 于N.由△DAN∽△GFK,得=,∴=,∴FK=(t﹣5),∵GF=GQ,GK⊥FQ,∴FQ=2FK=,∵PF+FQ=4,∴(t﹣5)+ (t﹣5)=4,∴t=.③如图8 中,当QF=QG 时,作QK⊥GF 于K.DN⊥AB 于N.由△ADN∽△FQK,得到=,∴=,∴FQ=(t﹣5),∵PF+FQ=4,∴(t﹣5)+ (t﹣5)=4,∴t=,综上所述,当△FGQ 是等腰三角形时,t 的值为9s 或s 或s.7.(1)证明:如图1,由折叠可得:∠EDF=∠C=90°,∠DFE=∠CFE.∵△ABC 是等腰直角三角形,∠C=90°,∴∠A=∠B=45°.∵DK⊥AB,∴∠ADK=∠BDK=90°,∴∠AKD=45°,∠EDF=∠KDB=90°,∴∠EKD=∠FBD,∠EDK=∠FDB,∴△DEK∽△DFB;(2)解:∵∠A=∠AKD=45°,∴DK=DA=x.∵AB=2,∴DB=2﹣x.∵△DFB∽△DEK,∴=,∴y=cot∠CFE=cot∠DFE===.当点F 在点B 处时,DB=BC=AB•sin A=2×=,AD=AB﹣BD=2﹣;当点E 在点A 处时,AD=AC=AB•cos A=2×=;∴该函数的解析式为y=,定义域为2﹣<x<;(3)取线段EF 的中点O,连接OC、OD,∵∠ECF=∠EDF=90°,∴OC=OD=EF.设EF 与CD 交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.∵=,∴sin∠HOC==,∴∠HOC=60°①若点K 在线段AC 上,如图2,∵CO=EF=OF,∴∠OCF=∠OFC=∠HOC=30°,∴y=cot30°=,∴=,解得:x=﹣1;②若点K 在线段AC 的延长线上,如图3,∵OC=OF,∠FOC=60°,∴△OFC 是等边三角形,∴∠OFC=60°,∴y=cot60°=,∴=,解得:x=3﹣;综上所述:x 的值为﹣1 或3﹣.8.(1)证明:∵△ABC、△APD 和△APE 是等边三角形,∴AD=AP,∠DAP=∠BAC=60°,∠ADM=∠APN=60°,∴∠DAM=∠PAN.在△ADM 和△APN 中,,∴△ADM≌△APN(ASA),∴AM=AN.(2)解:①∵△ABC、△ADP 是等边三角形,∴∠B=∠C=∠DAP=∠BAC=60°,∴∠DAM=∠PAC,∵∠ADM=∠B,∠DMA=∠BMP,∴180°﹣∠ADM﹣∠DMA=180°﹣∠B﹣∠BMP,∴∠DAM=∠BPM ,∴∠BPM=∠NAP,∴△BPM∽△CAP,∴,∵BM=,AC=2,CP=2﹣x,∴4x2﹣8x+3=0,解得x1=,x2=.②∵四边形AMPN 的面积即为四边形ADPE 与△ABC 重叠部分的面积,△ADM≌△APN,∴S△ADM=S△APN,∴S 四边形AMPN=S△APM+S△APN=S△AMP+S△ADM=S△ADP.过点P 作PS⊥AB,垂足为S,在Rt△BPS 中,∵∠B=60°,BP=x,∴PS=BP sin60°=x,BS=BP cos60°=x,∵AB=2,∴AS=AB﹣BS=2﹣x,∴AP2=AS2+PS2=(x)2+(2﹣x)2=x2﹣2x+4(0<x<2);∴S=PA2=x2﹣x+(0<x<2).③连接PG,设DE 交AP 于点O.若∠BAD=15°,∵∠DAP=60°.∴∠PAG=45°.∵△APD 和△APE 都是等边三角形.∴AD=DP=AP=PE=EA.∴四边形ADPE 是菱形.∴DO 垂直平分AP.∴AG=GP.∴∠APG=∠PAG=45°.∴∠PAG=90°.设BG=t,在Rt△BPG 中,∠B=60°.∴BP=2t,PG=t.∴AG=PG=t.∴t+t=2.解得t=﹣1.∴BP=2t=2 ﹣2.故,当x=2﹣2 时,∠BAD=15°.9.解:(1)在△BCE 中有:∠E=180°﹣∠BCE﹣∠CBE,又∵AI、BI 分别平分∠BAC、∠ABC.∴CI 是∠ACB 的平分线,∵CE 是∠ACD 的平分线,∴∠ECI 是平角∠BCD 的一半,∴∠ECI=90°,∴∠E=90°﹣∠BCI﹣∠CBI,在△ABC 中,∠BAC=(180°﹣∠ABC﹣∠ACB)=90°﹣∠BCI﹣∠CBE=α,即∠E=α.在三角形BIC 中,由外角性质得到:∠BIC=90°+α,综上所述,∠BIC=90°+α,∠E=α.故填:90°+α,α;(2)由题意易证得△ICE 是直角三角形,且∠E=α.当△ABC∽△ICE 时,可得△ABC 是直角三角形,有下列三种情况:①当∠ABC=90° 时,∵∠BAC=2α,∠E=α;∴只能∠E=∠BCA,可得∠BAC=2∠BCA.∴∠BAC=60°,∠BCA=30°.∴AC=2 AB.∵AB=1,∴AC=2.②当∠BCA=90° 时,∵∠BAC=2α,∠E=α;∴只能∠E=∠ABC,可得∠BAC=2∠ABC.∴∠BAC=60°,∠ABC=30°.∴AB=2 AC.∵AB=1,∴AC=.③当∠BAC=90° 时,∵∠BAC=2α,∠E=α;∴∠E=∠BAI=∠CAI=45°.∴△ABC 是等腰直角三角形.即AC=AB.∵AB=1,∴AC=1.∴综上所述,当△ABC∽△ICE 时,线段AC 的长为1 或2 或.(3)∵∠E=∠CAI,由三角形内角和可得∠AIE=∠ACE.∴∠AIB=∠ACF.又∵∠BAI=∠CAI,∴∠ABI=∠F.又∵BI 平分∠ABC,∴∠ABI=∠F=∠EBC.又∵∠E 是公共角,∴△EBC∽△EFI.在Rt△ICF 中,sin∠F=,设IC=3k,那么CF=4k,IF=5k.在Rt△ICE 中,∠E=30°,设IC=3k,那么CE=3k,IE =6k.∵△EBC∽△EFI.∴==.又∵BC=m,∴BE=m.10.解:(1)证明:如图1,∵EF 垂直平分BD,∴EB=ED,FB=FD.在△BEF 和△DEF 中,,∴△BEF≌△DEF(SSS),∴∠EBF=∠EDF.∵△ABC 是等边三角形,∴∠A=∠ABC=∠C=60°,∴∠EDF=60°,∴∠ADE+∠FDC=180°﹣60°=120°.又∵∠AED+∠ADE=180°﹣60°=120°,∴∠AED=∠FDC,∴△AED∽△CDF;(2)∵△ABC 是等边三角形,∴AC=BC=AB=4.∵CD=x,AE=y,∴AD=4﹣x,ED=EB=4﹣y.∵△AED∽△CDF,∴==,∴==,∴DF=,CF=.∵DF+CF=BF+CF=BC=4,∴+=4,整理得:y=(0<x<4);(3)如图2,①H 在线段AE 上时,在Rt△AHD 中,∵AH=AE﹣EH=y﹣1,AD=4﹣x,∠A=60°,∴cos A===,∴y=3﹣x,∴=3﹣x,整理得:x2﹣14x+24=0,解得:x1=2,x2=12,∵0<x<4,∴x=2,②当H 在线段BE 上时,同理可求得x=9﹣即CD 的长为2 或9﹣.11.解:(1)如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP 仍然成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP.∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)如图3,过点D 作DE⊥AB 于点E.∵AD=BD=5,AB=6,∴AE=BE=3.由勾股定理可得DE=4.∵以点D 为圆心,DC 为半径的圆与AB 相切,∴DC=DE=4,∴BC=5﹣4=1.∴∠A=∠B,∴∠DPC=∠A=∠B.由(1)、(2)的经验可知AD•BC=AP•BP,∴5×1=t(6﹣t),解得:t1=1,t2=5,∴t 的值为1 秒或5秒.12.解:(1)∵EB=EM,NM=NC,∴∠EBM=∠EMB,∠NMC=∠NCM,∴∠EMB+∠NCM+∠EMN=180°,∵∠EBM+∠NCM+∠BEC=180°,∴∠EMN=∠BEC;(2)如图1,作DE⊥BC,NF⊥BC 分别交BC 于D,F,作GM⊥BC,交AC 于点G,∵EB=EM,∠ABC=90°,∴BD=MD,∴DE 为梯形ABMG 的中位线,∴AE=EG,同理可得CN=NG,∴EG+GN=AE+CN,即EN=AE+CN;(3)如图2,作GM⊥BC,交AC 于点G,作NF∥EM,∴==n,∵AE=EG,CN=NG,∴=n,即NG=CN=nEG,∵NF∥EM,∴=,即=,∴CF=MC,∴MF=MC﹣MC=MC,∵BH∥EM,NF∥EM,∴BH∥NF,∴=,∵=n,即BM=CM,∴==.13.解:(1)∵等边△ABC,等边△DCF,∴FC=DC,AC=BC,∠FCA+∠ACD=∠BCD+∠ACD=60°,∴∠FCA=∠DCB,在△FCA 和△DCB 中,,∴△FCA≌△DCB,∴BD=AF;(2)∵(1)∵△ABC 是等腰直角三角形,△DCF 是等腰直角三角形,∴=,=,∴=,∠FCA+∠ACD=∠BCD+∠ACD=45°,∴∠FCA=∠DCB,∴△FCA∽△DCB,∴=;(3)Ⅰ.∵△ABC 为以BC 为底边的等腰三角形,△FDC 为以DC 为底边的等腰三角形,∠BCA=∠DCF,∴△ABC∽△FDC,∴=,∠ACF=∠BCD,∴△BCD∽△ACF,∴=,如图③,作AP⊥BC,==2sin∠BAC=2sin α,∴=2sinα;Ⅱ、∵△FDC∽△ABC,∴,∠FCA+∠ACD=∠BCD+∠ACD,∴∠FCA=∠DCB,∴△FCA∽△DCB,∴==k.14.解:(1)①∵点P 恰好是CD 边的中点,设DP=PC=y,则DC=AB=AP=2y,在Rt△ADP 中,AD2+DP2=AP2,即:82+y2=(2y)2,解得:y=,∵∠OPA=∠B=90°,∴△ADP∽△PCO,∴AD:PC=DP:CO,∴8:y=y:CO,则AC==,∴OB=8﹣=,∵AB=2y=,∴tan∠OAB==,∴∠OAB=30°;∴∠OAP=∠DAP=30°,∵∠OPA=∠D=90°,∴△ADP∽△APO;②由①可知AB=,(2)∵△ADP∽△PCO,△OCP 与△PDA 的面积比为1:4,∴=,即DP=2CO,=.AD=2PC,∵AD=8,∴PC=4,在RT△ADP 中,AP2=AD2+DP2,∵AP=DC=AB,∴AB2=64+(AB﹣4)2,解得AB=10.②∵GP=6﹣t,PH=2t,设△GPH 的高为h,则有h=•2t=.∴S 四边形ADGH=S△ADP﹣S△GHP=DP•DA﹣GP•h=×8×6﹣×(6﹣t)×t=(t﹣3)2+,∴当t=3 时,四边形ADGH 的面积S 有最小值为.15.解:(1)如图1,作DF∥AC 交BE 于F,∴==,∴===,故答案为:;(2)①如图2,作CH∥AD 交BP 于H,∴=,又AE=EC,∴CH=AP,∵CH∥AD,∴==,∴=;②∵DC:BC:AC=1:2:3,CD=2,∴BC=4,AC=6,EC=AC=3,由勾股定理得,BE=5,∵CH∥AD,AE=EC,∴HE=EP,设HE=EP=x,则BH=5﹣x,BP=5+x,∵CH∥AD,∴=,即=,解得x=1,则BP=5+x=6.16.(1)证明:∵∠DEF=90°,∴∠AED+∠BEF=90°,又∠AED+∠ADE=90°,∴∠ADE=∠BEF,又∠A=∠B,∴△ADE∽△BEF;(2)解:∵△ADE∽△BEF,∴=,又AE=x,BF=y,AD=4,∴=,解得,y=﹣x2+x=﹣(x﹣2)2+1,∴当x=2 时,y 有最大值,最大值为1;(3)解:∵D、C、F、E 四点共圆,∴∠CEF=∠CDF,∴sin∠CEF=sin∠CDF==,又CD=4,∴DF=5,∵∠DCF=90°,∴DF 为此圆直径,∴此圆直径为5.。

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。

中考数学复习---相似三角形综合压轴题练习(含答案解析)

中考数学复习---相似三角形综合压轴题练习(含答案解析)

中考数学复习---相似三角形综合压轴题练习(含答案解析)一.平行线分线段成比例(共1小题)1.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE 交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为.【答案】5【解答】解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.∵AE平分∠BAC,FM⊥AB,FN⊥AC,∴FM=FN,∴===3,∴AB=3AD,设AD=DC=a,则AB=3a,∵AD=DC,DT∥AE,∴ET=CT,∴==3,设ET=CT=b,则BE=3b,∵AB+BE=3,∴3a+3b=3,∴a+b=,∴△ABC的周长=AB+AC+BC=5a+5b=5,故答案为:5.二.相似三角形的性质和判定2.(2022•鞍山)如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=;②S△EBH:S△DHF =3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是.(填序号即可).【答案】①③④【解答】解:如图,过点G作GQ⊥DF于点Q,GP⊥EF于点P.设正方形ABCD的边长为2a.∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,∵AE=EB=a,BC=2a,∵DF⊥CE,∴∠CFD=90°,∴∠ECB+∠DCF=90°,∵∠DCF+∠CDF=90°,∴∠CDF=∠ECB,∴tan∠CDF=,故①正确,∵BE∥CD,∴===,∵EC===a,BD=CB=2a,∴EH=EC=a,BH=BD=a,DH=BD=a,在Rt△CDF中,tan∠CDF==,CD=2a,∴CF=a,DF=a,∴HF=CE﹣EH﹣CF=a﹣a﹣a=a,∴S△DFH=•FH•DF=×a×a=a2,∵S△BEH=S△ECB=××a×2a=a2,∴S△EBH:S△DHF=a2:a2=5:8,故②错误.∵FM平分∠DFE,GQ⊥EF,GP⊥FE,∴GQ=GP,∵==,∴=,∴BG=DG,∵DM∥BN,∴==1,∴GM=GN,∵S△DFH=S△FGH+S△FGD,∴×a×a=××GP+×a×GQ,∴GP=GQ=a,∴FG=a,过点N作NJ⊥CE于点J,设FJ=NJ=m,则CJ=2m,∴3m=a,∴m=a,∴FN=m=a,∴MG=GN=GF+FN=a+a=a,∴MG:GF:FN=a:a:a=5:3:2,故③正确,∵AB∥CD,∴∠BEF=∠HCD,∵==,==,∴=,∴△BEF∽△HCD,故④正确.故答案为:①③④.3.(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】D【解答】解:∵△EDC旋转得到△HBC,∴∠EDC=∠HBC,∵ABCD为正方形,D,B,H在同一直线上,∴∠HBC=180°﹣45°=135°,∴∠EDC=135°,故①正确;∵△EDC旋转得到△HBC,∴EC=HC,∠ECH=90°,∴∠HEC=45°,∴∠FEC=180°﹣45°=135°,∵∠ECD=∠ECF,∴△EFC∽△DEC,∴,∴EC2=CD•CF,故②正确;设正方形边长为a,∵∠GHB+∠BHC=45°,∠GHB+∠HGB=45°,∴∠BHC=∠HGB=∠DEC,∵∠GBH=∠EDC=135°,∴△GBH∽△EDC,∴,即,∵△HEC是等腰直角三角形,∴,∵∠GHB=∠FHD,∠GBH=∠HDF=135°,∴△HBG∽△HDF,∴,即,解得:EF=3,∵HG=3,∴HG=EF,故③正确;过点E作EM⊥FD交FD于点M,∴∠EDM=45°,∵ED=HB=2,∴,∵EF=3,∴,∵∠DEC+∠DCE=45°,∠EFC+∠DCE=45°,∴∠DEC=∠EFC,∴,故④正确综上所述:正确结论有4个,故选:D.4.(2022•东营)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是()①△AMN是等边三角形;②MN的最小值是;③当MN最小时S△CMN=S菱形ABCD;④当OM⊥BC时,OA2=DN•AB.A.①②③B.①②④C.①③④D.①②③④【答案】D【解答】解:∵四边形ABCD是菱形,∴AB=CB=AD=CD,AB∥CD,AC⊥BD,OA=OC,∴∠BAC=∠ACD=60°,∴△ABC和△ADC都是等边三角形,∴∠ABM=∠ACN=60°,AB=AC,∵∠MAN=60°,∴∠BAM=∠CAN=60°﹣∠,∴△BAM≌△CAN(ASA),∴AM=AN,∴△AMN是等边三角形,故①正确;当AM⊥BC时,AM的值最小,此时MN的值也最小,∵∠AMB=90°,∠ABM=60°,AB=2,∴MN=AM=AB•sin60°=2×=,∴MN的最小值是,故②正确;∵AM⊥BC时,MN的值最小,此时BM=CM,∴CN=BM=CB=CD,∴DN=CN,∴MN∥BD,∴△CMN∽△CBD,∴===,∴S△CMN=S△CBD,∵S△CBD=S菱形ABCD,∴S△CMN=×S菱形ABCD=S菱形ABCD,故③正确;∵CB=CD,BM=CN,∴CB﹣BM=CD﹣CN,∴CM=DN,∵OM⊥BC,∴∠CMO=∠COB=90°,∵∠OCM=∠BCO,∴△OCM∽△BCO,∴=,∴OC2=CM•CB,∴OA2=DN•AB,故④正确,故选:D.5.(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB =9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10D.【答案】A【解答】解:如右图1所示,由已知可得,△DFE∽△ECB,则,设DF=x,CE=y,则,解得,∴DE=CD+CE=6+=,故选项B不符合题意;EB=DF+AD=+2=,故选项D不符合题意;如图2所示,由已知可得,△DCF∽△FEB,则,设FC=m,FD=n,则,解得,∴FD=10,故选项C不符合题意;BF=FC+BC=8+7=15;如图3所示:此时两个直角三角形的斜边长为6和7;故选:A.6.(2022•连云港)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE =DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④【答案】B【解答】解:由折叠性质可得:DG=OG=AG,AE=OE=BE,OC=BC,∠DGF=∠FGO,∠AGE=∠OGE,∠AEG=∠OEG,∠OEC=∠BEC,∴∠FGE=∠FGO+∠OGE=90°,∠GEC=∠OEG+∠OEC=90°,∴∠FGE+∠GEC=180°,∴GF∥CE,故①正确;设AD=2a,AB=2b,则=OG=AG=a,AE=OE=BE=b,∴CG=OG+OC=3a,在Rt△CGE中,CG2=GE2+CE2,(3a)2=a2+b2+b2+(2a)2,解得:b=a,∴AB=AD,故②错误;在Rt△COF中,设OF=DF=x,则CF=2b﹣x=2a﹣x,∴x2+(2a)2=(2a﹣x)2,解得:x=a,∴DF=×a=a,2OF=2×a=2a,在Rt△AGE中,GE==a,∴GE=DF,OC=2OF,故③④正确;无法证明∠FCO=∠GCE,∴无法判断△COF∽△CEG,故⑤错误;综上,正确的是①③④,故选:B.7.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是()①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;A.①③B.①②③C.②③D.①②④【答案】D【解答】解:∵四边形ABCD、四边形BEFG是正方形,∴AB=BC,BG=BE,∠ABC=90°=∠GBE,∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,∴△ABG≌△CBE(SAS),∴∠BAG=∠BCE,∵∠BAG+∠APB=90°,∴∠BCE+∠APB=90°,∴∠BCE+∠OPC=90°,∴∠POC=90°,∴EC⊥AG,故①正确;取AC的中点K,如图:在Rt△AOC中,K为斜边AC上的中点,∴AK=CK=OK,在Rt△ABC中,K为斜边AC上的中点,∴AK=CK=BK,∴AK=CK=OK=BK,∴A、B、O、C四点共圆,∴∠BOA=∠BCA,∵∠BPO=∠CPA,∴△OBP∽△CAP,故②正确,∵∠AOC=∠ADC=90°,∴∠AOC+∠ADC=180°,∴A、O、C、D四点共圆,∵AD=CD,∴∠AOD=∠DOC=45°,故④正确,由已知不能证明OB平分∠CBG,故③错误,故正确的有:①②④,故选:D.8.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.【答案】A【解答】解:连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.∵=,∴可以假设BF=2k,CG=3k.∵AE=DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,∵AD∥CB,∴∠AEF=∠EFG,∴∠GEF=∠GFE,∴EG=FG=y﹣5k,∴GA′=y﹣(y﹣5k)=5k﹣y,∵C,A′,B′共线,GA′∥FB′,∴=,∴=,∴y2﹣12ky+32k2=0,∴y=8k或y=4k(舍去),∴AE=DE=4k,∵四边形CDTG是矩形,∴CG=DT=3k,∴ET=k,∵EG=8k﹣5k=3k,∴AB=CD=GT==2k,∴==2.解法二:不妨设BF=2,CG=3,连接CE,则Rt△CA'E≌Rt△CDE,推出A'C =CD=AB=A'B',==1,推出GF=CG=3,BC=8,在Rt△CB'F,勾股得CB'=4则A'B'=2,故选:A.9.(2022•乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE∥BC且AE=BC.点P是线段AB上一动点,连结PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B 点时,点M的运动路径长为()A.B.3C.2D.4【答案】B【解答】解:如图,过点A作AH⊥BC于点H.当点P与A重合时,点F与C重合,当点P与B重合时,点F的对应点为F″,点M的运动轨迹是△ECF″的中位线,M′M″=CF″,∵AB=AC,AH⊥BC,∴BH=CH,∵AE∥BC,AE=BC,∴AE=CH,∴四边形AHCE是平行四边形,∵∠AHC=90°,∴四边形AHCE是矩形,∴EC⊥BF″,AH=EC,∵BC=2,S△ABC=2,∴×2×AH=2,∴AH=EC=2,∵∠BEF″=∠ECB=∠ECF″,∴∠BEC+∠CEF″=90°,∠CEF″+∠F″=90°,∴∠BEC=∠F″,∴△ECB∽△F″CE,∴EC2=CB•CF″,∴CF″==6,∴M′M″=3故选:B.10.(2022•海南)如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=,则菱形ABCD的边长是()A.3B.4C.5D.【答案】B【解答】解:过点D作DH⊥AB于点H,如图,∵四边形ABCD是菱形,∴AD=AB=CD,AB∥CD.∵EF⊥AB,DH⊥AB,∴DH∥EF,∴四边形DHFE为平行四边形,∴HF=DE,DH=EF=.∵点E是边CD的中点,∴DE=CD,∴HF=CD=AB.∵BF:CE=1:2,∴设BF=x,则CE=2x,∴CD=4x,DE=HF=2x,AD=AB=4x,∴AF=AB+BF=5x.∴AH=AF﹣HF=3x.在Rt△ADH中,∵DH2+AH2=AD2,∴.解得:x=±1(负数不合题意,舍去),∴x=1.∴AB=4x=4.即菱形ABCD的边长是4,故选:B.11.(2022•黑龙江)如图,正方形ABCD的对角线AC,BD相交于点O,点F 是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②∠OPA=45°;③AP﹣BP=OP;④若BE:CE =2:3,则tan∠CAE=;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤【答案】B【解答】解:①∵四边形ABCD是正方形,∴AB=BC=CD,AC⊥BD,∠ABD=∠DBC=∠ACD=45°.∴∠BOE+∠EOC=90°,∵OE⊥OF,∴∠FOC+∠EOC=90°.∴∠BOE=∠COF.在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴BE=CF.在△BAE和△CBF中,,∴△BAE≌△CBF(SAS),∴∠BAE=∠CBF.∵∠ABP+∠CBF=90°,∴∠ABP+∠BAE=90°,∴∠APB=90°.∴AE⊥BF.∴①的结论正确;②∵∠APB=90°,∠AOB=90°,∴点A,B,P,O四点共圆,∴∠APO=∠ABO=45°,∴②的结论正确;③过点O作OH⊥OP,交AP于点H,如图,∵∠APO=45°,OH⊥OP,∴OH=OP=HP,∴HP=OP.∵OH⊥OP,∴∠POB+∠HOB=90°,∵OA⊥OB,∴∠AOH+∠HOB=90°.∴∠AOH=∠BOP.∵∠OAH+BAE=45°,∠OBP+∠CBF=45°,∠BAE=∠CBF,∴∠OAH=∠OBP.在△AOH和△BOP中,,∴△AOH≌△BOP(ASA),∴AH=BP.∴AP﹣BP=AP﹣AH=HP=OP.∴③的结论正确;④∵BE:CE=2:3,∴设BE=2x,则CE=3x,∴AB=BC=5x,∴AE==x.过点E作EG⊥AC于点G,如图,∵∠ACB=45°,∴EG=GC=EC=x,∴AG==x,在Rt△AEG中,∵tan∠CAE=,∴tan∠CAE===.∴④的结论不正确;⑤∵四边形ABCD是正方形,∴OA=OB=OC=OD,∠AOB=∠BOC=∠COD=∠DOA=90°,∴△OAB≌△OBC≌△OCD≌△DOA(SAS).∴.∴.由①知:△BOE≌△COF,∴S△OBE=S△OFC,∴.即四边形OECF的面积是正方形ABCD面积的.∴⑤的结论正确.综上,①②③⑤的结论正确.故选:B.12.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为.【答案】【解答】解:以O为原点,平行于AB的直线为x轴,建立直角坐标系,过E 作EM⊥CD于M,过F作FN⊥DC,交DC延长线于N,如图:设正方形ABCD的边长为2,则C(1,1),D(﹣1,1),∵E为OD中点,∴E(﹣,),设直线CE解析式为y=kx+b,把C(1,1),E(﹣,)代入得:,解得,∴直线CE解析式为y=x+,在y=x+中,令x=﹣1得y=,∴G(﹣1,),∴GE==,∵将线段CE绕点C逆时针旋转90°得到CF,∴CE=CF,∠ECF=90°,∴∠MCE=90°﹣∠NCF=∠NFC,∵∠EMC=∠CNF=90°,∴△EMC≌△CNF(AAS),∴ME=CN,CM=NF,∵E(﹣,),C(1,1),∴ME=CN=,CM=NF=,∴F(,﹣),∵H是EF中点,∴H(,0),∴OH=,∴==.故答案为:.13.(2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,点P为斜边AB上的一个动点(点P不与点A、B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是.【答案】3或2【解答】解:在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠BAC=30°,∴AB=2BC=2×2=4,∴AC===2,当∠APQ=90°时,如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠BAC=30°,∴AB=2BC=2×2=4,∴AC===2,∵∠APQ=∠ACB=90°,∠CAP=∠BAC,∴△CAP∽△BAC,∴,即,∴AP=3,当∠AQP=90°时,如图2,∵PD⊥AC,PE⊥BC,∠ACB=90°,∴四边形DPEC是矩形,∴CQ=QP,∵∠AQP=90°,∴AQ垂直平分CP,∴AP=AC=2,综上所述,当△APQ为直角三角形时,AP的长是3或2,故答案为:3或2.14.(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD ⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.【答案】或5【解答】解:如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.∵tan∠CBT=3=,∴可以假设BT=k,CT=3k,∵∠CAT+∠ACT=90°,∠ACT+∠JCD=90°,∴∠CAT=∠JCD,在△ATC和△CJD中,,∴△ATC≌△CJD(AAS),∴DJ=CT=3k,AT=CJ=10+k,∵∠CJD=∠CED=90°,∴C,E,D,J四点共圆,∵EC=DE,∴∠CJE=∠DJE=45°,∴ET=TJ=10﹣2k,∵CE2=CT2+TE2=(CD)2,∴(3k)2+(10﹣2k)2=[•]2,整理得4k2﹣25k+25=0,∴(k﹣5)(4k﹣5)=0,∴k=5和,∴BE=BT+ET=k+10﹣2k=10﹣k=5或,故答案为:5或.15.(2022•甘肃)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为cm.【答案】【解答】解:∵四边形ABCD是矩形,∴AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,∴∠ABD=∠BDC,∵AE=2cm,∴BE=AB﹣AE=6﹣2=4(cm),∵G是EF的中点,∴EG=BG=EF,∴∠BEG=∠ABD,∴∠BEG=∠BDC,∴△EBF∽△DCB,∴=,∴=,∴BF=6,∴EF===2(cm),∴BG=EF=(cm),故答案为:.16.(2022•新疆)如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心,将△DCE绕点D顺时针旋转90°与△DAF 恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若AQ•DP=3,则BQ=.【答案】【解答】解:如图,连接DQ,∵将△DCE绕点D顺时针旋转90°与△DAF恰好完全重合,∴DE=DF,∠FDE=90°,∴∠DFE=∠DEF=45°,∵四边形ABCD是正方形,∴∠DAC=45°=∠BAC,∴∠DAC=∠DFQ=45°,∴点A,点F,点Q,点D四点共圆,∴∠BAQ=∠FDQ=45°,∠DAF=∠DQF=90°,∠AFD=∠AQD,∴DF=DQ,∵AD=AB,∠BAC=∠=45°,AQ=AQ,∴△ABQ≌△ADQ(SAS),∴BQ=QD,∠AQB=∠AQD,∵AB∥CD,∴∠AFD=∠FDC,∴∠FDC=∠AQB,又∵∠BAC=∠DFP=45°,∴△BAQ∽△PFD,∴,∴AQ•DP=3=BQ•DF,∴3=BQ•BQ,∴BQ=,故答案为:.17.(2022•苏州)如图,在矩形ABCD中,=.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为v1,点N运动的速度为v2,且v1<v2.当点N到达点C时,M,N两点同时停止运动.在运动过程中,将四边形MABN沿MN翻折,得到四边形MA′B′N.若在某一时刻,点B的对应点B′恰好与CD的中点重合,则的值为.【答案】【解答】解:如图,设AD交A′B′于点Q.设BN=NB′=x.∵=,∴可以假设AB=2k,CB=3k,∵四边形ABCD是矩形,∴AD=BC=3k,CD=AB=2k,∠C=∠D=90°,在Rt△CNB′中,CN2+CB′2=NB′2,∴(3k﹣x)2+k2=x2,∴x=k,∴NB′=k,CN=3k﹣k=k,由翻折的性质可知∠A′B′N=∠B=90°,∴∠DB′Q+∠CB′N=90°,∠CB′N+∠CNB′=90°,∴∠DB′Q=∠CNB′,∵∠D=∠C=90°,∴△DB′Q∽△CNB′,∴DQ:DB′:QB′=CB′::NB′=3:4:5,∵DB′=k,∴DQ=k,∵∠DQB′=∠MQA′,∠D=∠A′,∴△DQB′∽△A′QM,∴A′Q:A′M:QM=DQ:DB′:QB′=3:4:5,设AM=MA′=y,则MQ=y,∵DQ+QM+AM=3k,∴k+y+y=3k,∴y=k,∴===,解法二:连接BB′,过点M作MH⊥BC于点H.设AB=CD=6m,CB=9m,设BN=NB′=n,则n2=(3m)2+(9m﹣n)2,∴n=5m,CN=4m,由△BB′C∽△MNH,可得=2m,∴AM=BH=3m,∴===,故答案为:.18.(2022•湖北)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为.【答案】2+2【解答】解:如图,连接AP,由图2可得AB=BC=4cm,∵∠B=36°,AB=BC,∴∠BAC=∠C=72°,∵AP平分∠BAC,∴∠BAP=∠PAC=∠B=36°,∴AP=BP,∠APC=72°=∠C,∴AP=AC=BP,∵∠PAC=∠B,∠C=∠C,∴△APC∽△BAC,∴,∴AP2=AB•PC=4(4﹣AP),∴AP=2﹣2=BP,(负值舍去),∴t==2+2,故答案为:2+2.19.(2022•随州)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为,DH的长为.【答案】90°,.【解答】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.∵∠EAF=∠BAD=90°,∴∠DAF=∠BAE,∴=,∴△DAF∽△BAE,∴∠ADF=∠ABE,∵∠DOH=∠AOB,∴∠DHO=∠BAO=90°,∴∠BHD=90°,∵AF=3,AE=4,∠EAF=90°,∴EF==5,∵EF⊥AD,∴•AE•AF=•EF•AJ,∴AJ=,∴EJ===,∵EJ∥AB,∴=,∴=,∴OJ=,∴OA=AJ+OJ=+=4,∴OB===4,OD=AD﹣AO=6﹣4=2,∵cos∠ODH=cos∠ABO,∴=,∴DH=.故答案为:90°,.20.(2022•娄底)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:①△ACD≌△ABD′;②△ACB∽△ADD′;③当BD=CD时,△ADD′的面积取得最小值.其中正确的结论有(填结论对应的应号).【答案】①②③【解答】解:由题意可知AC=AB,AD=AD′,∠CAD=∠BAD′,∴△ACD≌△ABD′,故①正确;∵AC=AB,AD=AD′,∠BAC=∠D′AD=θ,∴=,∴△ACB∽△ADD′,故②正确;∵△ACB∽△ADD′,∴=()2,∵当AD⊥BC时,AD最小,△ADD′的面积取得最小值.而AB=AC,∴BD=CD,∴当BD=CD时,△ADD′的面积取得最小值,故③正确;故答案为:①②③.21.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是.【答案】②③【解答】解:①∵△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∵∠ADC=∠B+∠BAD,而∠BAD的度数不确定,∴∠ADC与∠CAD不一定相等,∴AC与CD不一定相等,故①错误;②∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵∠B=∠AED=45°,∴△AEF∽△ABD,∴=,∵AE=AD,AB=BC,∴AD2=AF•AB=AF•BC,∴AD2=AF•BC,故②正确;④∵∠DAH=∠B=45°,∠AHD=∠AHD,∴△ADH∽△BAH,∴=,∴AH2=DH•BH,而BH与AC不一定相等,故④不一定正确;③∵△ADE是等腰直角三角形,∴∠ADG=45°,∵AH⊥DE,∴∠AGD=90°,∵AD=3,∴AG=DG=,∵DH=5,∴GH===,∴AH=AG+GH=2,由④知:AH2=DH•BH,∴(2)2=5BH,∴BH=8,∴BD=BH﹣DH=8﹣5=3,故③正确;本题正确的结论有:②③故答案为:②③.22.(2022•丹东)如图,四边形ABCD是边长为6的菱形,∠ABC=60°,对角线AC与BD交于点O,点E,F分别是线段AB,AC上的动点(不与端点重合),且BE=AF,BF与CE交于点P,延长BF交边AD(或边CD)于点G,连接OP,OG,则下列结论:①△ABF≌△BCE;②当BE=2时,△BOG的面积与四边形OCDG面积之比为1:3;③当BE=4时,BE:CG=2:1;④线段OP的最小值为2﹣2.其中正确的是.(请填写序号)【答案】①②【解答】解:①∵四边形ABCD是菱形,∴AB=BC=AD=CD,∴∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=∠ABC=60°,在△ABF和△BCE中,,∴△ABF≌△BCE(SAS),故①正确;②由①知:△ABC是等边三角形,∴AC=AB=6,∵AF=BE=2,∴CF=AC﹣AF=4,∵四边形ABCD是菱形,∴AD∥BC,OB=OD,OA=OC,∴△AGF∽△CBF,S△BOG=S△DOG,S△AOD=S△COD,∴,∴,∴AG=3,∴AG=,∴S△AOD=2S△DOG,∴S△COD=2S△DOG,∴S四边形OCDG=S△DOG+S△COD=3S△DOG=3S△BOG,故②正确;③如图1,∵四边形ABCD是菱形,∴AB∥CD,∴△CGF∽△ABF,∴,∴,∴CG=3,∴BE:CG=4:3,故③不正确;④如图2,由①得:△ABF≌△BCE,∴∠BCE=∠ABF,∴BCE+∠CBF=∠ABF+∠CBF=∠ABC=60°,∴∠BPC=120°,作等边三角形△BCH,作△BCH的外接圆I,则点P在⊙I上运动,点O、P、I共线时,OP最小,作HM⊥BC于M,∴HM==3,∴PI=IH=,∵∠ACB+∠ICB=60°+30°=90°,∴OI===,∴OP最小=OI﹣PI=﹣2,故④不正确,故答案为:①②.三.相似三角形的应用23.(2022•衢州)希腊数学家海伦给出了挖掘直线隧道的方法:如图,A,B是两侧山脚的入口,从B出发任作线段BC,过C作CD⊥BC,然后依次作垂线段DE,EF,FG,GH,直到接近A点,作AJ⊥GH于点J.每条线段可测量,长度如图所示.分别在BC,AJ上任选点M,N,作MQ⊥BC,NP⊥AJ,使得==k,此时点P,A,B,Q共线.挖隧道时始终能看见P,Q处的标志即可.(1)CD﹣EF﹣GJ=km.(2)k=.【答案】1.8;.【解答】解:(1)CD﹣EF﹣GJ=5.5﹣1﹣2.7=1.8(km);(2)连接AB,过点A作AZ⊥CB,交CB的延长线于点Z.由矩形性质得:AZ=CD﹣EF﹣GJ=1.8,BZ=DE+FG﹣CB﹣AJ=4.9+3.1﹣3﹣2.4=2.6,∵点P,A,B,Q共线,∴∠MBQ=∠ZBA,又∵∠BMQ=∠BZA=90°,∴△BMQ∽△BZA,∴=k===.故答案为:1.8;.24.(2022•温州)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得MC=8.5m,CD =13m,垂直于地面的木棒EF与影子FG的比为2:3,则点O,M之间的距离等于米.转动时,叶片外端离地面的最大高度等于米.【答案】10,(10+)【解答】解:解法一:如图,过点O作OP∥BD,交MG于P,过P作PN ⊥BD于N,则OB=PN,∵AC∥BD,∴AC∥OP∥BD,∴=,∠EGF=∠OPM,∵OA=OB,∴CP=PD=CD=6.5,∴MP=CM+CP=8.5+6.5=15,tan∠EGF=tan∠OPM,∴OM=×15=10;∵DB∥EG,∴∠EGF=∠NDP,∴sin∠EGF=sin∠NDP,即=,∴OB=PN=,以点O为圆心,OA的长为半径作圆,当OB与OM共线时,叶片外端离地面的高度最大,其最大高度等于(10+)米.解法二:如图,设AC与OM交于点H,过点C作CN⊥BD于N,∵HC∥EG,∴∠HCM=∠EGF,∵∠CMH=∠EFG=90°,∴△HMC∽△EFG,∴==,即=,∴HM=,∵BD∥EG,∴∠BDC=∠EGF,∴tan∠BDC=tan∠EGF,设CN=2x,DN=3x,则CD=x,∴x=13,∴x=,∴AB=CN=2,∴OA=OB=AB=,在Rt△AHO中,∵∠AHO=∠CHM,∴sin∠AHO==,∴=,∴OH=,∴OM=OH+HM=+=10(米),以点O为圆心,OA的长为半径作圆,当OB与OM共线时,叶片外端离地面的高度最大,其最大高度等于(10+)米.故答案为:10,(10+).49。

北师大相似三角形强化训练和深化培训尖子生训练

北师大相似三角形强化训练和深化培训尖子生训练

相似三角形强化训练和深化☣
1.△ABC中,E,D是BC边上的两个三等分点,AF=2CF,BF=12厘米.求:FM,MN,BN的长.
2.P,Q分别是正方形ABCD的边AB, BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.
3.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD
⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB
4.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.
5.已知点D 是边长为1的等边三角形ABC 的内心,点E ,F 分别在边AB ,AC
上,且满足。


的周长。

6.在图1至图3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .
(1)如图1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,
求证:FM = MH ,FM ⊥MH ; (2)将图1中的CE 绕点C 顺时针旋转一个锐角,得到图2,
求证:△FMH 是等腰直角三角形;
(3)将图2中的CE 缩短到图3的情况, △FMH 还是等腰直角三角形吗?
图1
A H
C (M )
D E
B F
G (N )
G
图2
A
H
C
D
E
B
F
N
M A
H
C
D
图3
B
F
G M
N。

相似三角形压轴题型

相似三角形压轴题型

相似三角形压轴题型1.如图,在离某围墙AB的6米处有一棵树CD,在某时刻2米长的竹竿垂直地面,太阳光下的影长为3米,此时,树的影子有一部分映在地面上,还有一部分影子映在墙上AE处,墙上的影高为4米,那么这棵树高约为()米.A.6B.8C.9D.102.有一块直角边AB=4cm,BC=3cm,∠B=90°的Rt△ABC的铁片,现要按照如图所示方式截一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.B.C.D.3.如图,有一块锐角三角形材料,边BC=120mm,高AD=90mm,要把它加工成矩形零件,使其一边在BC上,其余两个顶点分别在AB,AC,且EH=2EF,则这个矩形零件的长为()A.36mm B.80mm C.40mm D.72mm压轴题型汇总14.如图,在△ABC中,AB=AC=6,D是AC中点,E是BC上一点,BE=,∠AED=∠B,则CE的长为()A.B.C.D.5.如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是()A.①②③B.①③C.①②D.②③6.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤7.路边有一根电线杆AB和一块长方形广告牌,有一天小明突然发现在太阳光照射下,电线杆顶端A的影子刚好落在长方形广告牌的上边中点G处,而长方形广告牌的影子刚好落在地面上E点(如图),已知BC =5米,长方形广告牌的长HF=4米,高HC=3米,DE=4米,则电线杆AB的高度是()A.6.75米B.7.75米C.8.25米D.10.75米8.在矩形ABCD中,AB=4,BC=2,E为BC中点,H,G分别是边AB,CD上的动点,且始终保持GH⊥AE,则EH+AG最小值为()A.2B.C.D.+19.如图,在矩形ABCD中,AB=4,BC=6,若点E是边CD的中点,连接AE,过点B作BF⊥AE于点F,则BF的长为.10.如图,在边长为2个单位长度的正方形ABCD中,E是AB的中点,点P从点D出发沿射线DC以每秒1个单位长度的速度运动,过点P作PF⊥DE于点F,当运动时间为秒时,以P、F、E为顶点的三角形与△AED相似.11.如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH.给出下列结论:①AF⊥DE;②DG=;③HD∥BG;④△ABG∽△DHF.其中正确的结论有.(请填上所有正确结论的序号)12.如图,已知正方形ABCD的边长为4,E,F分别为AB,CD边上的点,且EF∥BC,G为EF上一点,且GF=1,M,N分别为GD,EC的中点,则MN=.13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为.14.在边长为4的正方形ABCD中,点E,F是AD上两点,且AE=DF,∠BCE=60°,CE交对角线BD于G,交BF于点P,连接AP.则四边形ABGP的面积为.15.如图,在菱形ABCD中,∠B=60°,点P是△ACD内一点,连接PA、PC、PD,若PA=5,PB=12,PC=13,则AC•BD=.16.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF.(1)求证:四边形EBFD是菱形;(2)若BK=3EK,AE=4,求四边形EBFD的周长.17.已知:如图,在平行四边形ABCD中,对角线AC与BD交于点O,点E是DB延长线上的一点,且EA =EC,分别延长AD、EC交于点F.(1)求证:四边形ABCD为菱形;(2)如果∠AEC=2∠BAC,求证:EC•CF=AF•AD.18.已知△ABC中,点O是AC中点,连接BO并延长到D,使OD=BO,连接DA,DC.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,过点A作AE⊥BC于E交BD于F,连接ED交AC于H,若∠CAD=45°,AF=3FE=3,求CH的长.19.如图,已知平行四边形ABCD,过点A作BC的垂线,垂足为点E,且满足AE=EC,过点C作AB的垂线,垂足为点F,交AE于点G,连接BG.(1)如图1,若BG=2,AB=6,求AC的长度;(2)如图2,取BE的中点M,在EC上取一点N,使EN=BE,连接AN,过点M作AN的垂线,交AC 于点H,求证:BG=2CH.20.如图,△ABC是一块等腰三角形的废铁片,其中AB=AC=10cm,BC=12cm.利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F.G分别落在AC、AB上.Ⅰ.小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了.请你帮小聪求出正方形的边长.Ⅱ.小明想:不求正方形的边长也能画出正方形.具体作法是:①在AB边上任取一点G′,如图2作正方形G′D′E′F′;②连接BF′并延长交AC于点F;③过点F作FE∥F′E′交BC于点E,FG∥F′G′交AB于点G,GD∥G′D′交BC于点D,则四边形DEFG即为所求的正方形.你认为小明的作法正确吗?说明理由.1.如图,矩形EFGH 内接于△ABC ,且边FG 落在BC 上,如果AD ⊥BC ,BC =3,AD =2,EF :EH =2:3,那么EH 的长为()A .B .C .D .22.如图,矩形DEFG 的边EF 在△ABC 的边BC 上,顶点D ,G 分别在边AB ,AC 上,AH ⊥BC ,垂足为H ,AH 交DG 于点P ,已知BC =6,AH =4.当矩形DEFG 面积最大时,HP 的长是()A .1B .2C .3D .43.如图,在△ABC 中,D 是CB 延长线上一点,∠BAD =∠BAC .在AD 上有一点E ,∠EBA =∠ACB =120°.若AC =2BC =2,则DE 的长()A .B .C .D .压轴题型汇总24.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论中错误的是()A.FB垂直平分OC B.DE=EFC.S△AOE:S△BCM=3:2D.△EOB≌△CMB5.如图,在△ABC中,点E、F在边BC上,点E、B不重合.BE=CF,点D在边AC上,连接ED、DF,∠A=∠EDF=120°,若=m,,则m的值为()A.B.C.D.6.如图,在矩形ABCD中,E,F分别为边BC,CD的中点,线段AE,AF与对角线BD分别交于点G,H.设矩形ABCD的面积为S,则以下4个结论中:①AG:GE=2:1;②BG:GH:HD=1:1:1;③S1+S2+S3=S;④S2:S4:S6=1:2:4.正确的结论有()A.1个B.2个C.3个D.4个7.如图,正方形ABCD中,延长CB至E使CB=2EB,以EB为边作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N,K.则下列说法:①△ANH≌△GNF;②∠DAM=∠NFG;③FN=2NK;④S△AFN:S四边形DMKH=2:7.其中正确的有()A.4个B.3个C.2个D.1个8.如图,CE是平行四边形ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E,连接AC、BE、DO、DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.其中正确的结论有()A.①②③B.①②④C.①②D.②③④9.如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点E,那么BE的长是.10.如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,正方形DEFG内接于△ABC,点G、F分别在边AC、BC上,点D、E在斜边AB上,那么正方形DEFG的边长是.11.如图,△ABC的中线AD、CE交于点G,点F在边AC上,GF∥BC,那么的值是.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则BD的长为.13.如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P是线段AD上的动点,过P作PF⊥AE于F,当以点P、F、E为顶点的三角形与△ABE相似时,AP的长为.14.如图,正方形ABCD的边长是3,点E,F分别是AB,BC边上的点,且满足BE=2AE,CF=2BF,连结DE,AF交于点G,BD交AF于点H,则四边形GEBH的面积为.15.如图,矩形ABCD的边长AD=6,AB=4,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M、N,则MN的长为.16.如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为.17.如图,正方形ABCD的对角线AC、BD交于点O,∠CBD的平分线BG交AC于E,交CD于F,且DG⊥BG.(1)求证:BF=2DG;(2)若BE=,求BF的长.18.如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.19.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.20.△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.(1)如图1,求证:DE•CD=DF•BE(2)D为BC中点如图2,连接EF.①求证:ED平分∠BEF;②若四边形AEDF为菱形,求∠BAC的度数及的值.21.在Rt△ABC中,∠ACB=90°,AB=5,AC=3.矩形DEFG的顶点D、G分别在边AC、BC上,EF在边AB上.(1)点C到AB的距离为.(2)如图①,若DE=DG,求矩形DEFG的周长.(3)如图②,若矩形DEFG的周长是DE长的8倍,则矩形DEFG的周长为.。

相似三角形压轴题训练一二-学生-郭亚琦-数学

相似三角形压轴题训练一二-学生-郭亚琦-数学

相似三角形压轴题训练一填空题1、如图,已知AD 是△ABC 的角平分线,DE ∥AB ,如果32=EC AE ,那么=AB AE 2、如图,已知AD 是△ABC 的角平分线,DE ∥AB ,如果32=EC AE ,那么=ACAB解答题1、如图,在△ABC 中,AB=AC=12,BC=6,点D 在边AB 上,点E 在线段CD 上,且∠BEC=∠ACB ,BE 的延长线与边AC 相交于点F . (1)求证:BE•CD=BD•BC ;(2)设AD=x ,AF=y ,求y 关于x 的函数解析式,并写出定义域; (3)如果AD=3,求线段BF 的长.2、如图所示,已知矩形ABCD中,CD=2,AD=3,点P是AD上的一个动点(与A、D不重合),过点P作PE⊥CP交直线AB于点E,设PD=x,AE=y,(1)写出y与x的函数解析式,并指出自变量的取值范围;(2)如果△PCD的面积是△AEP面积的4倍,求CE的长;(3)是否存在点P,使△APE沿PE翻折后,点A落在BC上?证明你的结论.3、已知如图在矩形ABCD中,CD=2,AD=3,P是边AD上的一个动点,且和点A,D不重合,过P 作PE垂直于CP交直线AB于E,设PD=x,AE=y(1)△AEP∽△DPC。

(2)求y与x的函数解析式,并写出x的取值范围(3)判断∠ECP的正切值能否为1/2?如果能,请求出x的值;如果不能,请说明理由。

4、如图,AB⊥AC,AB=AC=2,过点B作直线L⊥AB.点P是直线L上点B左侧的一个动点,联结PC交AB于E。

过点C作CD⊥PC交直线L于点D.(1)如果PB=1,求PD的长.(2)在点P移动的过程中,△BDE与△ACE是否可能相似?如果可能请写出PB的长,如果不可能说明理由。

EPLA CB D压轴题训练二1。

点D在AB边上(点D和点A、B不重合),过点D 1、如图,在△ABC中,AB=C=6,cosB=3作DE∥AC,交边BC与点E,过点E作EF⊥AC,垂足为F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A D
B
C 强化训练和深化 ☣
1.如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM.
⑴ 求证:△AMB ≌△ENB ;
⑵ ①当M 点在何处时,AM +CM 的值最小;
②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;
⑶ 当AM +BM +CM 的最小值为13+时,求正方形的边长.
2.如图,
在Rt ABC ∆中,∠ACB= 090 ,AC=6,BC=8,点D 在边AB 上运动,DE 平分∠CDB
交边BC 于点E ,EM BD ⊥垂足为M ,EN CD ⊥垂足为N 。

(1) 当AD=CD 时,求证:DE ∥AC ;
(2) 探究:AD 为何值时,△BME 与△CNE 相似?
(3) 探究:AD 为何值时,四边形MEND 与△BDE 的面积相等?
3.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .
(1)求证:EG =CG ;
(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问
(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?
4.如图,点
A 是△ABC 和△ADE 的公共顶点,∠BAC +∠DAE =180°,A
B =k ·AE ,A
C =k ·A
D ,点M 是D
E 的中点,直线AM 交直线BC 于点N .
(1)探究∠ANB 与∠BAE 的关系,并加以证明.
(2)若△ADE 绕点A 旋转,其他条件不变,则在旋转的过程中(1)的结论是否发生变化?如果没有发生变化,请写出一个可以推广的命题;如果有变化,请画出变化后的一个图形,并证明变化后∠ANB 与∠BAE 的关系.
图③ D 图① D 图② A
B C E M D N。

相关文档
最新文档