中考数学真题及答案甘肃白银数学含解析学科网

合集下载

白银中考数学试题及答案

白银中考数学试题及答案

白银中考数学试题及答案白银市中考数学试题一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -5B. 0C. 1D. -12. 计算下列哪个表达式的结果为负数?A. 3 + 2B. 2 - 5C. 4 × 3D. 6 ÷ 23. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 圆D. 任意多边形4. 以下哪个选项是二次根式?A. √2B. 2√3C. √8D. √95. 一个数的相反数是-3,这个数是多少?A. 3B. -3C. 0D. 66. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 07. 以下哪个选项是单项式?A. 3x + 2B. 5x^2 - 3x + 1C. 2x^3D. x^2 + 3x8. 以下哪个选项是多项式?A. 3xB. 2x^2 + 3x - 5C. x^2 - 4D. 5x^3 - 2x^2 + 79. 以下哪个选项是等腰三角形?A. 三条边长分别为3, 4, 5的三角形B. 三条边长分别为2, 2, 3的三角形C. 三条边长分别为1, 1, 1的三角形D. 三条边长分别为2, 3, 4的三角形10. 以下哪个选项是锐角三角形?A. 一个角为90°的三角形B. 一个角为120°的三角形C. 三个角都小于90°的三角形D. 三个角都大于90°的三角形二、填空题(每题3分,共30分)11. 一个数的平方等于16,这个数是______。

12. 一个数的立方等于-8,这个数是______。

13. 一个数的倒数是2,这个数是______。

14. 一个数的绝对值等于它本身,这个数是______。

15. 一个数的相反数等于它本身,这个数是______。

16. 一个数的平方根等于它本身,这个数是______。

17. 一个数的立方根等于它本身,这个数是______。

18. 一个数的算术平方根等于它本身,这个数是______。

白银市中考数学试题及答案

白银市中考数学试题及答案

白银市中考数学试题及答案一、选择题1. 设函数 y = f(x) = 2x + 3, 则 f(4) 的值是多少?A. 7B. 11C. 15D. 202. 已知等差数列 {an} 的通项公式为 an = 2n + 1, 则 a1 + a2 + ... + a10 的值是多少?A. 110B. 120C. 130D. 1403. 已知三角形 ABC 中,AB = 9 cm,BC = 12 cm,∠B = 60°,则三角形 ABC 的面积为多少?A. 27 cm²B. 36 cm²C. 45 cm²D. 54 cm²4. 设直接向量 a = (1, 2, -3),则 a 的模长是多少?A. √14B. √18C. √20D. √265. 已知函数 y = f(x) 的图像如下所示,求 f(-2) 的值是多少?(图像描述:一条上凸的抛物线,开口向上)A. 1B. -1C. -2D. -4二、填空题6. 一枚旋转六面体骰子,其中三面为红色,两面为蓝色,一面为绿色。

将骰子投掷一次,求投出红色面朝上的概率是多少?(保留两位小数)7. 若方程 2x + 1 = 5 成立,则 x = ______。

8. 下列哪一个数既是 9 的倍数,又是 12 的倍数?A. 72B. 108C. 144D. 1629. 若向量 a = (2, -1),向量 b = (3, 4),则a • b = ______。

10. 若直线 y = kx - 3 经过点 (2, 1),则 k = ______。

三、解答题11. 解方程组:{ 2x + 3y = 7{ 4x - y = -112. 计算下列无理数的近似值,并用数轴表示:√7, π, e四、解析答案1. 解:将 x = 4 代入函数 f(x) = 2x + 3 中,得到 f(4) = 2(4) + 3 = 8 +3 = 11,故答案为 B. 11。

甘肃省白银市中考数学试题含答案

甘肃省白银市中考数学试题含答案

甘肃省白银市中考数学试题含答案Modified by JACK on the afternoon of December 26, 2020白银市2017年普通高中招生考试数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面四个手机应用图标中,属于中心对称图形的是()A. B. C. D.2.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法可以表示为()A.4⨯ D.63.9310⨯0.393103.9310⨯ C.639.310⨯ B.53. 4的平方根是()±A. 16 B. 2 C.2± D.24. 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A. B. C. D.5.下列计算正确的是()A .224x x x +=B .824x x x ÷= C. 236x x x = D .()220x x --=6.将一把直尺与一块三角板如图放置,若0145∠=,则2∠ 为 ( )A . 115°B . 120° C. 135° D .145°7.在平面直角坐标系中,一次函数y kx b =+的图象如图所示,观察图象可得( )A .0,0k b >>B .0,0k b >< C. 0,0k b <> D .0,0k b <<8.已知,,a b c 是ABC ∆的三条边长,化简a b c c a b +----的结果为 ( ) A .222a b c +- B .22a b + C. 2c D .09.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( )A .()()32220570x x --=B .322203232570x x +⨯=⨯-C. ()()32203220570x x --=⨯- D .2322202570x x x +⨯-= 10.如图①,在边长为4的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作//,PQ BD PQ 与边AD (或边CD )交于点,Q PQ 的长度()y cm 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动秒时,PQ 的长是( )A .22cmB . 32cm C. 42cm D .52cm 二、填空题:本大题 共8小题,每小题4分,共32分,将答案填在答题纸上 11.分解因式:221x x -+=____________. 12. 估计512-与的大小关系:512-(填“>”或“=”或“<”) 13.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式201520172016m n c ++的值为 .如图,ABC ∆内接于O ,若032OAB ∠=,则C ∠= .15.若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 .16.如图,一张三角形纸片ABC ,090,8,6C AC cm BC cm ∠===.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.如图,在ABC ∆中,090,1,2ACB AC AB ∠===,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则CD 的长等于____________.(结果保留π) 18.下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为_____________,第2017个图形的周长为______________.三、解答题(一):本大题共5小题,共38分.解答应写出文字说明、证明过程或演算步骤.19. 计算:()101123tan 3042π-⎛⎫-+-- ⎪⎝⎭20. 解不等式组()111212x x ⎧-≤⎪⎨⎪-<⎩ ,并写出该不等式组的最大整数解.21. 如图,已知ABC ∆,请用圆规和直尺作出ABC ∆的一条中位线EF (不写作法,保留作图痕迹).22.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的,A B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得0045,65DAC DBC ∠=∠=.若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米(结果精确到1米,参考数据:000sin 650.91,cos 650.42,tan 65 2.14≈≈≈)23.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域两数和等于12,则为平局;若指针所指区域两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.四、解答题(二):本大题共5小题 ,共50分. 解答应写出文字说明、证明过程或演算步骤.24.中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率5060x≤<106070x≤<307080x≤<40 n8090x≤<m90100x≤≤50频数分布直方图根据所给信息,解答下列问题:(1)m=__________,n=______________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在_______________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?25.已知一次函数1y k x b=+与反比例函数2kyx=的图象交于第一象限内的()1,8,4,2P Q m⎛⎫⎪⎝⎭两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求P AO '∠的正弦值.26.如图,矩形ABCD 中,6,4AB BC ==,过对角线BD 中点O 的直线分别交,AB CD 边于点,E F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 就菱形时,求EF 的长.27.如图,AN 是M 的直径,//NB x 轴,AB 交M 于点C .(1)若点()()00,6,0,2,30A N ABN ∠=,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是M 的切线.28.如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A .(1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作//NM AC ,交AB 于点M ,当AMN ∆面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系.白银市2017年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项. 题号 1 2 3 4 5 6 7 8 9 10 答案BBCDDCADAB二、填空题:本大题共8小题,每小题3分,共24分. 11. 2(1)x - 12. > 13. 0 14. 58 15. k ≤5且k ≠116.154 17. 3π18. 8(1分),6053(2分)三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)19.(4分)解:原式=323312- 2分 =23312- 3分=31-. 4分20.(4分)解:解1(1)2x - ≤1得:x ≤3, 1分解1-x <2得:x >-1. 2分 则不等式组的解集是:-1<x ≤3. 3分 ∴该不等式组的最大整数解为3x =. 4分 21.(6分)解:如图,5分(注:作出一条线段的垂直平分线得2分,作出两条得4分,连接EF 得1分.) ∴线段EF 即为所求作. 6分22.(6分) 解:过点D 作DE ⊥AC ,垂足为E ,设BE =x , 1分在Rt △DEB 中,tan DEDBE BE∠=, ∵∠DBC =65°,∴tan65DE x =. 2分又∵∠DAC =45°,∴AE =DE .∴132tan65x x +=, 3分 ∴解得115.8x ≈, 4分∴248DE ≈(米). 5分∴观景亭D 到南滨河路AC 的距离约为248米. 6分 23.(6分)解:(1)画树状图:BDCAE 3456 7 8 9 6 7 8 9 6 7 8 9 9 10 11 12 10 11 12 13 11 12 13 14开始3分列表6 7 8 93 9 10 11 124 10 11 12 135 11 12 13 143分可见,两数和共有12种等可能性; 4分(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为61122=; 5分刘凯获胜的概率为31124=. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)24.(7分) 解:(1)m=70, 1分n=; 2分(2)频数分布直方图如图所示,频数(人)频数分布直方图甲乙3分(3) 80≤x <90; 5分 (4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×=750(人). 7分25.(7分) 解:(1)∵点P 在反比例函数的图象上,∴把点P (12,8)代入k y x =2可得:k 2=4, ∴反比例函数的表达式为4y x=, 1分∴Q (4,1) .把P (12,8),Q (4,1)分别代入1y k x b =+中,得1118214k bk b⎧=+⎪⎨⎪=+⎩, 解得129k b =-⎧⎨=⎩, ∴一次函数的表达式为29y x =-+; 3分(2)P ′(12-,-8) 4分(3)过点P ′作P ′D ⊥x 轴,垂足为D. 5分∵P ′(12-,-8), ∴OD =12,P ′D =8,∵点A 在29y x =-+的图象上,∴点A (92,0),即OA =92, ∴DA =5, ∴P ′A 2289,D DA P +=' 6分 ∴sin ∠P ′AD 88989P P D A ''=== ∴sin ∠P ′AO 889=. 7分 26.(8分) 解:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴A B ∥DC ,OB =OD , 1分 ∴∠OBE =∠ODF ,成绩又∵∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ), 2分 ∴EO =FO ,∴四边形BEDF 是平行四边形; 4分 (2)当四边形BEDF 是菱形时,设BE =x 则 DE =x ,6AE x =-,在Rt △ADE 中,222DE AD AE =+, ∴2224(6)x x =+-, ∴133x =, 135214332BEDF S BE AD =BD EF,=∴⋅=⨯=⋅菱形 6分152233BD AB EF ,EF ==∴⨯=∴=又27.(8分)解:(1)∵A 的坐标为(0,6),N (0,2)∴AN =4, 1分 ∵∠ABN =30°,∠ANB =90°,∴AB =2AN =8, 2分∴由勾股定理可知:NB =∴B (,2) 3分 (2)连接MC ,NC 4分 ∵AN 是⊙M 的直径, ∴∠ACN =90°,M NBCxA Oy ∴∠NCB =90°, 5分 在Rt △NCB 中,D 为NB 的中点, ∴CD =12NB =ND ,∴∠CND =∠NCD , 6分 ∵MC =MN , ∴∠MCN =∠MNC . ∵∠MNC +∠CND =90°,∴∠MCN +∠NCD =90°, 7分 即MC ⊥CD .∴直线CD 是⊙M 的切线. 8分 28.(10分)解:(1)将点B ,点C 的坐标分别代入24y ax bx =++,得:424064840a b a b -+=⎧⎨++=⎩, 1分解得:14a =-,32b =.∴该二次函数的表达式为213442y x x =-++. 3分 (2)设点N 的坐标为(n ,0)(-2<n <8),则2BN n =+,8CN n =-. ∵B (-2,0), C (8,0), ∴BC =10.令0x =,解得:4y =, ∴点A (0,4),OA =4, ∵MN ∥AC , ∴810AM NC nAB BC -==. 4分 ∵OA =4,BC =10, ∴114102022ABCSBC OA =⋅=⨯⨯=. 5分 xy CDM D O MB AN D AN1122222810ABNAMN ABN S BN OA n+n+S AM CN n,S AB CB =⋅=⨯-===()4=()又∴2811(8)(2)(3)51055AMNABNnSS n n n -==-+=--+. 6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大. 7分 (3)当N (3,0)时,N 为BC 边中点.∴M 为AB 边中点,∴12OM AB.= 8分∵AB ==AC ==∴12AB AC,= 9分∴14OM AC =. 10分。

2010-2023历年初中毕业升学考试(甘肃白银卷)数学(带解析)

2010-2023历年初中毕业升学考试(甘肃白银卷)数学(带解析)

2010-2023历年初中毕业升学考试(甘肃白银卷)数学(带解析)第1卷一.参考题库(共12题)1.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A= ▲度.2.分解因式:▲.3.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD= 45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y ,下列中图象中,能表示y与x的函数关系式的图象大致是【】4.计算:5.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是▲.(只需填一个即可)6.已知两圆的半径分别为3cm和4cm,这两圆的圆心距为1cm,则这两个圆的位置关系是▲.7.衬衫系列大都采用国家5.4标准号、型(通过抽样分析取的平均值).“号”指人的身高,“型”指人的净胸围,码数指衬衫的领围(领子大小),单位均为:厘米.下表是男士衬衫的部分号、型和码数的对应关系:号/型…170/84170/88175/92175/96180/100…码数…3839404142…(1)设男士衬衫的码数为y,净胸围为x,试探索y与x之间的函数关系式;(2)若某人的净胸围为108厘米,则该人应买多大码数的衬衫?8.如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,,延长DB到点F,使,连接AF.(1)证明:△BDE∽△FDA;(2)试判断直线AF与⊙O的位置关系,并给出证明.9.方程的解是【】A.x=±1B.x=1C.x=-1D.x=010.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是【】A.m+3B.m+6C.2m+3D.2m+611.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.12.在-1,1,2这三个数中任选2个数分别作为P点的横坐标和纵坐标,过P点画双曲线,该双曲线位于第一、三象限的概率是▲.第1卷参考答案一.参考题库1.参考答案:50。

甘肃省白银市中考数学真题试题(含解析)

甘肃省白银市中考数学真题试题(含解析)

甘肃省白银市xx年中考数学真题试题一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.的相反数是A. B. xx C. D.【答案】B【解析】解:的相反数是:xx.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列计算结果等于的是A. B. C. D.【答案】D【解析】解:A、,不符合题意;B、不能再计算,不符合题意;C、不能再计算,不符合题意;D、,符合题意;故选:D.根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.若一个角为,则它的补角的度数为A. B. C. D.【答案】C【解析】解:.故它的补角的度数为.故选:C.根据互为补角的两个角的和等于列式进行计算即可得解.本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于.4.已知,下列变形错误的是A. B. C. D.【答案】B【解析】解:由得,,A、由原式可得:,正确;B、由原式可得,错误;C、由原式可得:,正确;D、由原式可得:,正确;故选:B.根据两内项之积等于两外项之积对各选项分析判断即可得解.本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.若分式的值为0,则x的值是A. 2或B. 2C.D. 0【答案】A【解析】解:分式的值为0,,解得:或.故选:A.直接利用分式的值为零则分子为零进而得出答案.此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差如下表:甲乙丙丁平均数环方差若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择A. 甲B. 乙C. 丙D. 丁【答案】A【解析】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.根据平均数和方差的意义解答.本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.关于x的一元二次方程有两个实数根,则k的取值范围是A. B. C. D.【答案】C【解析】解:根据题意得,解得.故选:C.根据判别式的意义得,然后解不等式即可.本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.8.如图,点E是正方形ABCD的边DC上一点,把绕点A顺时针旋转到的位置,若四边形AECF的面积为25,,则AE的长为A. 5B.C. 7D.【答案】D【解析】解:把顺时针旋转的位置,四边形AECF的面积等于正方形ABCD的面积等于25,,,中,.故选:D.利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.如图,过点,,,点B是x轴下方上的一点,连接BO,BD,则的度数是A.B.C.D.【答案】B【解析】解:连接DC,,,,,,,,故选:B.连接DC,利用三角函数得出,进而利用圆周角定理得出即可.此题考查圆周角定理,关键是利用三角函数得出.10.如图是二次函数b,c是常数,图象的一部分,与x轴的交点A在点和之间,对称轴是对于下列说法:;;;为实数;当时,,其中正确的是A.B.C.D.【答案】A【解析】解:对称轴在y轴右侧,、b异号,,故正确;对称轴,;故正确;,,当时,,,故错误;根据图示知,当时,有最大值;当时,有,所以为实数.故正确.如图,当时,y不只是大于0.故错误.故选:A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及;当时,;然后由图象确定当x取何值时,.本题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当时,抛物线向上开口;当时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时即,对称轴在y轴左;当a与b异号时即,对称轴在y轴右简称:左同右异常数项c决定抛物线与y轴交点,抛物线与y轴交于.二、填空题:本大题共8小题,每小题4分,共32分.11.计算:______.【答案】0【解析】解:,故答案为:0.根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.使得代数式有意义的x的取值范围是______.【答案】【解析】解:代数式有意义,,,的取值范围是,故答案为:.二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.若正多边形的内角和是,则该正多边形的边数是______.【答案】8【解析】解:根据n边形的内角和公式,得,解得.这个多边形的边数是8.故答案为:8.n边形的内角和是,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为______.【答案】108【解析】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为,故答案为:108.观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.已知a,b,c是的三边长,a,b满足,c为奇数,则______.【答案】7【解析】解:,b满足,,,解得,,,,,又为奇数,,故答案是:7.根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.16.如图,一次函数与的图象相交于点,则关于x的不等式组的解集为______.【答案】【解析】解:一次函数的图象过点,,解得,,又与x轴的交点是,关于x的不等式的解集为.故答案为.先将点代入,求出n的值,再找出直线落在的下方且都在x轴下方的部分对应的自变量的取值范围即可.本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形若等边三角形的边长为a,则勒洛三角形的周长为______.【答案】【解析】解:如图是等边三角形,,,的长的长的长,勒洛三角形的周长为.故答案为.首先根据等边三角形的性质得出,,再利用弧长公式求出的长的长的长,那么勒洛三角形的周长为.本题考查了弧长公式:弧长为l,圆心角度数为n,圆的半径为,也考查了等边三角形的性质.18.如图,是一个运算程序的示意图,若开始输入x的值为625,则第xx次输出的结果为______.【答案】1【解析】解:当时,,当时,,当时,,当时,,当时,,当时,,当时,,当时,,,即输出的结果是1,故答案为:1依次求出每次输出的结果,根据结果得出规律,即可得出答案.本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.三、解答题(一):本大题共5小题,共38分.解答应写出文字说明、证明过程或演算步骤.19.计算:【答案】解:原式.【解析】先计算括号内分式的减法,再计算除法即可得.本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.四、解答题(二):本大题共5小题,共50分.解答应写出文字说明、证明过程或演算步骤.20.如图,在中,.作的平分线交AB边于点O,再以点O为圆心,OB的长为半径作;要求:不写做法,保留作图痕迹判断中AC与的位置关系,直接写出结果.【答案】解:如图所示:;相切;过O点作于D点,平分,,即,与直线AC相切,【解析】首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作即可;利用角平分线的性质以及直线与圆的位置关系进而求出即可.此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.21.九章算术是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱问买鸡的人数、鸡的价格各是多少?请解答上述问题.【答案】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【解析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起高铁大大缩短了时空距离,改变了人们的出行方式如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程已知:,,公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?参考数据:,【答案】解:过点C作于点D,在和中,,,,,,,不吃,,,公里,答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【解析】过点C作于点D,利用锐角三角函数的定义求出CD及AD的长,进而可得出结论.本题考查的是解直角三角形的应用方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?现将方格内空白的小正方形B,C,D,E,中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【答案】解:正方形网格被等分成9等份,其中阴影部分面积占其中的3份,米粒落在阴影部分的概率是;列表如下:A B C D E FABCDEF由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为.【解析】直接利用概率公式计算可得;列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.此题考查了列表法与树状图法,用到的知识点为:概率所求情况数与总情况数之比.24.“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.根据所给信息,解答以下问题在扇形统计图中,C对应的扇形的圆心角是______度;补全条形统计图;所抽取学生的足球运球测试成绩的中位教会落在______等级;该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?【答案】117;B【解析】解:总人数为人,等级人数为人,则C对应的扇形的圆心角是,故答案为:117;补全条形图如下:因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.估计足球运球测试成绩达到A级的学生有人.先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用乘以C等级人数所占比例即可得;根据以上所求结果即可补全图形;根据中位数的定义求解可得;总人数乘以样本中A等级人数所占比例可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.如图,一次函数的图象与反比例函数为常数且的图象交于,B两点,与x轴交于点C.求此反比例函数的表达式;若点P在x轴上,且,求点P的坐标.【答案】解:把点代入,得,把代入反比例函数,反比例函数的表达式为联立两个的数表达式得解得或点B的坐标为当时,得点设点P的坐标为解得,点或【解析】利用点A在上求a,进而代入反比例函数求k.联立方程求出交点,设出点P坐标表示三角形面积,求出P点坐标.本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达.26.已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.求证:≌;设,当四边形EGFH是正方形时,求矩形ABCD的面积.【答案】解:点F,G,H分别是BC,BE,CE的中点,,,,,,≌,当四边形EGFH是正方形时,可得:且,在中,点,H分别是BE,CE的中点,,且,,,,,矩形ABCD的面积.【解析】根据三角形中位线定理和全等三角形的判定证明即可;利用正方形的性质和矩形的面积公式解答即可.此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.27.如图,点O是的边AB上一点,与边AC相切于点E,与边BC,AB分别相交于点D,F,且.求证:;当,时,求AF的长.【答案】解:连接OE,BE,,,,与边AC相切于点E,在,,,,设的半径为r,则,在中,【解析】连接OE,BE,因为,所以,从而易证,所以,从可证明;设的半径为r,则,在中,,从而可求出r的值.本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.28.如图,已知二次函数的图象经过点,与x轴分别交于点A,点点P是直线BC上方的抛物线上一动点.求二次函数的表达式;连接PO,PC,并把沿y轴翻折,得到四边形若四边形为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.【答案】解:将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析是为;若四边形为菱形,则点P在线段CO的垂直平分线上,如图1,连接,则,垂足为E,,,点P的纵坐标,当时,即,解得,不合题意,舍,点P的坐标为;如图2,P在抛物线上,设,设直线BC的解析式为,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为,设点Q的坐标为,.当时,,解得,,,,,当时,四边形ABPC的面积最大.当时,,即P点的坐标为当点P的坐标为时,四边形ACPB的最大面积值为.【解析】根据待定系数法,可得函数解析式;根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.本题考查了二次函数综合题,解的关键是待定系数法;解的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.。

甘肃省白银市2023-2024学年九年级上学期期中数学试题(含答案解析)

甘肃省白银市2023-2024学年九年级上学期期中数学试题(含答案解析)

因为 AE 、 BG 、 CG 、 DE 分别是 DAB 、 ABC 、 BCD 、 ADC 的角平分线,
所以 BAE 1 BAD , ABG CBG 1ABC ,
京!南京!》《东京审判》的概率为( )
A.
1 2
B. 1 3
C.
2 3
D.
2 9
试卷第 1页,共 5页
10.如图,已知 Y ABCD 的四个内角的平分线分别交于点 E 、F 、G 、H ,则四边形 EFGH 的形状是( )
A.平行四边形 B.矩形
C.菱形
D.正方形
11.某超市第一季度中,1 月的营业额为 200 万元,2、3 月的总营业额为 1000 万元, 如果平均每月增长率为 x ,由题意可列方程( )
【详解】解:∵ x x 1 2x 2 ,
∴ x2 x 2x 2 , ∴ x2 x 2 0 , 故选 D. 【点睛】本题主要考查了一元二次方程的一般式,熟知一元二次方程的一般式是解题的关键. 4.D
答案第 1页,共 14页
【分析】本题考查了菱形的性质,根据“菱形的四边相等”即可求解.
A.1cm
B.2cm
C.1.5cm
D. 3 cm
8.若 x 2 是一元二次方程 x2 2x m 0 的一个根,则方程的另一个根是( )
A.2
B.1
C.0
D. 2
9.2023 年 12 月 13 日,是我国第十个南京大屠杀死难者国家公祭日.某地从《南京!
南京!》《东京审判》《屠城血证》三部影片中随机选取两部进行展播,则恰好展播《南
你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你 的解答过程. 26.如图,在四边形 ABCD 中,AB∥CD,AC 平分∠DAB,AB=2CD,E 为 AB 中点, 连接 CE.

2023年甘肃省白银市中考数学试卷【附参考答案】

2023年甘肃省白银市中考数学试卷【附参考答案】

2023年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.9的算术平方根是()A.±3B.±9C.3D.﹣32.若=,则ab=()A.6B.C.1D.3.计算:a(a+2)﹣2a=()A.2B.a2C.a2+2a D.a2﹣2a4.若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为()A.﹣2B.﹣1C.﹣D.25.如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交BC的延长于点E,则∠DEC=()A.20°B.25°C.30°D.35°6.方程=的解为()A.x=﹣2B.x=2C.x=﹣4D.x=47.如图,将矩形纸片ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若AB=2,BC=4,则四边形EFGH的面积为()A.2B.4C.5D.68.据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)90﹣912592﹣93■94﹣95■96﹣971198﹣9910100﹣101mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92﹣93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96﹣97岁的人数估计有110人9.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB与地面CD所成夹角∠ABC=50°时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF与地面的夹角∠EBC=()A.60°B.70°C.80°D.85°10.如图1,正方形ABCD的边长为4,E为CD边的中点.动点P从点A出发沿AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,线段PE的长为y,y与x的函数图象如图2所示,则点M的坐标为()A.(4,2)B.(4,4)C.(4,2)D.(4,5)二、填空题:本大题共6小题,每小题3分,共18分.11.因式分解:ax2﹣2ax+a=.12.关于x的一元二次方程x2+2x+4c=0有两个不相等的实数根,则c=(写出一个满足条件的值).13.近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果.如由我国制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“+9050米”,那么海平面以下10907米记作“.14.如图,△ABC内接于⊙O,AB是⊙O的直径,点D是⊙O上一点,∠CDB=55°,则∠ABC=°.15.如图,菱形ABCD中,∠DAB=60°,BE⊥AB,DF⊥CD,垂足分别为B,D,若AB=6cm,则EF=cm.16.如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A处离开水面,逆时针旋转150°上升至轮子上方B处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A处(舀水)转动到B处(倒水)所经过的路程是米.(结果保留π)三、解答题:本大题共6小题,共32分.17.计算:÷×2﹣6.18.解不等式组:.19.化简:﹣÷.20.1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知⊙O,A是⊙O上一点,只用圆规将⊙O的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A为圆心,OA长为半径,自点A起,在⊙O上逆时针方向顺次截取==;②分别以点A,点D为圆心,AC长为半径作弧,两弧交于⊙O上方点E;③以点A为圆心,OE长为半径作弧交⊙O于G,H两点.即点A,G,D,H将⊙O的圆周四等分.21.为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:A.南梁精神红色记忆之旅(华池县);B.长征会师胜利之旅(会宁县);C.西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母A,B,C,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.(1)求小亮从中随机抽到卡片A的概率;(2)请用画树状图或列表的方法,求两人都抽到卡片C的概率.22.如图1,某人的一器官后面A处长了一个新生物,现需检测其到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图说明如图2,新生物在A处,先在皮肤上选择最大限度地避开器官的B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再在皮肤上选择距离B处9cm的C处照射新生物,检测射线与皮肤MN的夹角为∠ECN.测量数据∠DBN=35°,∠ECN=22°,BC=9cm请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)四、解答题:本大题共5小题,共40分.23.某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x表示,分成6个等级:A.x<10;B.10≤x<15;C.15≤x<20;D.20≤x<25;E.25≤x <30;F.30≤x≤35).下面给出了部分信息:a.八年级学生上、下两个学期期末地理成绩的统计图如图:b.八年级学生上学期期末地理成绩在C.15≤x<20这一组的成绩是:15,15,15,15,15,16,16,16,18,18;c.八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期平均数众数中位数八年级上学期17.715m八年级下学期18.21918.5根据以上信息,回答下列问题:(1)填空:m=;(2)若x≥25为优秀,则这200名学生八年级下学期期末地理成绩达到优秀的约有人;(3)你认为该校八年级学生的期末地理成绩下学期比上学期有没有提高?请说明理由.24.如图,一次函数y=mx+n的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(3,a).(1)求点B的坐标;(2)用m的代数式表示n;(3)当△OAB的面积为9时,求一次函数y=mx+n的表达式.25.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,D是⊙O上的一点,CO平分∠BCD,CE⊥AD,垂足为E,AB与CD相交于点F.(1)求证:CE是⊙O的切线;(2)当⊙O的半径为5,sin B=时,求CE的长.26.【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由;【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由;【模型迁移】(3)在(2)的条件下,若AD=4,BD=3CD,求cos∠AFB的值.27.如图1,抛物线y=﹣x2+bx与x轴交于点A,与直线y=﹣x交于点B(4,﹣4),点C(0,﹣4)在y轴上.点P从点B出发,沿线段BO方向匀速运动,运动到点O时停止.(1)求抛物线y=﹣x2+bx的表达式;(2)当BP=2时,请在图1中过点P作PD⊥OA交抛物线于点D,连接PC,OD,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P从点B开始运动时,点Q从点O同时出发,以与点P相同的速度沿x轴正方向匀速运动,点P停止运动时点Q也停止运动.连接BQ,PC,求CP+BQ的最小值.1.C.2.A.3.B.4.D.5.C.6.A.7.B.8.D.9.B.10.C.11.a(x﹣1)2.12.0(答案不唯一).13.﹣10907米.14.35.15.2.16.5π.17.原式=3××2﹣6=12﹣6=6.18.由x>﹣6﹣2x得:x>﹣2,由x≤得:x≤1,则不等式组的解集为﹣2<x≤1.19.原式=﹣•=﹣=.20.如图:点G、D、H即为所求.21.(1)小亮从中随机抽到卡片A的概率为;(2)画树状图如下:共有9种等可能的结果,其中小亮和小刚两人都抽到卡片C的结果有1种,∴两人都抽到卡片C的概率是.22.过点A作AF⊥MN,垂足为F,设BF=xcm,∵BC=9cm,∴CF=BC+BF=(x+9)cm,在Rt△ABF中,∠ABF=∠DBN=35°,∴AF=BF•tan35°≈0.7x(cm),在Rt△ACF中,∠ACF=∠ECN=22°,∴AF=CF•tan22°≈0.4(x+9)cm,∴0.7x=0.4(x+9),解得:x=12,∴AF=0.7x=8.4(cm),∴新生物A处到皮肤的距离约为8.4cm.23.(1)把八年级上学期40名学生的地理成绩从小到大排列,排在中间的两个数分别为16,16,故中位数m==16.故答案为:16;(2)200×=35(人),即这200名学生八年级下学期期末地理成绩达到优秀的约有35人.故答案为:35;(3)该校八年级学生的期末地理成绩下学期比上学期有提高,理由如下:因为该校八年级学生的期末地理成绩下学期的平均数、众数和中位数均比上学期大,所以该校八年级学生的期末地理成绩下学期比上学期有提高.24.(1)∵反比例函数y=(x>0)的图象过点B(3,a),∴a==2,∴点B的坐标为(3,2);(2)∵一次函数y=mx+n的图象过点B,∴2=3m+n,∴n=2﹣3m;(3)∵△OAB的面积为9,∴,∴n=6,∴A(0,﹣6),∴﹣6=2﹣3m,∴m=,∴一次函数的表达式是y=x﹣6.25.(1)证明:∵CE⊥AD,∴∠E=90°,∵CO平分∠BCD,∴∠OCB=∠OCD,∵OB=OC,∴∠B=∠BCO=∠D,∴∠D=∠OCD,∴OC∥DE,∴∠OCE=∠E=90°,∵OC是圆的半径,∴CE是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∵sin B==,∴AC=6,∵∠OCE=∠ACO+∠OCB=∠ACO+∠ACE=90°,∴∠ACE=∠OCB=∠B,∴sin∠ACE=sin B==,解得:AE=3.6,∴CE==4.8.26.(1)证明:①∵△ABC和△BDE都是等边三角形,∴AB=CB,EB=DB,∠ABC=∠EBD=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD;②解:AD=BD+DF.理由如下:∵△BDE是等边三角形,∴BD=DE,∵点C与点F关于AD对称,∴CD=DF,∵AD=AE+DE,∴AD=BD+DF;(2)BD+DF=AD.理由如下:如图1,过点B作BE⊥AD于E,∵点C与点F关于AD对称,∴∠ADC=∠ADB,又∵CD⊥BD,∴∠ADC=∠ADB=45°,又∵BE⊥AD,∴△BDE是等腰直角三角形,又∵△ABC是等腰直角三角形,∴,∠ABC=∠EBD=45°,∴∠ABE=∠CBD,∴△ABE∽△CBD,∴,CD=DF,∴DF=AE,∵△BDE是等腰直角三角形,∴BD=,∴BD+DF=,即:BD+DF=AD.(3)解:如图2,过点A作AG⊥BD于G,又∵∠ADB=45°,∴△AGD是等腰直角三角形,又∵AD=4,∴AG=DG=4,BD+DF=AD=8,∵BD=3CD,CD=DF,∴DF=2,又∵DG=4,∴FG=DG﹣DF=2,在Rt△AFG中,由勾股定理得:,∴cos∠AFB=.27.(1)∵抛物线y=﹣x2+bx过点B(4,﹣4),∴﹣16﹣4b=﹣4,∴b=3,∴y=﹣x2+3x.答:抛物线的表达式为y=﹣x2+3x.(2)四边形OCPD是平行四边形,理由如下:如图1,作PD⊥OA交x轴于点H,连接PC、OD,∵点P在y=﹣x上,∴OH=PH,∠POH=45°,连接BC,∵OC=BC=4,∴.∴,∴,∴,当xD =2时,DH=yD=﹣4+3×2=2,∴PD=DH+PH=2+2=4,∵C(0,﹣4),∴OC=4,∴PD=OC,∵OC⊥x轴,PD⊥x轴,∴PD∥OC,∴四边形OCPD是平行四边形.(3)如图2,由题意得,BP=OQ,连接BC,在OA上方作△OMQ,使得∠MOQ=45°,OM=BC,∵OC=BC=4,BC⊥OC,∴∠CBP=45°,∴∠CBP=∠MOQ,∵BP=OQ,∠CBP=∠MOQ,BC=OM,∴△CBP≌△MOQ(SAS),∴CP=MQ,∴CP+BQ=MQ+BQ≥MB(当M,Q,B三点共线时最短),∴CP+BQ的最小值为MB,∵∠MOB=∠MOQ+∠BOQ=45°+45°=90°,∴,即CP+BQ的最小值为4.答:CP+BQ的最小值为4.。

甘肃省白银市2024届九年级下学期中考三模数学试卷(含解析)

甘肃省白银市2024届九年级下学期中考三模数学试卷(含解析)

白银市2024年九年级毕业会考综合练习数学试卷注意事项:1.全卷满分150分,答题时间为120分钟.2.请将各题答案填写在答题卡上.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1. 4的算术平方根是( )A. 2B. 4C.D.【答案】A解析:4的算术平方根是2,故选:A.2. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C解析:解:A.是轴对称图形,不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意.C.既是轴对称图形,又是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.3. 已知是方程组的解,则a﹣b的值是()A. B. C. D.【答案】D解析:∵是方程组的解,∴.两个方程相减,得a﹣b=4.故选:D.4. 若3x=4,3y=6,则3x-2y的值是( )A. B. 9 C. D. 3【答案】A解析:∵3x=4,3y=6,∴3x-2y=3x÷(3y)2=4÷62=.故选A.5. 把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为( )A. B. C. D.【答案】B解析:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.6. 若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )A. k<5B. k<5,且k≠1C. k≤5,且k≠1D. k>5【答案】B解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选:B.7. 某公司10名职工3月份的工资如下表所示,则这10名职工3月份工资的中位数是()工资/元5000520054005600人数/人1342A. 5200元B. 5300元C. 5400元D. 5500元【答案】C解析:这组数据按照从小到大的顺序排列为:5000,5200,5200,5200,5400,5400,5400,5400,5600,5600,则中位数为:.故选:C.8. 如图,2条宽为1的带子以α角交叉重叠,则重叠部分(阴影部分)的面积为( )A. sinαB.C.D.【答案】B解析:过点A作AE⊥BC于点E,过点D作DF⊥AB于点F,如下图所示:由已知得:AB∥CD,AD∥BC,AE=DF=1,∴∠DAF=∠ABE,四边形ABCD为平行四边形,又∵∠DFA=∠AEB,∴△ABE≌△DAF(AAS),∴AB=AD,即四边形ABCD为菱形.在直角△ABE中,,∴,∴重叠部分的面积即阴影部分的面积.故选:B.9. 如图,为的直径,点C、D在上,且,,则的长为()A. B. C. D.【答案】C解析:解:∵为的直径,,∴∠ACB=90°,,连接OD,∵,∴∠DOB=60°,∵OD=OB,∴△OBD为等边三角形,∴,故选:C.10. 如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC=x,PE+PB=y,图②是y关于x的函数图象,且图象上最低点Q的坐标为(4,3),则正方形ABCD的边( )A. 6B. 3C. 4D. 4【答案】A解析:解:如图,点D是点B关于直线AC的对称点,连接DE交AC于点P,则此时y取得最小值,根据点对称性,PB=PD,则y=PE+PB=PD+PE=DE为最小,故ED=3,设正方形的边长为x,则AE=x,在Rt△ADE中,由勾股定理得:DE2=AD2+AE2,即x2+(x)2=(3)2,解得:x=6(负值已舍去),故选:A.二、填空题:本大题共6小题,每小题4分,共24分.11. 分解因式:3a2﹣12=___.【答案】3(a+2)(a﹣2)解析:3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).12. 已知一个正多边形的内角为,这个多边形的条数为________.【答案】9解析:∵一个正多边形的内角为,∴每个外角为:,∴这个多边形的条数为,故答案为:.13. 某品牌酸奶外包装上标明“净含量:”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是__________口味的酸奶.种类原味草莓味香草味巧克力味净含量/mL175180190185【答案】香草味解析:由题意可得:合格酸奶净含量的最小值为:,合格酸奶净含量的最大值为:,∴合格酸奶的重量范围为,则净含量不合格的是香草味,故答案为:香草味.14. 某校在劳动周组织学生到校园周边种植甲、乙两种树苗,已知购买3棵甲种树苗、2棵乙种树苗共需12元;购买1棵甲种树苗、3棵乙种树苗共需11元.那么每棵甲种树苗的价格为__________元.【答案】2解析:解:设每棵甲种树苗元,每棵乙种树苗元解得;∴每棵甲种树苗2元,每棵乙种树苗3元,故答案为:2.15. 如图,在中,,分别是,的中点,是延长线上一点,,交于点,且,则__________.【答案】2解析:解:∵D、E分别是AB和AC的中点∴DE∥BC,DE=BC,∴∠EDG=∠F,∵EG=CG, ∠DGE=∠FGC,∴△GED≌△GCF∴DE=CF=1∴CF=BC∴BC=2故答案为2.16. 在某公园内,牡丹按正方形形状种植,芍药种植在它的周围,下图反映了牡丹的列数(n)和芍药的数量规律,那么当时,芍药的数量为__________株.【答案】800解析:解:由图可得,当时,芍药的数量为:,当时,芍药的数量为:,当时,芍药的数量为:,当时,芍药的数量为:,……故芍药的数量为:,当时,芍药的数量为:,故答案为:800.三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17. 计算:.【答案】解析:解:.18. 如图,扇形的圆心角是为,四边形是边长为1的正方形,点,分别在,,在弧上,求图中阴影部分的面积.(结果保留π)【答案】解析:解:四边形是边长为1的正方形,,图中阴影部分的面积.∴图中阴影部分的面积为.19. 先化简,再从中选择一个合适的x的值代入求值【答案】,当时,解析:解:,要使分式有意义,必须,且,即不能为,0,2,取,当时,原式.20. 如图,已知锐角三角形,.(1)尺规作图:①作的垂直平分线l;②作的平分线,且交于点M.(2)若l与交于点P,,求的度数.【答案】(1)①作图见解析,②作图见解析,(2)解析:解:(1)①如图直线l为所求作的图形;②射线为所求作图形.(2)∵BC的垂直平分线为l,∴PB=PC,∴∠PBC=∠PCB=32°,∵BM平分∠ABC,∠ABP=∠CBP=32°,∵∠A=60°,∴.21. 小华利用假期的时间到甘肃旅游,众多的旅游景点让小华难以抉择,于是小华将扑克牌中“A”的四种花色分别记为莫高窟(红桃A),嘉峪关(梅花A),敦煌雅丹国家地质公园(方片A),崆峒山(黑桃A),随后将这四张扑克牌正面朝下,从中随机抽取一张,作为自己的第一站旅游地点.(1)小华抽中敦煌雅丹国家地质公园的概率为________;(2)小华发现他的朋友也正在甘肃旅游,且他的朋友明天将会从莫高窟、嘉峪关、敦煌雅丹国家地质公园这三个景点中任意选择一个游览.若他们按照各自的旅游线路进行游览,请用列表或画树状图的方法,求小华和他的朋友明天去同一个景点的概率.【答案】(1)(2)【小问1解析】P(抽中敦煌雅丹国家地质公园).【小问2解析】列表如下:红桃梅花方片红(红桃,红桃)(红桃,梅花)(红桃,方片)桃梅(梅花,红桃)(梅花,梅花)(梅花,方片)花方(方片,红桃)(方片,梅花)(方片,方片)片黑(黑桃,红桃)(黑桃,梅花)(黑桃,方片)桃由列表可得,共有12种等可能的结果,其中抽到相同景点的结果有3种,∴P(小华和他的朋友明天去同一个景点).22. 如图,某校教学楼的前面有一建筑物,在距离正前方10米的观测点M处,以的仰角测得建筑物的顶端C恰好挡住教学楼顶端A,而在建筑物上距离地面4米高的E处,测得教学楼的顶端A的仰角为,求教学楼的高度.(参考数据:,)【答案】教学楼的高度为18.1米.解析:解:如图,过点E作于点F,,,,,米,四边形是矩形设米,则米,米,米,,,,(米),答:教学楼的高度约为18.1米.23. 学校随机抽取部分学生就“你是否喜欢网课”进行问卷调查,并将调查结果进行统计后,绘制成如下的统计表和扇形统计图.调查结果统计表态度非常喜欢喜欢一般不喜欢频数90b3010频率a0.350.20请你根据统计图、表提供的信息解答下列问题:(1)该校随机抽取了________名同学参加问卷调查;(2)确定统计表中a、b的值,a=________,b=________;(3)在统计图中“喜欢”部分扇形所对应的圆心角是________度;(4)若该校共有1000名学生,估计全校态度为“非常喜欢”的学生有多少人.【答案】(1)200,(2)0.45,70,(3)126,(4)450人解析:解:(1)抽查的学生总数:(30+10)÷0.20=200(名),故答案:200(2)a==0.45,b=200×0.35=70,故答案为:0.45;70;(3)“喜欢”网课所对应扇形的圆心角度数:360°×=126°;故答案为:126.(4)1000×=450(人),答:该校“非常喜欢”网课的学生约有450人.24. 如图,反比例函数的图象与直线相交于点C,过直线上的点作轴于点B,交反比例函数的图象于点D,且.(1)求反比例函数的解析式;(2)求四边形的面积.【答案】(1);(2).【小问1解析】解:点在直线上,∴,,∴轴,,,点D在反比例函数的图象上,.反比例函数的解析式为.【小问2解析】由,解得或(舍去),,.25. 如图,是的直径,与相交于点.过点的圆O的切线,交的延长线于点,.(1)求的度数;(2)若,求的半径.【答案】(1)(2)【小问1解析】如图,连接.为的切线,.,.,.,.小问2解析】如图,连接,,,.,,且,,,即,,,即半径为.26. 【问题情境】在数学活动课上,老师让同学们以“矩形的折叠”为主题开展数学活动,如图,在矩形纸片中,点M,N分别是、的中点,点E,F分别在、上,且.【动手操作】将沿折叠,点A的对应点为点P,将沿折叠,点C的对应点为点Q,点P,Q均落在矩形的内部,连接,.【问题解决】(1)求证:四边形是平行四边形.(2)若,四边形为菱形,求的长.【答案】(1)证明见解析;(2)解析:解:(1)证明:如图1,延长交的延长线于.四边形是矩形,,,点M,N分别是,的中点,,.又,,,,.,,,,四边形是平行四边形(2)如图2,连接,交于点,延长交于,延长交于.图2四边形是菱形,,,,,,,,,,.27. 如图,在平面直角坐标系中,的边在x轴上,,以A为顶点的抛物线经过点,交y轴于点,动点P在对称轴上.(1)求抛物线的解析式.(2)若点P从A点出发,沿方向以1个单位长度/秒的速度匀速运动到点B停止,设运动时间为t 秒,过点P作交于点D,过点D且平行于y轴的直线l交抛物线于点Q,连接,当t为何值时,的面积最大?最大值是多少?(3)抛物线上是否存在点M,使得以点P,M,E,C为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)(2)当时,的面积最大,最大值为1;.【小问1解析】解:∵抛物线经过点,交y轴于点,∴把点,代入,得:,解得,,∴抛物线的解析式为:;小问2解析】∵∴抛物线的顶点A的坐标为,设直线的解析式为:把,代入得:,解得,,∴直线的解析式为:设点,对于当时,,∴,对于,当时,,∴,∴,∴∵∴有最大值,当时,最大值为1;【小问3解析】①若为平行四边形的对角线时,设点,,又,,∴的中点坐标的横坐标为,也是中点坐标的横坐标,∴∴把代入,得∴;②若为边时,将向下平移m个单位,再向左平移2个单位到点P,此时点M的坐标为,若点在抛物线上时,则有:∴;③若为对角线时,点E向下平移n个单位,再向右平移1个单位,则点C也向下平移n个单位,向右平移1个单位,则有,∴∴.综上所述,存在点M,使得以点P,M,E,C为顶点的四边形是平行四边形,点M的坐标为或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年甘肃省白银市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填涂在答题卡上.1.3分2014白银﹣3的绝对值是A.3B.﹣3C.﹣D.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:﹣3的绝对值是3.故选:A.点评:此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.3分2014白银节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为A.×107B.×108C.×109D.×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350 000 000有9位,所以可以确定n=9﹣1=8.解答:解:350 000 000=×108.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.3分2014白银如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是A.B.C.D.考点:简单组合体的三视图.分根据从正面看得到的图形是主视图,可得答案.析:解解:主视图是正方形的右上角有个小正方形,答:故选:D.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.点评:4.3分2014白银下列计算错误的是A.=B.+=C.÷=2D.=2考二次根式的混合运算.点:利用二次根式的运算方法逐一算出结果,比较得出答案即可.分析:解解:A 、=,计算正确;答:B 、+,不能合并,原题计算错误;C 、÷==2,计算正确;D 、=2,计算正确.故选:B.点评:此题考查二次根式的运算方法和化简,掌握计算和化简的方法是解决问题的关键.5.3分2014白银将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有A.4个B.3个C.2个D.1个考点:平行线的性质;余角和补角.分析:由互余的定义、平行线的性质,利用等量代换求解即可.解答:解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选C.点评:此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.6.3分2014白银下列图形中,是轴对称图形又是中心对称图形的是A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,答:是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.7.3分2014白银已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是A.相交B.相切C.相离D.无法判断考点:直线与圆的位置关系.分设圆的半径为r,点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,析:则直线于圆相切;若d>r,则直线与圆相离,从而得出答案.解答:解:设圆的半径为r,点O到直线l的距离为d,∵d=5,r=6,∴d<r,∴直线l与圆相交.故选A.点评:本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.8.3分2014白银用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为A.x5+x=6B.x5﹣x=6C.x10﹣x=6D.x10﹣2x=6考点:由实际问题抽象出一元二次方程.专几何图形问题.题:分析:一边长为x米,则另外一边长为:5﹣x,根据它的面积为5平方米,即可列出方程式.解答:解:一边长为x米,则另外一边长为:5﹣x,由题意得:x5﹣x=6,故选:B.点评:本题考查了由实际问题抽相出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.9.3分2014白银二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点A.﹣1,﹣1B.1,﹣1C.﹣1,1D.1,1考点:二次函数图象与系数的关系.分析:此题可将b+c=0代入二次函数,变形得y=x2+bx﹣1,若图象一定过某点,则与b 无关,令b的系数为0即可.解答:解:对二次函数y=x2+bx+c,将b+c=0代入可得:y=x2+bx﹣1,则它的图象一定过点1,1.故选D.点评:本题考查了二次函数与系数的关系,在这里解定点问题,应把b当做变量,令其系数为0进行求解.10.3分2014白银如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x≤x≤,EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是A.B.C.D.考点:动点问题的函数图象.分析:通过相似三角形△EFB∽△EDC 的对应边成比例列出比例式=,从而得到y与x之间函数关系式,从而推知该函数图象.解答:解:根据题意知,BF=1﹣x,BE=y﹣1,且△EFB∽△EDC,则=,即=,所以y=≤x≤,该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选C.本题考查了动点问题的函数图象.解题时,注意自变量x的取值范围.点评:二、填空题:本大题共8小题,每小题4分,共32分.把答案写在答题卡中的横线上. 11.4分2014白银分解因式:2a2﹣4a+2= 2a﹣12.考点:提公因式法与公式法的综合运用.专题:计算题.分析:先提公因式2,再利用完全平方公式分解因式即可.解答:解:2a2﹣4a+2,=2a2﹣2a+1,=2a﹣12.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.4分2014白银化简:= x+2 .考点:分式的加减法.专题:计算题.分析:先转化为同分母x﹣2的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.13.4分2014白银等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是8 cm.考点:勾股定理;等腰三角形的性质.分析:利用等腰三角形的“三线合一”的性质得到BD=BC=6cm,然后在直角△AB D 中,利用勾股定理求得高线AD的长度.解答:解:如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===8cm.故答案是:8.点评:本题主要考查了等腰三角形的三线合一定理和勾股定理.等腰三角形底边上的高线把等腰三角形分成两个全等的直角三角形.14.4分2014白银一元二次方程a+1x2﹣ax+a2﹣1=0的一个根为0,则a= 1 .考点:一元二次方程的定义.专题:计算题.分析:根据一元二次方程的定义和一元二次方程的解的定义得到a+1≠0且a2﹣1=0,然后解不等式和方程即可得到a的值.解答:解:∵一元二次方程a+1x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为1.点评:本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+bx+c=0a≠0.也考查了一元二次方程的解的定义.15.4分2014白银△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.考点:特殊角的三角函数值;三角形内角和定理.分析:先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.解答:解:∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.点评:本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.16.4分2014白银已知x、y为实数,且y=﹣+4,则x﹣y= ﹣1或﹣7 .考点:二次根式有意义的条件.专题:计算题.分析:根据一对相反数同时为二次根式的被开方数,那么被开方数为0可得x可能的值,进而得到y的值,相减即可.解答:解:由题意得x2﹣9=0,解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.点评:考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.17.4分2014白银如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .考点:中心对称;菱形的性质.分析:根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.解答:解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.点评:本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.18.4分2014白银观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= 552.考点:规律型:数字的变化类.专题:压轴题;规律型.分析:13=1213+23=1+22=3213+23+33=1+2+32=6213+23+33+43=1+2+3+42=10213+23+33+…+103=1+2+3…+102=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=1+2+…+n2所以13+23+33+…+103=1+2+3…+102=552.点评:本题的规律为:从1开始,连续n个数的立方和=1+2+…+n2.三、解答题一:本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.6分2014白银计算:﹣23+×2014+π0﹣|﹣|+tan260°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣8+﹣+3=﹣5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.6分2014白银阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.如果有>0,求x的解集.考点:解一元一次不等式.专题:阅读型.分析:首先看懂题目所给的运算法则,再根据法则得到2x﹣3﹣x>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.解答:解:由题意得2x﹣3﹣x>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1.点评:此题主要考查了一元一次不等式的解法,关键是看懂题目所给的运算法则,根据题意列出不等式.21.8分2014白银如图,△ABC中,∠C=90°,∠A=30°.1用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.保留作图痕迹,不要求写作法和证明;2连接BD,求证:BD平分∠CBA.考点:作图—复杂作图;线段垂直平分线的性质.专题:作图题;证明题;压轴题.分析:1分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;2根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.解答:1解:如图所示,DE就是要求作的AB边上的中垂线;2证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.点评:本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,难度不大,需熟练掌握.22.8分2014白银为倡导“低碳生活”,人们常选择以自行车作为代步工具、图1所示的是一辆自行车的实物图.图2是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条只显示,且∠CAB=75°.参考数据:sin75°=,cos75°=,tan75°=1求车架档AD的长;2求车座点E到车架档AB的距离结果精确到1cm.考点:解直角三角形的应用.分析:1在Rt△ACD中利用勾股定理求AD即可.2过点E作EF⊥AB,在RT△EFA中,利用三角函数求EF=AEsin75°,即可得到答案.解答:解:1∵在Rt△ACD中,AC=45cm,DC=60cm∴AD==75cm,∴车架档AD的长是75cm;2过点E作EF⊥AB,垂足为F,∵AE=AC+CE=45+20cm,∴EF=AEsin75°=45+20sin75°≈≈63cm,∴车座点E到车架档AB的距离约是63cm.点评:此题主要考查了勾股定理与三角函数的应用,关键把实际问题转化为数学问题加以计算.23.10分2014白银如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A﹣1,a、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.1求m、n的值;2求直线AC的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:1由题意,根据对称性得到B的横坐标为1,确定出C的坐标,根据三角形AOC的面积求出A的纵坐标,确定出A坐标,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;2设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出直线AC的解析式.解答:解:1∵直y=mx与双曲线y=相交于A﹣1,a、B两点,∴B点横坐标为1,即C1,0,∵△AOC的面积为1,∴A﹣1,2,将A﹣1,2代入y=mx,y=可得m=﹣2,n=﹣2;2设直线AC的解析式为y=kx+b,∵y=kx+b经过点A﹣1,2、C1,0∴,解得k=﹣1,b=1,∴直线AC的解析式为y=﹣x+1.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象与性质,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.四、解答题二:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.8分2014白银在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标x,y.1请你运用画树状图或列表的方法,写出点P所有可能的坐标;2求点x,y在函数y=﹣x+5图象上的概率.考点:列表法与树状图法;一次函数图象上点的坐标特征.分析:1首先根据题意画出表格,即可得到P的所以坐标;2然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案解答:解:列表得:y1234xx,y11,21,31,422,12,32,433,13,23,444,14,24,31点P所有可能的坐标有:1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3共12种;2∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:1,4,2,3,3,2,4,1∴点Px,y在函数y=﹣x+5图象上的概率为:P=.点评:此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.25.10分2014白银某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A非常喜欢、B比较喜欢、C一般、D不喜欢四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题:1此次调查的学生人数为200 ;2条形统计图中存在错误的是 C 填A、B、C、D中的一个,并在图中加以改正;3在图2中补画条形统计图中不完整的部分;4如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人考点:条形统计图;用样本估计总体;扇形统计图.分析:1根据A、B的人数和所占的百分比求出抽取的学生人数,并判断出条形统计图A、B长方形是正确的;2根据1的计算判断出C的条形高度错误,用调查的学生人数乘以C所占的百分比计算即可得解;3求出D的人数,然后补全统计图即可;4用总人数乘以A、B所占的百分比计算即可得解.解答:解:1∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;2由1可知C条形高度错误,应为:200×1﹣20%﹣40%﹣15%=200×25%=50,即C的条形高度改为50;故答案为:200;C;3D的人数为:200×15%=30;4600×20%+40%=360人,答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.10分2014白银D、E分别是不等边三角形ABC即AB≠BC≠AC的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.1如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;2若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系直接写出答案,不需要说明理由.考点:三角形中位线定理;平行四边形的判定;菱形的判定.分析:1根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE=BC,GF∥BC且GF=BC,从而得到DE∥GF,DE=GF,再利用一组对边平行且相等的四边形是平行四边形证明即可;2根据邻边相等的平行四边形是菱形解答.解答:1证明:∵D、E分别是AB、AC边的中点,∴DE∥BC,且DE=BC,同理,GF∥BC,且GF=BC,∴DE∥GF且DE=GF,∴四边形DEFG是平行四边形;2解:当OA=BC时,平行四边形DEFG是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及平行四边形与菱形的关系,熟记的定理和性质是解题的关键.27.10分2014白银如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.1求证:DE是半圆⊙O的切线.2若∠BAC=30°,DE=2,求AD的长.考点:切线的判定.专题:计算题.分析:1连接OD,OE,由AB为圆的直径得到三角形BCD为直角三角形,再由E为斜边BC的中点,得到DE=BE=DC,再由OB=OD,OE为公共边,利用SSS得到三角形OBE 与三角形ODE全等,由全等三角形的对应角相等得到DE与OD垂直,即可得证;2在直角三角形ABC中,由∠BAC=30°,得到BC为AC的一半,根据BC=2DE求出BC的长,确定出AC的长,再由∠C=60°,DE=EC得到三角形EDC为等边三角形,可得出DC的长,由AC﹣CD即可求出AD的长.解答:1证明:连接OD,OE,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODESSS,∴∠ODE=∠ABC=90°,则DE为圆O的切线;2在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=DC,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.点评:此题考查了切线的判定,以及全等三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.28.12分2014白银如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.1求点M、A、B坐标;2联结AB、AM、BM,求∠ABM的正切值;3点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.考点:二次函数综合题.专题:压轴题.分析:1根据向右平移横坐标加写出平移后的抛物线解析式,然后写出顶点M的坐标,令x=0求出A点的坐标,把x=3代入函数解析式求出点B的坐标;2过点B作BE⊥AO于E,过点M作MF⊥AO于M,然后求出∠EAB=∠EBA=45°,同理求出∠FAM=∠FMA=45°,然后求出△ABE和△AMF相似,根据相似三角形对应边成比例列式求出,再求出∠BAM=90°,然后根据锐角的正切等于对边比邻边列式即可得解;3过点P作PH⊥x轴于H,分点P在x轴的上方和下方两种情况利用α的正切值列出方程求解即可.解答:解:1抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=x﹣12﹣3,顶点M1,﹣3,令x=0,则y=0﹣12﹣3=﹣2,点A0,﹣2,x=3时,y=3﹣12﹣3=4﹣3=1,点B3,1;2过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==;3过点P作PH⊥x轴于H,∵y=x﹣12﹣3=x2﹣2x﹣2,∴设点Px,x2﹣2x﹣2,①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣舍去,x2=3,∴点P的坐标为3,1;②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=舍去,x2=,x=时,x2﹣2x﹣2=﹣×=﹣,∴点P的坐标为,﹣,综上所述,点P的坐标为3,1或,﹣.点评:本题是二次函数的综合题型,主要利用了二次函数图象与几何变换,抛物线与坐标轴的交点的求法,相似三角形的判定与性质,锐角三角形函数,难点在于作辅助线并分情况讨论.。

相关文档
最新文档