有线电视宽带网络结构
有线电视网络结构和HFC接入基础知识

有线电视网络结构和HFC接入基础知识第1章HFC产生 (2)1.1 背景 (2)1.1.1 有线电视网络差不多特点 (2)1.1.2 有线电视网络演进过程 (2)1.2 现状 (3)第2章二、HFC网络技术概要 (5)2.1 标准简介 (5)2.1.1 概述 (5)2.1.2 DOCSIS/EuroDOCSIS演进和应用情形 (5)2.1.3 PACKETCABLE标准演进和应用情形 (6)2.2 回传系统建设〔噪声,回传躁声问题的的抑制,回传带宽的有效利用〕 (6)2.3 双向数据实现原理――DOCSIS/EuroDOCSIS (6)2.3.1 系统结构 (6)2.3.2 通信协议框架 (7)2.3.3 物理层技术 (8)2.3.4 MAC层技术 (11)2.3.5 终端启动配置 (13)2.3.6 CMTS治理 (13)2.4 话音业务实现原理――PacketCable (13)2.4.1 系统结构 (13)2.4.2 呼叫信令 (14)2.4.3 DQoS方案 (14)2.4.4 EMTA启动配置流程 (15)2.4.5 设备治理................................................................................. 错误!未定义书签。
第1章 HFC产生1.1 背景1.1.1 有线电视网络差不多特点有线电视网和网是连接千家万户的两大网络,然而这两个网络的运行机制却是完全不同,在表1-1中对网与有线电视网进行了一个简单的比较,以加深对有线电视网络的认识:表1-1网与传统有线电视网对比我们能够看到,传统的有线电视网是一个单向广播网络,网络中传输通过调制的模拟射频信号,不同的电视频道信号在网络中占用不同的频点来区分开,其用户接入同轴电缆具有远远高于线的频谱带宽。
1.1.2 有线电视网络演进过程早期的有线电视网络是基于完全的同轴电缆的网络,随着有线电视产业和信息技术的进展,90年代初开始,在中国原有的同轴网络部分传输管道被改造为光纤,速率多为450/550MHz,确实是我们通常所说的光纤同轴混合网,即HFC网〔Hybrid Fiber Coax〕。
项目1有线电视网络系统组成与功能认识

1 . 3 . 3 传统有线电视系出系统,包括多台摄像机、电影电视 设备、 DVD 播放设备、字幕机、切换矩阵、自动播出控制系统以及 演播室、转播车等。
④ 用于接收其他有线网传送信号的相应设备,具体组成取决于传送 方式。如采用微波( AML ) ,则需要微波接收天线和下变频器;如 采用 AM 光纤,则需要光纤接收机;而如果采用数字光纤传送,则除 了光纤接收机外,还需要有将相应数字信号转化为模拟视、音频信号 的专门设备。
1 . 3 . 3 传统有线电视系统的基本组成
返回首页
这里所谓的传统有线电视系统,是指采用邻频传输方 式,只传送模拟电视节目的单向有线电视系统。这种系统 在我国极为普及,分布面广,至今仍大量存在。图 1 一 4 是这类系统基本组成的示意性框图。
返回首页
图 1 一 4 传统有线电视系统的基本组成
返回首页
1 . 3 . 3 传统有线电视系统的基本组成
返回首页
大型有线电视系统的前端不止一个: 本地前端(相当于主前端)是指其中直接与系统干线或与作干线用 的短距离传输线路相连的前端。 远地前端(相当于本地前端的信号源前端)是指经过长距离地面或 卫星传输把信号传递给本地前端的前端。 中心前端(相当于分前端)是指设置于服务区域的中心,其输人来 自本地前端及其他可能信号源的辅助前端。一般说来,一个有线电视 系统只有一个本地前端,但却可能有多个远地前端和多个中心前端。
图1- 有线电视系统原理方框图
1 . 3 . 3 传统有线电视系统的基本组成
返回首页
( 1 )信号源
传统的有线电视系统的节目来源通常包括多个卫星转发的卫星电 视信号、当地电视台发送的开路电视信号、当地微波站发射的微波电 视信号、其他有线电视网通过某种方式传输过来的电视信号、自办电 视节目、自办或转播的视、音频节目等,接收或产生这些节目信号的 设备共同组成了系统的信号源部分。这些设备包括: ① 用于开路广播电视接收的高增益接收天线(通常是多单元强方 向性的八木天线)。 ② 用于卫星电视接收的卫星地面接收系统。
有线电视网络的组成和应用

• 可见光——384THz--769THz、781--390nm,它能引起人们的 视觉。
• 频率更高的还有:
紫外线—800THz--300KTHz 常用于消毒、杀菌
X射线—300KTHz--50MTH 金属探伤、透视 γ射线—1018Hz--1022Hz
路漫漫其悠远
有线电视网络的组成和应用
一、有线电视网络的组成
• 用户分配网的任务是把干线传输来的电视信号经 分配系统均匀地送到千家万户。
路漫漫其悠远
有线电视网络的组成和应用
卫星
卫星
接收机 接收机
电视 解调器
电视 解调器
频道 处理器
调频 接收机
SDH
调频 接收机
适配、 解码器
信
号
源
系
光
放像机
接收机
统
电视
电视
调制器 调制器
电视 调制器
电视 调制器
多路混合器
调频 调制器
单台放大器 (C/N)单=Vi-NF-2.4 dB
n台相同放大器级联
(C/N)N=(C/N)单 – 10lgn dB
路漫漫其悠远
有线电视网络的组成和应用
(3)电视信号的图像质量等级
• 根据国家标准GB7041规定图像质量主观评价的 五级损伤制为: S/N=23-Q+1.1Q2
路漫漫其悠远
有线电视网络的组成和应用
路•漫漫输其悠远出电平每提高1dB,非线性失有线真电视就网络的劣组成和化应用1—2dB。
5、有线电视系统的基本组成
• 有线电视系统主要由信号源、前端、干线传输和 分配网络等四部分组成。• Βιβλιοθήκη 号源是提供传送广播电视信号节目的源头
有线电视网络结构

有线电视网络结构第一章 链路第一节 机房CMTS 机房混合情况此图为分前端机房模式1. 由环网来的光信号经BK 接收机接收后变成射频信号,用宽放放大,之后用分配分成若干路(十六)作为下行光发的推动。
光发的推动电平在18~25dBmV 之间,根据不同设备和传输频道不同而异。
2. 分路器的作用是将光发输出的光信号分成几路,比如一分四或一分六。
3.ODF 架为无原设备,是实现分路器输出光纤与外界光缆对接的一个设备。
4. 上行光纤(上行信号)传至上行光平台变成射频信号,经混合传给CMTS 主机。
注:每路上行信号电平都是不一样的,这需要在混合器上用ADC 插片调整,最后使传给CMTS 的信号为6dBmV 。
链路结构楼栋上的网络结构楼栋上的网络结构什么是分支,什么是分配?1.分配是指有一个输入,两个以上输出,每个输出口输出是相同的设备。
一般有2、3、4、6、8、10各种不同的出口。
分配器的特点是相互隔离度小,一般只能达到20~26dB。
好的也不过30dB。
一般是用作主线路的分路。
2.分支不同于分配,它是有一个输入,一个输出,一个或几个分支输出设备。
特点是反向隔离大,能达到35~40dB。
分支出口一般是直接带用户的。
3.根据使用场所使用它们,不能混为一谈。
分配的闲臵口和分支的输出口是不能空载的,要用负载(专用75欧姆负载)封上。
否则会造成阻抗失配。
引入概念:1.相互隔离:对于分配而言,每两个出口之间的隔离度叫做相互隔离。
就是在一个出口输入一个信号,再到另一个出口测量,这个损耗就是隔离度。
2.反向隔离:分支的输出口对分支口之间的隔离叫反向隔离。
无论是在分支口注入信号,还是在输出口注入信号都是一样的。
3.注意,要在阻抗匹配的情况下进行。
集中分支和集中分配的区别和用法1.集中分配是分配串分配,最终相互隔离不高。
除了路数少的分配可作为主路分路用之外,一般不使用它。
2.集中分支是用分配把一路输入分成2路或4路,然后再把每一路做成分支串。
有线电视网络的结构及组网要求1

有线电视网络的结构及组网要求
什么叫骨干网
定义:“骨干网”通常是用于描述大型网络结构时经常使用的词语,描述网络结构,主要是要看者清楚网络拓扑结构,而非具体使用的传输方式或协议。
骨干网一般都是广域网:作用范围几十到几千公里
主干是为一个片提供信号的缆线,就昆广网络来说骨干网与接入网是相对来说的。
骨干网是连接机房与机房之间的网络。
什么叫接入网
分前端以后的称为接入网,连接用户的缆线为接入网
定义:
我们现在用来搭成的这张网络分为多少层
四层
1物理链路传输层
物理链路传输层,不带设备,只是单纯的介质
2逻辑通道层
逻辑通道层:设备与设备之间构成通信的介质,需要进行调制得到。
光发射机所逻辑通道层。
3业务层
业务层:各个业务系统
调制器、接收机
4内容层
内容层:基带信号
每段连接常用缆线情况
机房至交接箱72以上
交接箱至壁挂箱48以下
壁挂箱至光机12以下
机房与机房之间72
机房出缆根据片区用户而选用不同的缆线
一般一条288缆覆盖4个子片区
机房出一根288缆,需覆盖子片区,并作为机房间环网使用的配纤情况。
50000户一个分前端机房,按5000户划为一个子片区。
一个交接箱用芯为72芯。
交接箱的作用:纤芯资源的调配。
接点与接点之间的连接关系图,称为拓补图。
光接点:光传输链路上任何一个有分配关系的点。
有线电视宽带网络结构_New

有线电视宽带网络结构1.概述光技术的快速发展给有线网络带来了革命性的变化,有线网络需要考虑所有业务(E-mail、语音、视频等)的基带传输(模拟的和数字的)以及IP数据传输的特性。
问题的关键是能提供一个灵活的、可升级的而且在未来若干年内能够使用的网络。
有线电缆正通过提供新的和强制性的业务来解决这“最后一英里”的问题。
本文的焦点是放在物理层或者实际的网络。
与任何其它的网络相比,宽带有线电视使光纤应用于网络之中。
其目标是建成特定宽带业务网。
有线网络开创性地把光纤和传统的同轴电缆结合在一起成为一个混合网络。
这个混合光纤同轴(HFC)网络对于有线网络来说具有战略上的重要性。
光纤把模拟和数字电视从前端向终端发送。
该技术目前可把光纤信号往用户家庭的几英里范围内发送。
同轴电缆再把宽带业务传送至家庭。
最后一英里的同轴电缆被用于支持譬如电话之类的可选业务的传输媒体。
有线运营商已经把同轴电缆网络进行升级以支持双向通信,从而使用户可以享受他们的多项服务,这当然要追加投资。
当新的HFC网络完全实现后,将具有许多好处,它们包括:•有线电话的能力•高速Internet接入•有线电视频道数目的增加(超过200个模拟的和压缩的数字频道)•利用机顶盒的视频点播(VOD)能力•交互式电视•为满足新的数字电视标准而建立的基础结构,所有标准都是基于HFC骨干网。
本文将阐述两种HFC网络结构:“供电范围节点”(PDN)和“小型光纤节点”(MFN)。
PDN结构或类似的变种是北美配置的HFC网络的主要代表,它能支持许多新的业务。
PDN与其它HFC结构的不同之处在于,节点的大小并不是由固定用户数决定的,而是由光纤节点接收机的数量决定的。
RF放大器和网络用户终端可以由单个网络供电(AC)。
MFN是网络发展的下一步,它表现了一个深层次光纤结构。
MFN是非常重要的,因为它可去除同轴有线电缆段上所有的放大器(除了必不可不的以外)。
这不仅仅增加了可靠性,而且还保证了宽带业务所需要的带宽。
有线电视业务和HFC网络架构

线电视业务和HFC网络架构
单击此处添加文本具体内容 演讲人姓名
有线电视业务
2
历史的回顾
接收开路节目
自行制作节 目
几个频道
02
上百个、几
百个频道
几十个用户 03 几百万用户
几百米
几百公里
01
05
有线电视网络技 术的发展
04
08
隔频传输 邻频传输
06 单一的电缆 光缆、微波、
将高频电视信号变频或调制到微波频段,定向 或全向向服务区发射 中间无需媒体,只需建立微波发射机,接收机, 以及收发天线即可。 成本低,工期短,收效快 更改线路容易,信号质量也较高
有线电视容容易易的受受系建 天筑 气统物 的的 影组阻 响挡成和反射
9
有线电视 的系统组 成
电缆传输
技术最简单,成本低,设备可靠,安装方便 对信号电平损失较大,每几百米要加放大器
载噪比
>=43dB
非线性失真指标:
CTB 载波复合三次差拍比 >=54dB
CSO 载波复合两次差拍比 >=54dB
IM 载波互调比
>=54dB
HM 载波交流声比
<=3%
用户电平 68±3dBv
HFC用网户M络ER的(调指制误标差率) 28dB (SDA4040D)
42
202X I C K H E R E T O A D D A T I T L E
引入较多的噪声和非线性失真 一般用于小系统或大系统的最后分配部分
10
有线电视的系统组成
用户分配系统
由线路放大器、分支器、分配器、用户终端以及之 间的分支线、用户线和各个用户的无源器件。要求 有较高的隔离度和合适的输出电平。
有线电视的网络结构

1.概述光技术的快速发展给有线网络带来了革命性的变化,有线网络需要考虑所有业务(E-mail、语音、视频等)的基带传输(模拟的和数字的)以及IP数据传输的特性。
问题的关键是能提供一个灵活的、可升级的而且在未来若干年内能够使用的网络。
有线电缆正通过提供新的和强制性的业务来解决这“最后一英里”的问题。
本文的焦点是放在物理层或者实际的网络。
与任何其它的网络相比,宽带有线电视使光纤应用于网络之中。
其目标是建成特定宽带业务网。
有线网络开创性地把光纤和传统的同轴电缆结合在一起成为一个混合网络。
这个混合光纤同轴(HFC)网络对于有线网络来说具有战略上的重要性。
光纤把模拟和数字电视从前端向终端发送。
该技术目前可把光纤信号往用户家庭的几英里范围内发送。
同轴电缆再把宽带业务传送至家庭。
最后一英里的同轴电缆被用于支持譬如电话之类的可选业务的传输媒体。
有线运营商已经把同轴电缆网络进行升级以支持双向通信,从而使用户可以享受他们的多项服务,这当然要追加投资。
当新的HFC网络完全实现后,将具有许多好处,它们包括:·有线电话的能力·高速Internet接入·有线电视频道数目的增加(超过200个模拟的和压缩的数字频道)·利用机顶盒的视频点播(VOD)能力·交互式电视·为满足新的数字电视标准而建立的基础结构,所有标准都是基于HFC 骨干网。
本文将阐述两种HFC网络结构:“供电范围节点”(PDN)和“小型光纤节点”(MFN)。
PDN结构或类似的变种是北美配置的HFC网络的主要代表,它能支持许多新的业务。
PDN与其它HFC结构的不同之处在于,节点的大小并不是由固定用户数决定的,而是由光纤节点接收机的数量决定的。
RF放大器和网络用户终端可以由单个网络供电(AC)。
MFN是网络发展的下一步,它表现了一个深层次光纤结构。
MFN是非常重要的,因为它可去除同轴有线电缆段上所有的放大器(除了必不可不的以外)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.概述光技术的快速发展给有线网络带来了革命性的变化,有线网络需要考虑所有业务(E-mail、语音、视频等)的基带传输(模拟的和数字的)以及IP数据传输的特性。
问题的关键是能提供一个灵活的、可升级的而且在未来若干年内能够使用的网络。
有线电缆正通过提供新的和强制性的业务来解决这“最后一英里”的问题。
本文的焦点是放在物理层或者实际的网络。
与任何其它的网络相比,宽带有线电视使光纤应用于网络之中。
其目标是建成特定宽带业务网。
有线网络开创性地把光纤和传统的同轴电缆结合在一起成为一个混合网络。
这个混合光纤同轴(HFC)网络对于有线网络来说具有战略上的重要性。
光纤把模拟和数字电视从前端向终端发送。
该技术目前可把光纤信号往用户家庭的几英里范围内发送。
同轴电缆再把宽带业务传送至家庭。
最后一英里的同轴电缆被用于支持譬如电话之类的可选业务的传输媒体。
有线运营商已经把同轴电缆网络进行升级以支持双向通信,从而使用户可以享受他们的多项服务,这当然要追如投资。
当新的HFC网络完全实现后,将具有许多好处,它们包括:•有线电话的能力•高速Internet接入•有线电视频道数目的增加(超过200个模拟的和压缩的数字频道)•利用机顶盒的视频点播(V0D)能力•交互式电视•为满足新的数字电视标准而建立的基础结构,所有标准都是基于HFC骨干网。
本文将阐述两种HFC网络结构:“供电范围节点”(PDN)和“小型光纤节点”(MFN)。
PDN结构或类似的变种是北美配置的HFC网络的主要代表,它能支持许多新的业务。
PDN 与其它HFC结构的不同之处在于,节点的大小并不是由固定用户数决定的,而是由光纤节点接收机的数量决定的。
RF放大器和网络用户终端可以由单个网络供电(AC)o MFN是网络发展的下一步,它表现了一个深层次光纤结构。
MFN是非常重要的,因为它可去除同轴有线电缆段上所有的放大器(除了必不可不的以外)。
这不仅仅增加了可靠性,而且还保证了宽带业务所需要的带宽。
首先,本文将定狡一些术语和有线电视产业和正在建造的HFC网络的相关信息。
2.传统的同轴有线电视网络一个简单的有线电视系统从前端到终端,包括接收卫星等电视信号源的接收设备。
从这些源来的信号将通过有线网络发送。
然E被放大,再把模拟视频传送给传统的全同轴有线电缆网络。
有线电视系统是基于载波的,每套节目均占用一个载频。
载波的幅度是不断变化的,这叫幅度调制(AM)。
所有的视频信道将在一个频分多路复用器(FDM)內合并起来,北美每个载波距离是6MHzo有线电视系统以两个方向传送信息,一个是向用户传送,称为前向路径(或称下行),另一个是从用户那里来,称为反向路径(或称上行)。
在美国,前向信道被放置在54MHz以上的频率上,而5到42MHz 之间的频率就被分配给反向信道。
显示了一个代表性的有线电视袭用的传输频谱,它的前向路径信道达到了860MHzo在前向路径,模拟信道是从54到550MHz,而数字信道是从550MHz到选择是基于网络设计标准,包括成本、模拟性能要求以及传输距离要求等。
光纤的衰减在合理的温度范围內是固定的,而且与RF频率无关。
引入HFC网络的光节点或者光纤节点(FN),经常被安放在户外,辱如一个基座上或者悬挂在架空绞线上。
光纤节点接收光信号,把它转化为电信号,并放大,然后向本地用户发送。
在返回方向上,节点收集5-42MHZ带宽范围内的信号,并把它们以光的方式传送回询端进行处理。
在“传统”的HFC网络中,每个光节点名义上服务500-2000个家庭。
核心网络驱动器是低成本的,而且在噪声和失真方面对模拟视频信号有良好的性能。
终端用户可以接收到经模拟视频残留边带(VSB)调制的78个RF信道。
收偻频道的可遶择控制和收看前预付费通过用户机顶盒终端实现。
HFC结构的主要优势之一,是用户数可增加,并以多种格式携带多种类型信息的能力。
HFC有线电视网络和电话网之间的区别是可用宽带宽传送模拟电视。
在美国,大约有3亿模拟电视机在使用,基本上都接入了有线电视。
实际上,在这个国家有电视的家庭比有电话的家庭多。
HFC为利用低成本电视发送设备提供了充足的带宽。
要达到这些目标,需要四种关键技术:•高能量的1550nm光纤可用于携带交互式数字电视并经“多电平正交调幅”(M-QAM)的载频信号,以及为简化光纤结构而降低网络成本的接入技术。
•利用同步光纤网络(SONET)多路复用器来进行综合数字业务传输,对于建造高速多媒体接入网络是非常关键的。
•波分复用(WDM)和密集波分复用(DWDM)不仅仅增加带宽,而且还用于光路由和降低接入成本。
•当网络光纤数量不斷增长时,无源光技术对成本和性能有着极其关键的作用。
决定最佳接入结构的是足够的带宽宽度,这对于广播和交互式小范围广播而言是必须的。
HFC网络有四个与传送交互式带宽有关的因素:频率、空间多路复用、光谱效率以及光波长。
频率决定通道大小(750MHz、862MHz或1GHz),以及决定副我波提供什么类型信号的能力。
每个频率都可以当业务设置改变时,随时使用,这与其它结构相比提供了一种独特的灵活性。
空分复用决定了骨干网中的光纤是如何运行和如何达到每个节点的,以及如何装载它们。
频谱效率允许随256-QAM或64-QAM调制技术改变,这些技术能够有效地提高频谱利用率。
董后,多种光波长,不管是DWDM 或者1310/1550的结合,都可以用于一个特定的光纤中以用来提高容量。
处理好HFC反向信道是极其重要的。
为了解决潜在的光纤性能的问题,Fabry Perot (FP)和无冷却分布式反馈(DFB)激光现今均被用于网络中,靠的是业务数量的增加和性能的提高。
从前端到用户端距离一定时,光纤配逬得越长,网络对电入口的影响就会越小。
由于光纤被配置得很长以进行前向传输,使RF的级联长度缩短,提高了可靠性和降低了成本。
对于语音和数据而言,通常的选择——至少在目前——便是SONET技术。
但是SONET在视频传输方面的效率并不高。
把一个或多个视频信号压缩至数字业务第三层次(DS-3)速率的视频编解码器的成本很高,而且与传统传輸系统相比,它们的性能规格比更差。
此外,SONET网络管理使用的是DS-3电路:它无法自我监视视频性能。
因此,许多宽带运营商就安装了两个并行的网络:一个用于语音和数据的SONET网络,另一个用于视频的专有数字系统。
为了解决总本的传输问题,要安装SONET多路复用器。
4.供电节点几年前,有线电视运营商开始从事于一项全国范围内的计划,把系统升级为“全业务” HFC网络。
在那时,节点的大小根据固定用户数设置,最初可能是2000、1000或500个家庭。
当然,节点的大小是受放大器级联限制的,这样可以确保产生的噪声和互调指标极限不超标。
但在高密度区域內的节点经常遇到超过500个用户(一直到800个用户极限),但是在低密度区域的节点经常由于级联的限制大大少于500个用户。
一个提供干线电话业务的有线电视公司,利用分布式拓扑技术,采用传统的90V AC供电(PS), 50%的负荷。
对90V供电方案中,超过4000英里干线的分析表明,许多节点需要三个PS,并且平均每节点大约要达到2.5PSo对许多节点设计的更进一步的考察指出,供电必须加强,以便能承受住两个PS无法处理的负载量。
对PS相对来说负载较轻(少于它名狡上额定值的50%),明显处于低效状态。
供电增加了系统操作和维护的麻烦,而且对网络可靠性有不良的影响。
一个更新的HFC升级结构可提高效率,并达到以下目标:•减少HFC网络系统升级的资本花费・提高网络可靠性・减少系统运作和维护的成本・提高前向和反向的带宽,并提高模拟信号的质量・通过减少升级系统的时间和花费来缩短打入市场的时间,并确保新的节点提供更高级的业务。
网络供电问题在节点大小策略的讨论中占有中心的地位。
如果节点变的很小以至于它的功率负载不能够有效地消耗电能供应的容量,那么通过多个节点聚集功率,来获得比较经济实惠就变得非常值得。
这便设计出一个功率分布系统(譬如“功率馈线”电缆),它的安装是非常便宜的,但是对于减少传输电缆中的能量浪费却是圧够有效的。
PDN定义了由PS支持的最大用户数量的节点大小。
这正好与以前的设计形成对比,在E者中节点的大小或者是由覆盖范围内的家庭的固定数目定义的,或者由级联的放大器数量的限制定艾的。
人们对更大型的节点有趣的观察:用于这些节点的总AC功率经常达到用于单个15amp PS的期望的75%的负载因数。
这种情况发生在高密度区域内,在这些区域内,大量的家庭被少量的级联所覆盖,而且有线电话网络接口单元(NIU)的功率负载是与每英里的NIU的数量成比例的。
人们立即意识到PDN结构中的节点大小是极其重要的,这对设计师提出新的挑战,把多大范围的区域隔开以便在不过载的前提下,对节点进行供电。
与每节点具有500个家庭的传统设计相比。
在PDN的设计上具有一定积极的影响,所有这些都在中密度和高密度的早期节点设计中被证实:・每英里干线上放大器的数量大约减少15%到20%左右,可以大大提高干线延伸的长度。
・节点的数量提高50%到75%,能提高低密度区域的比例・备用能源供应的数量大约减少20%到30%・平均能源供应负载因子大约提高10%到15%・减少同轴电缆覆盖,从目前的15%到25%的范围减少到少于5%・提高光纤覆盖的用户数量,提高幅度少于5%PDN的设计者们很自信地认为,这样对于成本的减少将在中密度和高密度的区域变得非常普通。
但是在低密度区域(每平方英里少于75个家庭)成本的减少将变得更如困难,因为需要更大的光纤覆盖的比例,以达到100-250个家庭的节点。
但是现今的HFC-500结构中几乎没有低密度节点能够达到500个家庭,因为级联的限制。
5.PDN结论网络设计者正在把供电从最初的15安培输出容量到18安培,最终到21安培。
因为骨干网络很可能安排电话和高速数据的传输,所以对网络升级必须做到'‘热交换”的方式和完全无业务中断的方式。
PDN是一种较好的HFC解决方案,它能够很好地降低初装费、运作的成本以及提高网络性能和可靠性等方而的问题。
这对中等密度和高密度区域系统的吸引力是非常大的。
6.微型光纤节点提供无限带宽的光纤,配置得离用户越近,则能提供越多的业务量和性能越灵活。
DWDM技术促使扩大光纤的覆盖范围。
例如,HFC网络中的光纤数量在过去的12年中不断增长,从光纤骨干网结构的5%到MFN结构的30%oDWDM技术与数字信号处理(DSP)以及RF技术,在网络操作和业务方而提供了更大的灵活性。
这种趋势将会继续下去,而且有线电视将会通过这些机会得到更大的益处。
PDN把光纤延伸致用户有源放大器的范围之内。
微型光纤节点使得更深层次的光纤渗透,,以及使网络中高级光子技术的开展应用成为可能。