三年级奥数4倒推法解题.doc

合集下载

4-04-倒推法解题4-讲义-教师

4-04-倒推法解题4-讲义-教师

第4讲倒推法【学习目标】1、学会用倒推法解题;2、激发学生的创新思维,培养学生学习的主动性。

【知识梳理】1、倒过来思考问题的方法,就是还原法;2、用还原法解题,关键是从最后一步结果出发,依照题意顺次逐步向前推理,每一步运算都变成原来的逆运算。

【典例精析】【例1】某数乘以5,加上3,再除以7,减去4,结果是5,这个数是12.5+4=9 9×7=63 63-3=60 60÷5=12【趁热打铁-1】将一个数做如下运算:乘以4,再加上112,减去20,最后除以4,这时得100.那么这个数是77.100×4=400 400+20=420 420-112=308 308÷4=77【例2】村姑卖鸡蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二个蛋,问这篮鸡蛋有多少个?(2+2)×2=8(个)(8+2)×2=20(个)(20+2)×2=44(个)答:这篮鸡蛋有44个.【趁热打铁-2】艾迪、薇儿和大宽分练习册,艾迪得到了总数的一半,薇儿得到了余下的一半少1本,大宽得到了9本,这些练习册共有32本.(9-1)×2=16(本)16×2=32(本)【例3】两棵树上一共有25只鸟,先是左边树上的鸟有一半儿飞到了右边树上,然后右边树上的8只鸟又飞到了左边树上,这时左边树上的鸟比右边树上多3只.请问最开始左边树上有几只鸟?后左:(25+3)÷2=14(只)后右:(25-3)÷2=11(只)原左:(14-8)×2=12(只)答:最开始左边树上有12只鸟.【趁热打铁-3】王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画片送给李强,李强再拿出和王亮同样多的画片送给王亮,这时两人各有24张。

王亮和李强原来各有画片多少张?24÷2=12(张)24+12=36(张)原来李强:36÷2=18(张)原来王亮:12+18=30(张)答:王亮原来有30张画片,李强有18张画片。

奥数之谜乘法倒推法

奥数之谜乘法倒推法

奥数之谜乘法倒推法在奥数竞赛中,乘法倒推法是一种非常有效的解题方法。

它通过逆向思维,从问题的答案入手,逐步推导出问题的解决过程,达到解题的目的。

本文将介绍乘法倒推法的基本原理,并通过实例来说明其应用。

乘法倒推法的基本原理是,利用答案推导问题的解法。

一般而言,问题会给出一个乘积和部分已知的因数,要求我们求解缺失的因数。

我们可以从乘积入手,将其不断分解成较小的因数,直到找到所有未知的因数。

这种逆向思维能够帮助我们找到问题的突破口。

为了更好地理解乘法倒推法,我们举一个实际例子。

假设问题描述如下:有一个三位数X乘以一个两位数Y,结果为四位数Z。

已知Z的个位数是6,Y的个位数是4,求X和Y的值。

首先,我们按照题目要求,设Z的个位数为6,根据乘法的计算规则,可以知道一定存在两个整数相乘的结果等于Z。

由于Z是一个四位数,那么它的可能取值范围在1000和9999之间。

接下来,我们观察Y的个位数为4,那么根据乘法的基本原理,可以得出Y的十位数是6。

此时,我们可以组成一个乘法算式:X * 64 = Z。

继续观察Z的个位数是6,我们可以得出X的个位数也是6。

这时,我们可以将X的十位数设为a,百位数设为b,得出新的乘法算式:(10b + a) * 64 = Z。

通过展开计算,我们可以得到以下方程:640b + 64a = Z然后,我们回过头来看题目中的已知条件,Z是一个四位数,且其个位数为6。

那么将Z的个位数6代入方程,可以得出:640b + 64a = 10,000n + 6进一步化简,可以得到:80b + 8a = 1250n + 1在上述方程中,我们可以尝试不同的a和b的取值,逐步推导出符合方程的解。

例如,当a=9,b=2时,方程左边等于649,能够被1250n + 1整除。

因此,我们可以得出一个符合条件的X和Y的解:X= 629,Y = 64。

通过这个例子,我们可以看到乘法倒推法的应用。

通过逆向思维,从问题的答案入手,我们逐步推导出了缺失的因数,解决了问题。

三年级奥数第4讲:错中求解(二)-教案

三年级奥数第4讲:错中求解(二)-教案

(三年级)备课教员:* * *第四讲错中求解(二)一、教学目标:知识目标在进行计算时,能够利用倒推法,从错误的计算结果中求出正确的结果。

能力目标1. 提高自主分析能力。

2. 锻炼逆向思维能力。

情感目标1.自主探索解决实际问题,并有勇于探索的精神。

2.培养做事认真仔细、严谨的态度。

3. 感悟数学在生活中的应用,以及倒推法的应用。

二、教学重点:1. 在乘法算式中,乘数的扩大(缩小)都直接影响到积的扩大(缩小)。

一个乘数增加几,积就增加另一个乘数的几倍;一个乘数减少几,积就减少另一个乘数的几倍。

2.在除法算式中,被除数扩大(缩小),商也会随着扩大(缩小);而除数扩大(缩小),商反而缩小(扩大)。

除数和余数都相同时,商增加几,被除数就增加除数的几倍;商减少几,被除数就减少除数的几倍。

三、教学难点:1. 理解应用倒推法。

2. 乘法、除法错中求解时的不同。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:复习第二讲的旧知识,回顾逆运算的含义,用倒推法从错误的解中得到正确的解,为接下来的新授环节做铺垫。

】师:你们还记得上次我们学的加、减运算时的错中求解吗?生:记得。

师:那大家看一下这两个小题目,看看大家能不能自己做出来。

(PPT出示)1.一个加数个位上的8被看成了3,得到的和是235,正确的和是多少?2.被减数十位上的6被看成了9,得到的差是145,正确的差是多少?生:……师:大家都这么快就做出来了,说明大家对之前的知识掌握的很牢,那加、减法的错中求解主要是用了什么方法?生:逆运算和倒推法。

师:既然学了加、减法的错中求解,你们觉得我们今天会学什么内容呢?生:乘、除法的错中求解。

师:没错,我们今天就来学习一下乘、除法的错中求解,看看逆运算还能不能解决这类问题。

师:你们准备好了吗?生:准备好了!师:那就一起进入我们的课堂吧!【探究新知,引入新课:之前我们学习了加、减法的错中求解,学生对于逆运算有了一定的理解。

三年级奥数:倒推法

三年级奥数:倒推法

三年级奥数:倒推法1. 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10〕÷7=56÷4答:于昆这次数学考试成绩是96分.通过以上例题说明,用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.2. 马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?分析马小虎错把减数个位上1看成7,使差减少7—1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:111-(70—10)+(7—1)=57答:正确的答案是57.3. 树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?分析倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.解:①现在三棵树上各有鸟多少只?48÷3=16(只)②第一棵树上原有鸟只数. 16+8=24(只)③第二棵树上原有鸟只数.16+6—8=14(只)④第三棵树上原有鸟只数.16—6=10(只)答:第一、二、三棵树上原来各落鸟24只、14只和10只.4. 篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?分析依题意,画图进行分析.解:列综合算式:{[(1+1)×2+1]×2+1}×2=22(个)答:篮子里原有梨22个.5. 甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?分析解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”.可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍”.就可以求出甲、乙两个油桶最后有油多少千克.求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶往乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克.解:①甲乙两桶油共剩多少千克?15×2-14=16(千克)②乙桶油剩多少千克?16÷(3+1)=4(千克)③甲桶油剩多少千克?4×3=12(千克)用倒推法画图如下:④从甲桶卖出油多少千克? 15-11=4(千克)⑤从乙桶卖出油多少千克? 15—5=10(千克)答:从甲桶卖出油4千克,从乙桶卖出油10千克.。

小学三年级奥数《还原问题》倒推法省公开课获奖课件说课

小学三年级奥数《还原问题》倒推法省公开课获奖课件说课
“你们看这个视频里面发生了什么事情?”学生回答:“孙悟空变出了很多桃子 。”教师:“对,那我们今天就来一起学习一下孙悟空这个变桃子的数学问题。 ”
进行新课
总结词:逐步引导、深入探究
教师引导学生用倒推法逐步解决孙悟空变桃子的数学问题,并详细说明倒推法的 思路和步骤。
通过练习和讨论,教师引导学生深入探究,发现规律,并逐步完善自己的知识体 系。
3
右侧包括:两道例题的解题过程和三道练习题 的题目及解题思路提示。
部分板书设计
倒推法的概念
倒推法的公式
倒推法是一种通过逆向思维解决问题的方法 ,即从最后一步开始逐步向前推算,通过还 原问题得到答案。
通过简单的代数运算来解决问题,公式为: a × b+c=d,倒推法公式为:d÷b-c=a。
倒推法的解题步骤
教具准备
PPT课件
通过精心设计的PPT课件,辅 助教学,提高教学效果。
实物教具
准备实际物品作为教具,如水果 、文具等,帮助学生更好地理解 问题。
板书设计
通过合理的板书设计,突出教学重 点、难点,帮助学生更好地掌握知 识。
04
说教学程序
导入新课
总结词
激发兴趣、建立联系
用西游记小故事视频引入,教师提问
教学难点
让学生理解倒推法的思路和步骤,并能够熟练运用倒推法解决较为复杂的问 题。
03
说教法
教学方法
倒推法
通过反向倒推的方式,引导学生从已知结果反推 出原来的数量或情况。
情境创设
通过设置具体的情境,帮助学生更好地理解问题 ,激发学习兴趣。
小组合作
组织学生进行小组合作,互相交流、讨论、解决 问题,培养学生的协作能力。
倒推法的应用

三年级奥数课件-用倒推法解决问题-通用版

三年级奥数课件-用倒推法解决问题-通用版

5. 淘气在做一道减法时,把减数个位上的9看成了3,把 十位上的4看成了7,得到的结果是164,请你帮淘气算算 正确的答案应该是多少呢? 6. 山顶上有棵桃数,一只猴子偷吃桃子,第一天偷吃 了总数的一半多2个,第二天又偷吃了剩下的一半多2个, 这时还剩1个,问:树上ቤተ መጻሕፍቲ ባይዱ来有多少个桃子? 7.甲、乙、丙三人各有弹力球若干个。如果甲给乙4个, 乙给丙2个,丙给甲5个,现在三人的弹力球都是15个。他 们原来各有多少个? 8.有一盘梨,第一天上午吃了1个,下午又吃了余下的 一半,这时还剩1个,这个盘中共有多少个梨?
【试一试】 1、一根铁管,第1次截去2米,第2次截去剩下 的一半,还剩5米。这根铁管原来长多少米?
2、三(1)班进行大扫除。一半学生去支援一 年级,剩下的一半去扫清洁区,最后还有10人 留下扫教室。三(1)班共有学生多少人?
【例4】同学们玩扔沙袋游戏,甲乙两班共有140 只沙袋。如果甲班先给乙班5只,乙班又给甲班8 只,这时两班沙袋数相等。两班原有沙袋多少只? 【分析与解答】甲乙两班的沙袋经历了两次交换。 第二次交换后两班沙袋相等,又知沙袋总数为140 只,所以这时两班各有沙袋70只。解答时可以从 这里开始倒推。 甲班 乙班 最后结果 140÷2=70 140÷2=70 第二次交换前 70-8=62 70+8=78 第一次交换前(原来) 62+5=67 78-5=73 答:甲班原有沙袋67只,乙班原有沙 袋73只。
【读一读】
华罗庚的退步解题方法
我国已故著名的数学家华罗庚爷爷出生在一个摆杂货店 的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和 崇高的追求,终于成为一代数学宗师。 少年时期的华罗庚就特别爱好数学,但数学成绩并不 突出。19岁那年,一篇出色的文章惊动了当时著名的数学 家熊庆来。从此在熊庆来先生的引导下,走上了研究数学 的道路。晚年为了国家经济建设,把纯粹数学推广应用到 工农业生产中,为祖国建设事业奋斗终生! 华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使 他们脱颖而出,工作之余还不忘给青多年朋友写一些科普 读物。下面就是华罗庚爷爷曾经介绍给同学们的一个有趣 的数学游戏:

倒推法解题(小学奥数)

倒推法解题(小学奥数)

倒推法解题【专题简析】:有些应用题按照一般的方法顺着题目条件一步一步的列式出来解 答过程会比较繁琐,所以有些题我们从后面往前面推会很好的简化题,使题变得 很简单,很容易理解也便于解答?例1、建筑队修一条路,第一天修了全长的51多100米,第二次修了余下的72,还剩下500米,求公路的全长。

练习1、乙队煤上午运走72,下午运走的比余下的31还多6吨,最后还剩下14吨没有运走,这堆煤原有多少吨?例2、某果地里有一些桃树结了一些桃子,有一群调皮猴子每天都去摘果园里的桃子吃,第一天摘下桃子总数的101,第二天摘了剩下总数的91,第三天摘了第二天摘后剩下总数的81……,第八天摘了第七天摘后剩下总数的31,第九天摘了第八天摘后剩下总数的21,这时树上还剩下10个桃子,果园里原来有多少个桃子?练习2、将一根绳子从中间剪开,再取其中的一端再从中间剪开,这样剪了四次,正好剩下一米,这根绳子原来有多长?例3、有甲乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲,这时两桶正好各有24千克,原来甲乙两桶各有多少千克油?练习3、甲乙两人个有钱若干,甲拿出自己钱总数的51给乙,乙从自己现在所有的钱中拿出41给甲,这时两人各有12元钱,原来两人个有多少钱?综合练习:1、一个数减去1,乘以3,再加上2,最后除以4,结果是5,这个数是多少?2、猴子摘桃,第一天摘了树上桃子的一半多1个,第二天又摘上了余下桃子的一半多1个,这时树上还有15个桃子,原来树上有多少个桃子?3、兔妈妈带着小白兔和小黑兔去拔萝卜,小白兔把全部的萝卜平均分成三份,运走了其中的一份;小黑兔又把余下的萝卜平均分成三份,运走了其中的一份;兔妈妈运走了剩下的16个萝卜。

小白兔和小黑兔各运走多少个萝卜?4、一条小虫由幼虫长到成虫,每天长大1倍(即第二天是第一天的2倍,第三天是第二天的2倍,……)。

30天能长到20厘米,那么长到2.5厘米时用了多少天?5、有120个队伍进行单循环淘汰赛比赛,最后要决出一个冠军队,问:需要多少场比赛才能决出冠军队?6.一种荷叶每天长大1倍,第100天把整个池塘铺满了,求盖满池塘的一半需要多少天?盖满池塘的四分之一需要多少天?。

4-奥数练习-倒推法解题

4-奥数练习-倒推法解题

1.某数扩大7倍后,再缩小2倍,加上8减去6,等于51,求某数?
2.一根电线一半一半地剪去,剪了4次,剩下的正好是2米。

这根电线原来长
多少米?
3.小明、小军和小华共制作科技模型36件。

如果小明给小军6件,小军给小
华4件,他们三人制作的科技模型的件数正好相等。

问他们原来各制作多少件?
4.瓶内装有酒精,倒进500克以后又倒出一半,又倒进500克,这时瓶内有酒
精1200克。

问瓶内原有酒精多少克?
5.幸福小学暑假毕业学生86人,开学招进新生148人,同时又转入学生7人,
转出3人,这时全校共有学生654人,问暑假前幸福小学有多少学生?
6.一条幼虫长成成虫,每天长大一倍,40天长到40厘米,问第36天长多少厘米?
7.某人去银行取款,第一次取了存款的一半多5元,第二次取了余下的一半多
10元,最后剩下125元,求他原来有多少元?
8. 池塘的水面上生长着浮萍,浮萍所占面积每天增加一倍,经过15天把池溏占满了,求它几天占池塘的4
1?
9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题倒推法解题
教学目标再掌握画图和列表的策略解决问题的基础上,用“倒过来推想”的策略解决相关实际问题,学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤,从而有效地解决问题。

重点学会运用“倒过来推想”的策略解决实际问题
难点
根据具体问题确定合理的解题步骤
引入:
一个数+/-/÷变成18,这个数是多少?
通货膨胀猪肉价格翻了一倍一斤28元,问原来价格多少?
例1:
小军说:用我的年龄减去9,再乘7,加上6,然后除以5,正好等于4.你知道小军现在多少岁吗
练一练1:
李大伯说:我得年纪加上8,除以4,减去15,用10乘,恰好是20,请问李大伯多少岁
例2:
练一练2:
小东做一道加法题,将其中一个加数“个位上的4看成8”,把另一个加数“十位的7看成1”,结果是152,求这道题的正确答案是多少
练一练3(1)
(2)
例4:
练一练4:
例5:
练一练5:
你学会了吗1
2
3.
4.
作业1
2
3。

相关文档
最新文档