【精品】2020年中考数学复习中考数学复习中考数学复习专题28 数据统计与分析(学生版)
2020届中考数学总复习(31)数据收集与处理-精练精析(2)及答案解析

2020届中考数学总复习统计与概率——数据收集与处理2 一.选择题(共9小题)1.下列调查中,适合采用全面调查(普查)方式的是()A.了解某班同学“立定跳远”的成绩B.了解重庆市的空气质量情况C.了解全市中学生的心理健康状况D.了解端午节期间重庆市场上的粽子质量情况2.下面调查中,适合采用全面调查的事件是()A.对全国中学生心理健康现状的调查B.对我市食品合格情况的调查C.对天水电视台《人文天水》收视率的调查D.对你所在的班级同学的身高情况的调查3.下列调查适合作普查的是()A.对载人航天器“神神舟十号”零部件的检查B.了解全国手机用户对废手机的处理情况C.了解全球人类男女比例情况D.了解南平市中小学生零花钱的使用情况4.某学校为了解学生大课间体育活动情况,随机抽取本校100名学生进行调查.整理收集到的数据,绘制成如图的统计图.若该校共有800名学生,估计喜欢“踢毽子”的学生有()人.A.100 B.200 C.300 D.4005.体育中考前,我区在4500名九年级学生中随机抽取若干名学生进行体能测试,成绩记为1级,2级,3级,4级共4个等级.并将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息估计,我区学生进行体能测试成绩为2级的学生人数是()A.3 B.6 C.27 D.2706.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.37.随着我国三农问题的解决,小明家近两年的收入发生了变化.经测算前年棉花收入占48%,粮食收入占29%,副业收入占23%;去年棉花收入占36%,粮食收入占33%,副业收入占31%(如图).下列说法正确的是()A.棉花收入前年的比去年多B.粮食收入去年的比前年多C.副业收入去年的比前年多D.棉花收入哪年多不能确定8.某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,如图是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,可得下列结论不正确的是()A.七年级共有320人参加了兴趣小组B.体育兴趣小组对应扇形圆心角的度数为96°C.美术兴趣小组对应扇形圆心角的度数为72°D.各小组人数组成的数据中位数是56.9.为了解某区九年级学生课外体育活动的情况,从该年级学生中随机抽取了4%的学生,对其参加的体育活动项目进行了调查,将调查的数据进行统计并绘制了扇形图和条形图.下列结论:①被抽测学生中参加羽毛球项目人数为30人;②在本次调查中“其他”的扇形的圆心角的度数为36°;③估计全区九年级参加篮球项目的学生比参加足球项目的学生多20%;④全区九年级大约有1500名学生参加乒乓球项目.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共7小题)10.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是_________ ℃.11.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为_________ .(填序号)12.为“改善城市环境,提高城市品位”,我市加快了“九曲河”旧房拆迁的步伐,为了解被拆迁的1860户家庭对拆迁补偿方案是否满意,市主管部门调查了其中的60户家庭,有52户对方案表示满意,6户表示不满意.在这一抽样调查中,样本容量为_________ .13.为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼_________ 条.14.为调查某校1600名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况(每人回答最喜欢的一项)并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有_________ 名.15.为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图),那么仰卧起坐的次数在40~45的频率是_________ .16.某区在初一年级一次数学期末考试后,随机抽查了部分同学的成绩,整理成频数分布直方图如图,则本次抽查的样本的中位数所在的区间是_________ .三.解答题(共9小题)17.第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:(1)全班学生是多少人?(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?(3)若不少于100分可以得到A+等级,则小明得到A+的概率是多少?18.我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.19.九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是_________ ;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.20.为了解“数学思想作为对学习数学帮助有多大?”一研究员随机抽取了一定数量的高校大一学生进行了问卷调查,并将调查得到的数据用下面的扇形图和下表来表示(图、表都没制作完成).选项帮助很大帮助较大帮助不大几乎没有帮助人数 a 543 269 b根据图、表提供的信息.(1)请问:这次共有多少名学生参与了问卷调查?(2)算出表中a、b的值.(注:计算中涉及到的“人数”均精确到1)21.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.22.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C类女生有_________ 名,D类男生有_________ 名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a= _________ %,并写出该扇形所对圆心角的度数为_________ ,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?24某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a= _________ 人,其中选择“绘画”的学生人数占抽样人数的百分比为b= _________ ;(2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?25.为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.统计与概率——数据收集与处理2参考答案与试题解析一.选择题(共9小题)1.下列调查中,适合采用全面调查(普查)方式的是()A.了解某班同学“立定跳远”的成绩B.了解重庆市的空气质量情况C.了解全市中学生的心理健康状况D.了解端午节期间重庆市场上的粽子质量情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、了解某班同学“立定跳远”的成绩,适合采用全面调查,故此选项正确;B、了解重庆市的空气质量情况,适合采用抽样调查,故此选项错误;C、了解全市中学生的心理健康状况,人数众多,适合采用抽样调查,故此选项错误;D、了解端午节期间重庆市场上的粽子质量情况,适合采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.下面调查中,适合采用全面调查的事件是()A.对全国中学生心理健康现状的调查B.对我市食品合格情况的调查C.对天水电视台《人文天水》收视率的调查D.对你所在的班级同学的身高情况的调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、对全国中学生心理健康现状的调查由普查所费人力、物力和时间较多,适合抽样调查,故本选项错误;B、对我市食品合格情况的调查适合抽样调查,故本选项错误;C、对天水电视台《人文天水》收视率的调查因为普查工作量大,适合抽样调查,故本选项错误;D、对你所在的班级同学的身高情况的调查是准确度要求高的调查,适于全面调查,故本选项正确.故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列调查适合作普查的是()A.对载人航天器“神神舟十号”零部件的检查B.了解全国手机用户对废手机的处理情况C.了解全球人类男女比例情况D.了解南平市中小学生零花钱的使用情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查需要精确,故A适合普查;B、C、D调查对象非常大,适合抽样调查,故B、C、D不适合普查;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.某学校为了解学生大课间体育活动情况,随机抽取本校100名学生进行调查.整理收集到的数据,绘制成如图的统计图.若该校共有800名学生,估计喜欢“踢毽子”的学生有()人.A.100 B.200 C.300 D.400考点:用样本估计总体;条形统计图.分析:首先根据条形统计图中每一组内的频数总和等于总数据个数,得出随机抽取本校的100名学生中喜欢“踢毽子”的学生数,计算出喜欢“踢毽子”的频率,然后利用样本估计总体的思想,求出该校喜欢“踢毽子”的学生数即可.解答:解:∵随机抽取喜欢“踢毽子”的学生有:100﹣40﹣20﹣15=25(人),∴喜欢“踢毽子”的频率为:25÷100=0.25,∴该校喜欢“踢毽子”的学生有:800×0.25=200(人).故选B.点评:本题考查读条形统计图的能力和利用统计图获取信息的能力及用样本估计总体的思想.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.体育中考前,我区在4500名九年级学生中随机抽取若干名学生进行体能测试,成绩记为1级,2级,3级,4级共4个等级.并将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息估计,我区学生进行体能测试成绩为2级的学生人数是()A. 3 B.6C.27 D.270考点:用样本估计总体;扇形统计图;条形统计图.分析:用4级学生的人数除以所占的百分比求出抽取参加体能测试的学生人数,再用1级人数除以抽取人数得到1级人数所占的百分比,进而求出2级人数所占的百分比,再乘以我区九年级学生总人数即可.解答:解:参加体能测试的学生人数为35÷70%=50(人),1级人数所占的百分比为2÷50=4%,2级人数所占的百分比为1﹣70%﹣20%﹣4%=6%,我区学生进行体能测试成绩为2级的学生人数为4500×6%=270(人),故选D.点评:此题考查了用样本估计总体,以及条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.6.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3考点:频数(率)分布直方图.分析:根据频率分布直方图可以知道书法兴趣小组的频数,然后除以总人数即可求出加绘画兴趣小组的频率.解答:解:∵根据频率分布直方图知道书法兴趣小组的频数为12,∴参加书法兴趣小组的频率是8÷40=0.2.故选C.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.随着我国三农问题的解决,小明家近两年的收入发生了变化.经测算前年棉花收入占48%,粮食收入占29%,副业收入占23%;去年棉花收入占36%,粮食收入占33%,副业收入占31%(如图).下列说法正确的是()A.棉花收入前年的比去年多B.粮食收入去年的比前年多C.副业收入去年的比前年多D.棉花收入哪年多不能确定考点:扇形统计图.分析:在比较各部分的大小时,必须在总体相同的情况下才能做比较,所以无法判断哪一年的棉花收入多.解答:解:小明家前年的总收入与去年的总收入不一定相同,所以无法判断哪一年的棉花收入多.故选D.点评:扇形统计图直接反映部分占总体的百分比大小,在比较各部分的大小时,必须在总体相同的情况下才能做比较.8.某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,如图是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,可得下列结论不正确的是()A.七年级共有320人参加了兴趣小组B.体育兴趣小组对应扇形圆心角的度数为96°C.美术兴趣小组对应扇形圆心角的度数为72°D.各小组人数组成的数据中位数是56.考点:条形统计图;扇形统计图.分析:总人数=参加某项的人数÷所占比例,用总人数减去其他5个小组的人数求出体育小组的人数,画图即可解答,用体育小组的人数除以总人数再乘360度即可求出圆心角的度数.同样美术小组的对应扇形圆心角的度数计算方法相同.解答:解:A、读图可知:有10%的学生即32人参加科技学习小组,故初一年级共有学生32÷10%=320(人),故命题正确;B、直方图如图所示,360°×=108°,故命题错误;C、美术兴趣小组对应扇形圆心角的度数为360×20%=72°,故命题正确;D、正确.故选B.点评:本题主要考查条形统计图与扇形统计图的综合运用,用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=.总体数目=部分数目÷相应百分比.9.为了解某区九年级学生课外体育活动的情况,从该年级学生中随机抽取了4%的学生,对其参加的体育活动项目进行了调查,将调查的数据进行统计并绘制了扇形图和条形图.下列结论:①被抽测学生中参加羽毛球项目人数为30人;②在本次调查中“其他”的扇形的圆心角的度数为36°;③估计全区九年级参加篮球项目的学生比参加足球项目的学生多20%;④全区九年级大约有1500名学生参加乒乓球项目.其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:条形统计图;用样本估计总体;扇形统计图.分析:结合参加足球的人数与其所占的百分比,计算可得本次调查共抽取的学生数,进而求出被抽测学生中参加羽毛球项目人数;被抽测学生中参加“其他”体育项目活动人数占的百分比乘以360°可得“其他”的扇形的圆心角的度数;再计算出区九年级参加篮球项目的学生和参加足球项目的学生所占的百分比即可知道③是否正确;估计九年级大约多少名学生参加乒乓球项目的人数与1500比较大小即可.解答:解:∵参加足球的人数是40人,所占的百分比为20%,∴本次抽取的总人数为40÷20%=200(人),∴被抽测学生中参加羽毛球项目人数为200﹣60﹣50﹣40﹣20=30(人),故①正确;∴被抽测学生中参加其他体育项目活动人数占20÷200×100%=10%,360°×10%=36°,故②正确;∵全区九年级参加篮球项目的学生比所占百分比为50÷200×100%=25%,参加足球项目的学生所占百分比为40÷200×100%=20%,∴估计全区九年级参加篮球项目的学生比参加足球项目的学生多25%﹣20%=5%,故③错误;∵从该年级学生中随机抽取了4%的学生,∴九年级大约有200÷4%××100%=1500(名),故④正确.故选:C.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.二.填空题(共7小题)10.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是15.6 ℃.考点:折线统计图;中位数.分析:根据中位数的定义解答.将这组数据从小到大重新排列,求出最中间两个数的平均数即可.解答:解:把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃.故答案为:15.6.点评:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.11.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为②①④⑤③.(填序号)考点:调查收集数据的过程与方法.分析:根据已知统计调查的一般过程:①问卷调查法﹣﹣﹣﹣﹣收集数据;②列统计表﹣﹣﹣﹣﹣整理数据;③画统计图﹣﹣﹣﹣﹣描述数据进而得出答案.解答:解:解决上述问题要经历的几个重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体.故答案为:②①④⑤③.点评:此题主要考查了调查收集数据的过程与方法,正确进行数据的调查步骤是解题关键.12.为“改善城市环境,提高城市品位”,我市加快了“九曲河”旧房拆迁的步伐,为了解被拆迁的1860户家庭对拆迁补偿方案是否满意,市主管部门调查了其中的60户家庭,有52户对方案表示满意,6户表示不满意.在这一抽样调查中,样本容量为60 .考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解答:解:样本容量为60.故答案为:60.点评:本题考查了总体、个体与样本以及样本容量,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.13.为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼800 条.考点:用样本估计总体.专题:应用题;压轴题.分析:第二次捕得200条所占总体的比例=标记的鱼25条所占有标记的总数的比例,据此直接解答.解答:解:设湖里有鱼x条,则,解可得x=800.点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.14.为调查某校1600名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况(每人回答最喜欢的一项)并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有480 名.考点:用样本估计总体;扇形统计图.分析:首先根据扇形图计算出喜爱动画节目的学生所占百分比,再利用样本估计总体的方法可得该校喜爱动画节目的学生所占百分比,再算出人数即可.解答:解:喜爱动画节目的学生所占百分比:100%﹣35%﹣5%﹣10%﹣20%=30%,该校喜爱动画节目的学生人数:1600×30%=480(人),故答案为:480.。
2023年中考数学复习过关练测:数据的收集与整理

2023年中考数学复习过关练测:数据的收集与整理(一)基础过关1. 以下调查中,最适合采用抽样调查的是()A. 了解全国中学生的视力和用眼卫生情况B. 了解全班50名同学每天体育锻炼的时间C. 学校招聘教师,对应聘人员进行面试D. 为保证神舟十四号载人飞船成功发射,对其零部件进行检查2.某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是()A. 总体是该校4000名学生的体重B. 个体是每一个学生C. 样本是抽取的400名学生的体重D. 样本容量是4003.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是()类型健康亚健康不健康数据(人)3271A. 32B. 7C. 710 D.454. 某学习小组做摸球试验,在一个不透明的袋子里装有红、黄两种颜色的小球共20个,除颜色外都相同.将球搅匀后,随机摸出5个球,发现3个是红球,估计袋中红球的个数是()A. 12B. 9C. 8D. 65.观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为()第5题图A. 5B. 6C. 7D. 86. 垃圾分类利国利民. 某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率②整理采访记录并绘制空矿泉水瓶投放频数分布表③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比正确统计步骤的顺序应该是()A. ②→③→①B. ②→①→③C. ③→①→②D. ③→②→①7. 2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神舟十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是()第7题图A. 完成航天医学领域实验项数最多B. 完成空间应用领域实验有5项C. 完成人因工程技术实验项数比空间应用领域实验项数多D. 完成人因工程技术实验项数占空间科学实验总项数的24.3%8. 五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中的信息,下列结论错误..的是()第8题图A. 本次抽样调查的样本容量是5000B. 扇形统计图中的m为10%C. 若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D. 样本中选择公共交通出行的有2400人9.近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有________只A种候鸟.10. 百年青春百年梦,初心献党向未来.为热烈庆祝中国共产主义青年团成立100周年,继承先烈遗志,传承“五四”精神.某中学在“做新时代好少年,强国有我”的系列活动中,开展了“好书伴我成长”的读书活动.为了解5月份八年级学生的读书情况,随机调查了八年级20名学生读书数量(单位:本),并进行了以下数据的整理与分析:数据收集2535461534 3675834734数据整理本数0<x≤22<x≤44<x≤66<x≤8组别A B C D频数2m63数据分析绘制成不完整的扇形统计图:第10题图依据统计信息回答问题(1)在统计表中,m=________;(2)在扇形统计图中,C部分对应的圆心角的度数为________;(3)若该校八年级学生人数为200人,请根据上述调查结果,估计该校八年级学生读书在4本以上的人数.(二)综合提升11.小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:第11题图(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择________统计图更好(填“条形”或“折线”);(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是________万亿元;(3)写出一条关于我国货物进出口总额变化趋势的信息.(三)创新推荐12. 首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况 调查方式 抽样调查 调查对象××中学学生数据的收集、整理与描述第一项 您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A. 8小时及以上;B. 6~8小时;C. 4~6小时;D. 0~4小时.第二项您阅读的课外书的主要来源是(可多选)E. 自行购买;F. 从图书馆借阅;G. 免费数字阅读;H. 向他人借阅.调查结论… 请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.参考答案1. A 【解析】A .了解全国中学生的视力和用眼卫生情况,适合抽样调查,故本选项符合题意;B .了解全班50名同学每天体育锻炼的时间,适合全面调查,故本选项不符合题意;C .学校招聘教师,对应聘人员进行面试,适合全面调查,故本选项不符合题意;D .检查载人飞船零部件,适合全面调查,故本选项不符合题意.2. B 【解析】A .总体是该校4000名学生的体重,此选项正确,不符合题意;B .个体是每一个学生的体重,此选项错误,符合题意;C .样本是抽取的400名学生的体重,此选项正确,不符合题意;D .样本容量是400,此选项正确,不符合题意.3. D 【解析】∵抽取了40名学生进行了心理健康测试,测试结果为“健康”的有32人,∴测试结果为“健康”的频率是3240=45. 4. A 【解析】设袋中红球有x 个,根据题意得x 20=35,解得x =12. 5. D 【解析】∵题图为20名学生每分钟跳绳次数的频数直方图,∴总频数为20,∴组界为99.5~124.5的频数为20-3-5-4=8.6. A 【解析】正确统计步骤的顺序应该是:整理采访记录并绘制空矿泉水瓶投放频数分布表,绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比,从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率,即正确统计步骤的顺序应该是:∵→∵→∵.7. B 【解析】∵航天医学领域实验占70.3%,∴实验项数最多,故选项A 的说法正确;∵完成空间应用领域实验数为5.4%×37≈2,故选项B 的说法错误;∵完成空间应用领域实验占5.4%,人因工程技术实验占24.3%,∴完成人因工程技术实验项数比空间应用领域实验项数多,故选项C 的说法正确;完成人因工程技术实验项数占空间科学实验总项数的24.3%,故选项D 的说法正确.8. D 【解析】A .本次抽样调查的样本容量是2000÷40%=5000,此选项正确,不符合题意;B .扇形统计图中的m 为1-(50%+40%)=10%,此选项正确,不符合题意;C .若五一期间观光的游客有50万人,则选择自驾方式出行的有50×40%=20(万人),此选项正确,不符合题意;D .样本中选择公共交通出行的有5000×50%=2500(人),此选项错误,符合题意.9. 800 【解析】设该湿地中共有x 只A 种候鸟,根据题意得40x =10200,解得x =800,经检验,x =800是原方程的解且符合题意,∴估计该湿地有800只A 种候鸟.10. 解:(1)9;【解法提示】根据题意得,m =20-2-6-3=9.(2)108°;【解法提示】根据题意得,C 部分对应的圆心角的度数为(1-15%-10%-45%)×360°=108°.(3)根据题意,得200×6+320=90(人), 答:估计该校八年级学生读书在4本以上的人数约为90人.11. 解:(1)折线;(2)4.36;【解法提示】2021年我国货物出口总额为21.73万亿元,货物进口总额为17.37万亿元,∴进出口顺差为21.73-17.37=4.36万亿元.(3)顺差逐步加大(答案不唯一,合理即可).12. 解:(1)33÷11%=300 (人).(解法不唯一)300×62%=186(人).答:参与本次抽样调查的学生人数为300人,这些学生中选择“从图书馆借阅”的人数为186人;(2)3600×32%=1152(人).答:估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数有1152人;(3)答案不唯一.例如:第一项:∵平均每周阅读课外书的时间在“4~6小时”的人数最多;∵平均每周阅读课外书的时间在“0~4小时”的人数最少;∵平均每周阅读课外书的时间在“8小时及以上”的学生人数占调查总人数的32%等.第二项:∵阅读的课外书的主要来源中选择“从图书馆借阅”的人数最多;∵阅读的课外书的主要来源中选择“向他人借阅”的人数最少等.。
2020年中考数学复习解答题专项训练---统计与概率(无答案)

统计与概率一.统计1.(2019∙常州)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图。
(1)本次调查的样本容量是___,这组数据的众数为___元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数。
300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由。
的分数,请估计该九年级学生中约有多少人达到优秀等级。
4.(2019∙嘉兴)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.(3)从两人成绩的稳定性角度分析,应选派谁参加比赛合适。
6.(2019∙临沂)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下:(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是____;频数分布表中____;____。
(2)补全频数分布直方图。
(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数。
二.概率1.(2019∙南充) 现有四张完全相同的不透明卡片,其正面分别写有数字−2,−1,0,2,把这四张卡片背面朝上洗匀后放在桌面上。
(1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率。
(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率。
【复习专题】中考数学复习:数据的收集与整理

数据的收集与整理三只钟的故事一只小钟被主人放在了两只旧钟当中,两只旧钟滴答、滴答的走着。
一只旧钟对小钟说:“来吧,你也该工作了。
可是我有点担心,你走完三千两百万次以后,恐怕会吃不消的。
”“天哪!三千两百万次。
”小钟吃惊不已,“要我做这么大的事?办不到,办不到!”另一支旧钟说:“别听他胡说八道,不用害怕,你只要每秒滴答摆一下就行了。
”“天下哪有这么简单的事情?”小钟将信将疑,“如果这样,我就试试吧。
”小钟很轻松地每秒滴答摆一下,不知不觉中,一年过去了,它摆了三千两百万次。
成功就是这样,把简单的事做到极致,就能成功。
1.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁2.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()A.216 B .252 C.288 D.3243.学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.409.509.609.709.809.90人数235431则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60B.9.60,9.60C.9.60,9.70D.9.65,9.604.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5﹣10元B.10﹣15元C.15﹣20元D.20﹣25元A组1.下列调查中,适宜全面调查(普查)方式的是()A. 对全国中学生心理健康现状的调查B. 对市场的冰淇淋质量的调查C. 对我市市民实施低碳生活情况的调查D. 对我国首架大型民用直升机各零部件的调查2.下列调查中,取样合适的是()A.在运动场调查当代青年业余时间娱乐的主要方式B.在大学文学院了解市民对古典名著的理解程度C.在北京市调查我国公民的受教育情况D.调查班级学号是奇数的学生,以了解全班同学的课外阅读情况3.为了制定本市初中七,八,九年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:A.测量少年体校中180名男子篮球,排球队员的身高.B.查阅有关外地180名男生身高的统计资料C.在本市的市区和郊县任选一所完全中学,两所初级中学,在这六所学校有关年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高在上述三种调查方案中,你认为采用哪一种调查方案比较合理,谈谈你的理由.4.某省有7万名学生参加初中毕业会考,要想了解这7万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.每位考生的数学成绩是个体C.7万名考生是总体D.1000名考生是样本容量。
中考数学一轮复习精选训练:数据的收集,整理与描述

中考数学一轮复习精选训练:数据的收集,整理与描述一、选择题(本大题共12小题,每小题5分,满分60分)1. (2022广西河池模拟预测)下列调查方式合适的是( )A.为了了解电视机的使用寿命,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.调查某中学七年级一班学生视力情况,采用抽样调查的方式D.为了了解巢湖水资源质量,采用抽样调查的方式2. (2022七下·石景山期末)下列说法中,正确的是( )A.一组数据的众数一定只有一个.B.一组数据的众数是6,则这组数据中出现次数最多的数据是6.C.一组数据的中位数一定是这组数据中的某一个数据.D.一组数据中的最大的数据增大时,这组数据的中位数也随之增大.3. (2020•上海)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A.条形图;B.扇形图;C.折线图;D.频数分布直方图4. (2022·衢州)如图是某品牌运动服的S号,M号,L号,XL号的销售情况统计图,则厂家应生产最多的型号为( )A.S号B.M号C.L号D.XL号5. (2022八上·莱西期中)某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是( )A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.76. (2022九上·雁塔月考)盒子中有8个白色乒乓球和若干个黄色乒乓球,这些乒乓球除颜色外其它都完全相同,为求得盒中乒乓球的总数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则盒子中共有( )个乒乓球A.32个B.24个C.70个D.90个7. (2022七上·青州期中)某校有3000名学生在线观看了“天宫课堂”第二课,并参加了关于“你最喜爱的太空实验”的问卷调查,从中抽取500名学生的调查情况进行统计分析,以下说法错误的是( )A.3000名学生的问卷调查情况是总体B.500名学生的问卷调查情况是样本C.500名学生是样本容量D.每一名学生的问卷调查情况是个体8. (2022九上·定海月考)在一个不透明的口袋中,放置6个黄球、1个红球和n个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了黄球出现的频率,如图,则n的值是( )A.2B.3C.5D.89. (2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )A.①②③B.①③⑤C.②③④D.②④⑤10. (2022·安徽亳州)为了解某校八年级400名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x为:60≤x<80),则以下说法正确的是( )A.跳绳次数不少于100次的占80%B.大多数学生跳绳次数在140~160范围内C.跳绳次数最多的是160次D.由样本可以估计全年级400人中跳绳次数在60~80次的大约有48人11. (2020•自贡)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号): .①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.12. (2022七下·浙江)随着智能手机的普及,“支付宝支付”和“微信支付”等手机支付方式倍受广大消费者的青睐,某商场对2021年7—12月中使用这两种支付方式的情况进行统计,得到如图所示的折线图,根据统计图中的信息,得出以下四个推断,其中不合理的是( )A.6个月中11月份使用手机支付的总次数最多B.6个月中使用“微信支付”的总次数比使用“支付宝支付”的总次数多C.6个月中使用“微信支付”的消费总额比使用“支付宝支付”的消费总额大D.9月份平均每天使用手机支付的次数为0.314万次二、填空题(本大共8小题,每小题5分,满分40分)13. (2022八上·丰顺月考)如图,阴影部分扇形的圆心角的度数是.14. (2022广西贺州市八步区教学研究室)全国第七次人口普查已经结束,请问在这次人口普查中采用的调查方式是____________.15. (2022广西贺州)为了更好地落实“双减政策要求,某中学从全校共900名学生中随机抽取100名学生的每天课外作业负担情况进行调查,此次调查的样本容量是_____.16. (2020•株洲)王老师对本班40个学生所穿校服尺码的数据统计如下:则该班学生所穿校服尺码为“L”的人数有个.17. (2022广西南宁)如图是某天游玩南宁青秀山的学生人数统计图.若大学生有360人,则初中生有_________人.18. (2022八上·乐清开学考)某校200名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示,结合表的信息,可得测试分数在79.5~89.5分数段的学生有名.19. (2022广西贺州)某老师对九年级1班55名学生的数学成绩进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有______名.20. (2022九上·永嘉月考)在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和2个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.2左右,则a的值约为.三、解答题(本大题共6道小题,每小题6-12分)21. (6分)(2022·安徽滁州)国家规定“中小学生每天在校体育活动时间不低于1h”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h B组:0.5h≤t<1hC组:1h≤t<1.5h D组:t≥1.5h请根据上述信息解答下列问题:(1)本次调查的人数是____________人;(2)请根据题中的信息补全频数分布直方图;(3)D组对应扇形的圆心角为__________ ;(4)本次调查数据的中位数落在__________组内;(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.22. (6分)(2022·安徽马鞍山)某学校组织了一次知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表.学校若干名学生成绩分布统计表请你根据统计图表解答下列问题:(1)此次抽样调查的样本容量是_________.(2)填空:a=_________,b=_________,c=_________.(3)请补全学生成绩分布直方图.(4)比赛按照分数由高到低共设置一、二、三等奖,如果有25%的参赛学生能获得一等奖,那么一等奖的分数线是多少?23. (6分)(2022广西贵港)2021年7月以来,教育部相继出台文件,实施义务教育“双减”政策,某校开展课后延时服务,从篮球、绘画、乐器、手工四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)补全条形统计图.(3)“绘画”所在扇形的圆心角是多少度?(4)若该校爱好篮球的学生共有800名,则该校学生总数大约有多少名?24. (8分)(2022·安徽蚌埠)党的十八大以来,文山州牢固树立科学发展、绿色发展理念,把生态文明建设贯穿于经济、政治、文化和社会建设各个方面,深入实施“七彩云南文山保护行动”和“森林文山”建设.截止2017年底,全州共投入林业生态项目资金35亿元,完成了四项林业生态项目(A表示新一轮退耕还林,B表示石漠化治理,C表示天保工程森林管护,D表示天然商品林停伐)的综合治理.并绘制出以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次林业生态项目共完成综合治理面积______万亩.并将条形统计图补充完整;(2)项目C占综合治理面积的百分比是多少?(3)求扇形统计图中,项目D所对应的圆心角的度数.25.(12分)(2021八上·渭滨期末)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;C:7棵;将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(并在图中画出)(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这260名学生共植树多少棵?26. (12分)(2022八下·怀仁期末)6月的第三个星期天是父亲节,某校组织了以“父爱如山”为主题的演讲比赛,根据初赛成绩,七、八年级各选出5名学生组成代表队,参加决赛.并根据他们的决赛成绩绘制了如下两幅统计图表:(满分为100分)(1)补全下表中的数据;(2)结合两队决赛成绩的平均数和中位数,评价两个队的决赛成绩;(3)哪个年级代表队的决赛成绩更稳定.。
2020 中考数学复习---概率, 统计专项练习题含答案

2020概率专题训练一、填空题:(每题3分,共36分)1、数 102030 中的 0 出现的频数为_____。
2、在一个装有 2 个红球,2 个白球的袋子里任意摸出一个球,摸出红球的可能性为__。
3、不可能发生是指事件发生的机会为_____。
4、“明天会下雨”,这个事件是_____事件。
(填“确定”或“不确定”)5、写出一个必然事件:_______________。
6、10把钥匙中有 3 把能打开门,今任取出一把,能打开门的概率为_____。
7、抛掷两枚骰子,则P(出现 2 个 6)=_____。
8、小射手为练习射击,共射击60次,其中36依次击中靶子的概率为_____。
9、小红随意在如图所示的地板上踢键子,则键子恰落在黑色方砖上的概率为_____。
10、足球场上,往往用抛硬币的方式来决定哪方先发球,吗?_____11、小明有两件上衣,三条长裤,则他有几种不同的穿法_____。
12、小红、小张,在一起做游戏,需要确定的游戏的先后顺序,他们约定用“剪子,包袱,锤子”的方式确定,小红取胜的概率是_____。
二、选择题:(每题 4 分,共 24 分)1、下列事件是必然发生的是()A、明天是星期一B、十五的月亮象细钩C、早上太阳从东方升起D、上街遇上朋友2、有五只灯泡,其中两只是次品,从中任取一只恰为合格品的概率为()A、20%B、40%C、50%D、60%3、抛掷一枚普遍的硬币三次,则下列等式成立的是()A、P(正正正)=P(反反反)B、P(正正正)=20%C、P(两正一反)=P(正正反)D、P(两反一正)=50%4、一个口袋里有1个红球,2个白球,3个黑球,从中取出一个球,该球是黑色的。
这个事件是()A、不确定事件B、必然事件C、不可能事件D、以上都不对5、在“石头、剪子、布”的游戏中,当你出“石头”时,对手与你打平的概率为()A、12B、13C、23D、146、从A、B、C、D四人中用抽筌的方式,选取二人打扫卫生,那么能选中A、B的概率为()A、14B、112C、12D、16三、解答题:(每题 9 分,共 54 分)1、一布袋中放有红、黄、白三种颜色的球各一,它们除颜色处其他都一个样,小明从中摸出一个球后放回摇匀,再摸出一个球,请你利用树状图分析可能出现的情况。
备考2022年中考数学一轮复习-统计与概率_数据收集与处理_折线统计图

备考2022年中考数学一轮复习-统计与概率_数据收集与处理_折线统计图折线统计图专训单选题:1、(2019常熟.中考模拟) 在2019年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、平均数依次是()A . 48,48,48B . 48,47.5,47.5C . 48,48,48.5D . 48,47.5,48.5 2、(2019绍兴.中考模拟) 以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为()A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额3、(2018舟山.中考真卷) 2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A . 1月份销量为2.2万辆B . 从2月到3月的月销量增长最快C . 4月份销量比3月份增加了1万辆D . 1-4月新能源乘用车销量逐月增加4、(2012温州.中考真卷) 小林家今年1﹣5月份的用电量情况如图所示.由图可知,相邻两个月中,用电量变化最大的是()A . 1月至2月B . 2月至3月C . 3月至4月D . 4月至5月5、(2015杭州.中考真卷) 如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112μg/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是()A . ①②③B . ①②④C . ①③④D . ②③④6、(2021兴平.中考模拟) 如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A . 1小时B . 1.5小时C . 2小时D . 3小时7、(2020绍兴.中考模拟) 在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A . 9.7m,9.8mB . 9.7m,9.7mC . 9.8m,9.9mD . 9.8m,9.8m8、(2020新都.中考模拟) 如图,是某市一周内最高气温的折线统计图,关于这7天的日气温的说法,错误的是()A . 最高气温是30℃B . 最低气温是20℃C . 众数是28℃D . 平均数是26℃ 9、(2020顺义.中考模拟) 小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是()A . ①③B . ②④C . ②③D . ①④10、(2021瓯海.中考模拟) 后疫情时代,小牛电动车销量逆势增长,某店去年6~10月份销量如图所示,相邻的两个月中,月销量增长最快的是()A . 6月到7月B . 7月到8月C . 8月到9月D . 9月到10月填空题:11、(2020武汉.中考模拟) 如图是甲、乙两名射击运动员10次射击成绩的统计表和平均数中位数众数甲8 8 8乙8 8 8你认为甲、乙两名运动员,________的射击成绩更稳定.(填甲或乙)12、(2015南通.中考真卷) 甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是________(填“甲”或“乙”).13、(2016浙江.中考模拟) 如图是我市某景点6月份内1﹣10日每天的最高温度折线统计图,由图信息可知该景点这10天的最高气温度的中位数是________℃.14、(2012义乌.中考真卷) 在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是________分,众数是________分.15、(2017高安.中考模拟) 有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.16、(2019黄石.中考真卷) 根据下列统计图,回答问题:某超市去年8~11月个月销售总额统计图某超市去年8~11月水果销售额占该超市当月销售总额的百分比统计图该超市10月份的水果类销售额________11月份的水果类销售额(请从“>” “=” “<”中选一个填空)17、(2017阜康.中考模拟) 甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为S甲2________S乙2(填>或<).18、(2020通州.中考模拟) 某市多措并举,加强空气质量治理,空气质量达标天数显著增加,重污染天数逐年减少,越来越多的蓝天出现在人们的生活中.下图是该市4月1日至15日的空气质量指数趋势图,空气质量指数小于100表示空气质量为优良.由上图信息,在该市4月1日至15日空气质量为优良的时间里,从第________日开始,连续三天空气质量指数的方差最小.解答题:19、(2019通州.中考模拟) 阅读下列材料:环视当今世界,科技创新已成为发达国家保持持久竞争力的“法宝”.研究与试验发展(R&D)活动的规模和强度指标反映一个地区的科技实力和核心竞争力.北京市在研究和实验发展(R&D)活动中的经费投入也在逐年增加.2012年北京市全年研究与试验发展(R&D)经费投入1031.1亿元,比上年增长10.1%.2013年全年研究与试验发展(R&D)经费投入1200.7亿元.2014年全年研究与试验发展(R&D)经费投入1286.6亿元.2015年研究与试验发展(R&D)经费投入1367.5亿元.2016年研究与试验发展(R&D)经费投入1479.8亿元,相当于地区生产总值的5.94%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线统计图或者条形统计图将2012﹣2016年北京市在研究和实验发展(R&D)活动中的经费投入表示出来,并在图中标明相应数据;(2)根据绘制的统计图提供的信息,预估2017年北京市在研究和实验发展(R&D)活动中的经费投入约为多少亿元,写出你的预估理由.20、(2017湖州.中考真卷) 为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?21、(2017嘉兴.中考真卷) 小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.根据统计表,回答问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.22、(2016云南.中考模拟) 学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.23、(2013泰州.中考真卷) 保障房建设是民心工程,某市从2008年开始加快保障房建设进程,现统计了该市2008年到2012年这5年新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.(1)小丽看了统计图后说:“该市2011年新建保障房的套数比2010年少了.”你认为小丽说法正确吗?请说明理由;(2)求补全条形统计图;(3)求这5年平均每年新建保障房的套数.24、(2020仙居.中考模拟) 甲、乙两所学校选派相同人数的老师参加志愿者活动,参加活动时长分别被制成下列两个统计图,根据以上信息,整理分析数据如下表:平均时间/小时中位数/小时众数/小时方差/小时2甲a 7 7 1.2乙7 b 8 c(1)求出表格中a,b,c的值;(2)分别运用表中的统计量,简要分析这两所学校参加志愿者活动的时长,若选其中一所学校作为志愿推广学校,你认为应选哪所?折线统计图答案1.答案:A2.答案:B3.答案:D4.答案:B5.答案:C6.答案:B7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:21.答案:22.答案:23.答案:24.答案:。
备考2022年中考数学一轮复习-统计与概率_数据收集与处理_扇形统计图-综合题专训及答案

备考2022年中考数学一轮复习-统计与概率_数据收集与处理_扇形统计图-综合题专训及答案扇形统计图综合题专训1、(2020牡丹江.中考真卷) 为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.2、(2013南京.中考真卷) 某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查.整理样本数据,得到下列图表:(1)理解划线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图;(3)该校数学兴趣小组结合调查获取信息,向学校提出了一些建议,如:骑车上学的学生约占全校的34%,建议学校合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化的建议.3、(2011常州.中考真卷) 某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图”与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:(1)在这次调查活动中,一共调查了名学生;(2)“足球”所在扇形的圆心角是度;(3)补全折线统计图.4、(2016海拉尔.中考模拟) 某市为提高学生参与体育活动的积极性,2011年9月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2011年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.5、(2019苏州.中考模拟) 如图是根据对苏州某初中三个年级学生课外阅读的“漫面丛书”、“科普常识”、“名人传记”“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占圆心角度数:(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人!6、(2017无棣.中考模拟) 为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.7、(2019梧州.中考模拟) 2019年4月23日是“第二十四个世界读书日”,我市某中学发起了“读好书”活动.为了解九年级学生阅读“艺术类、科普类、文学类、军事类“这四类书籍的情况,数学老师随机抽查了该年级学生课外阅读的数量,绘制了下面不完整的条形图和扇形图.(1)求本次抽查中阅读科普类书籍的人数,并补充完整条形图;(2)小明要从这四类书籍中任选两类来阅读,请你用列表法或树状图求小明刚好选择科普类和军事类书籍的概率.8、(2019防城.中考模拟) 某市为提高学生参与体育活动的积极性,围绕“你喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查.下面是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查一共调查调查了多少名学生?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数对应扇形的圆心角度数.(3)请将条形图补充完整.(4)若该市2017年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生有多少人?9、(2018绵阳.中考真卷) 绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题28 数据统计与分析一、数据的收集、整理与描述1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:所有考察对象的全体叫做总体。
4.个体:总体中每一个考察对象叫做个体。
5.样本:从总体中所抽取的一部分个体叫做总体的一个样本。
6.样本容量:样本中个体的数目称为样本容量。
7.样本平均数:样本中所有个体的平均数叫做样本平均数。
8.总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
9.数据描述的方法:条形统计图、扇形统计图、折线统计图、直方图。
各类统计图的优劣:条形统计图: 能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表 示出各部分在总体中所占的百分比。
10.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
11.频率:每一小组的频数与数据总数(样本容量n )的比值叫做这一小组的频率。
12.圆心角的度数=频数与总数的比×360°或百分比×360°13.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
14.画直方图的步骤: (1)计算最大值与最小值的差; (2)决定组距和组数; (3)决定分点 (4)列频数分布表; (5)画频数分布直方图。
二、数据的分析 1.平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++=叫做这n 个数的平均数,x 读作“x 拔”。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),专题知识回顾那么,根据平均数的定义,这n 个数的平均数可以表示为n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
2.平均数的计算方法(1)定义法:当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x n x +++=(2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x k k ++=2211,其中n f f f k =++ 21。
3.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4.众数:一组数据中出现次数最多的数据就是这组数据的众数。
5.极差:组数据中的最大数据与最小数据的差叫做这组数据的极差。
6.方差:一组数据中,每一个数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。
通常用“2s ”表示,即])()()[(1222212x x x x x x ns n -++-+-=7.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
8.当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x ns n-+++= 9.标准差:方差的算数平方根叫做这组数据的标准差,用“s ”表示,即])()()[(1222212x x x x x x ns s n -++-+-==【例题1】(2019•江西)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%专题典型题考法及解析C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【例题2】(2019•四川自贡)在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定 D.无法确定甲、乙的成绩谁更稳定【例题3】(2019湖南益阳)已知一组数据5,8,8,9,10,以下说法错误的是()A.平均数是8 B.众数是8 C.中位数是8 D.方差是8【例题4】(2019•眉山)某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是()A.6 B.6.5 C.7 D.8【例题5】(2019•浙江杭州)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于.【例题6】(2019•贵阳)如图,下面是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是()A.甲比乙大B.甲比乙小C.甲和乙一样大D.甲和乙无法比较【例题7】(2019•山东青岛)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.专题典型训练题一、选择题1.(2019湖南郴州)下列采用的调查方式中,合适的是()A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用普查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式2.(2019•江苏无锡)已知一组数据:66,66,62,67,63,这组数据的众数和中位数分别是()A.66,62 B.66,66 C.67,62 D.67,663.(2019•攀枝花)比较A组、B组中两组数据的平均数及方差,以下说法正确的是()A.A组、B组平均数及方差分别相等B.A组、B组平均数相等,B组方差大C.A组比B组的平均数、方差都大D.A组、B组平均数相等,A组方差大4.(2019湖南怀化)抽样调查某班10名同学身高(单位:厘米)如下:160,152,165, 152,160,160,170,160,165,159.则这组数据的众数是()A.152 B.160 C.165 D.1705.(2019•广西贺州)一组数据2,3,4,x,6的平均数是4,则x是()A.2 B.3 C.4 D.56.(2019•宜宾)如表记录了两位射击运动员的八次训练成绩:根据以上数据,设甲、乙的平均数分别为、,甲、乙的方差分别为s甲2,s乙2,则下列结论正确的是()A.=,s甲2<s乙2B.=,s甲2>s乙2C.>,s甲2<s乙2D.<,s甲2<s乙27.(2019湖南常德)某公司全体职工的月工资如下:18000 12000 8000 6000 4000 2500 2000 1500 1200 月工资(元)人数1(总经理)2(副总经3 4 10 20 22 12 6理)该公司月工资数据的众数为2000,中位数为2250,平均数为3115,极差为16800,公司的普通员工最关注的数据是()A.中位数和众数B.平均数和众数C.平均数和中位数D.平均数和极差8.(2019湖南岳阳)甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是S甲2=1.2,S乙2=1.1,S丙2=0.6,S丁2=0.9,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁9.(2019•凉山州)某班40名同学一周参加体育锻炼时间统计如表所示:A.17,8.5 B.17,9 C.8,9 D.8,8.5二、填空题10.(2019•贵州省安顺市)已知一组数据x1,x2,x3,…,x n的方差为2,则另一组数据3x1,3x2,3x3,…,3x n的方差为.11.(2019•广西北部湾经济区)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是______.(填“甲”或“乙”)12.(2019湖南常德)从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89.7,方差分别是S甲2=2.83,S乙2=1.71,S丙2=3.52,你认为适合参加决赛的选手是.13.(2019•四川自贡)在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1、3、4、2、2,那么这组数据的众数是分.14.(2019湖南郴州)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s甲2、s乙2,则s甲2s乙2.(填“>”,“=”或“<”)15.(2019•浙江湖州)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是分.三、解答题16.(2019湖南衡阳)进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息解决下列问题:(1)这次学校抽查的学生人数是;(2)将条形统计图补充完整;(3)如果该校共有1000名学生,请你估计该校报D的学生约有多少人?17. (2019•河南)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.18.(2019湖南怀化)某射箭队准备从王方、李明二人中选拔1人参加射箭比赛,在选拔赛中,两人各射箭10次的成绩(单位:环数)如下:次数 1 2 3 4 5 6 7 8 9 10王方7 10 9 8 6 9 9 7 10 10李明8 9 8 9 8 8 9 8 10 8(1)根据以上数据,将下面两个表格补充完整:王方10次射箭得分情况环数 6 7 8 9 10频数频率李明10次射箭得分情况环数 6 7 8 9 10频数频率(2)分别求出两人10次射箭得分的平均数;(3)从两人成绩的稳定性角度分析,应选派谁参加比赛合适.19.(2019•山东临沂)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.20.(2019湖南娄底)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用 A、B、C、D 四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中 B 等级所占圆心角的度数.21.(2019湖南湘西州)“扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“很了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.22.(2019湖南益阳)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.类别频率A mB0.35C0.20D nE0.05(1)求本次调查的小型汽车数量及m,n的值;(2)补全频数分布直方图;(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.23.(2019•成都)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.11。