偏微分方程理论的归纳与总结
偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象.根据数学的特征,偏微分方程主要被分为五大类,它们是:(1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法;(2)椭圆型方程,它的方法是先验估计+泛函分析手段;(3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计;(4)双曲型方程,对应于Galerkin方法;(5)一阶偏微分方程,主要工具是数学分析方法.从自然界的运动类型出发,偏微分方程可分为如下几大类:(1)稳态方程(非时间演化方程);(2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容;(3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征;(4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制.下面具体来介绍三类经典方程:三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论.关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法.关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论.具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性.椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空间中考虑,我们将在连续函数空间和平方可积函数空间中分别讨论解关于输入数据的连续依赖性问题学习偏微分方程理论以及偏微分方程分析是研究其它一切的基础.首先有必要解释一下解的适定性.简单地说,一个偏微分方程是适定性的,若它有解(存在性)解唯一(唯一性)且对输入数据的微小改变的响应也是很小的改变(连续依赖性).前两个准则是一个有意义的物理模型所要求的,第三个准则是实验观察的基础.考虑适定性时,还应记得对有实际意义的问题通常不可能求得显示解,从而可考虑逼近格式,特别是数值解在应用中就具有特别的重要性.因此,适定性问题与偏微分方程科学计算的如下中心问题有密切联系:对一个问题给定一定精度的数据,数值解计算输出有多少精度?正因为这个问题对现代定量科学的重要性,适定性成为偏微分方程理论的核心内容.因此,偏微分方程的学习应以三类线性偏微分方程的适定性问题为主要研究对象.同时,考虑到偏微分方程理论的两个特点:一是与应用、与物理的紧密联系;二是与数学其它分支的联系.以下,我们具体来说一下其两个具有应用价值的特点.针对特点一:首先,数学物理方程是自然科学和工程技术的各门分支中出现的偏微分方程,这些方程给出了所考察的物理量关于自变量(时间变量和空间变量)的偏导数的关系.例如连续介质力学、电磁学、量子力学等方面的基本方程都属于数学物理的范畴,数学物理方程侧重于模型的建立和定解问题的解题方法,而偏微分方程则侧重于其自身的数学理论,所以偏微分方程理论的研究是能够更好地将其运用于物理当中.针对特点二:偏微分方程理论与其他数学分支如泛函分析、数论、拓扑学、代数、复分析等紧密联系.偏微分方程理论广泛应用数学这些领域中的基本概念,基础思想和基本方法,并且它本身也给这些学科分支的研究问题的范围与方向以影响.鉴于此,对于应用数学而言,掌握和研究偏微分方程的目的主要应该放在以下几个方面:(1)建立模型.在经典物理中,具有普遍意义的自然定律不仅可以用实验手段获得,而且根据这些定律很容易对相应的自然现象建立数学模型.如天体力学,连续介质力学,流体动力学以及经典电磁学中的物理定律就属于这种情况.在近代物理中,情况有一些变化.咋爱量子力学与广义相对论中,一些自然规则与物理定律是隐而不见的,此时数学物理方程是依靠部分物理原则与实验数据猜测出来的.然而,到了现代数学阶段,大多数面临的问题仅依靠物理或数学的单一学科知识和直觉建立模型已变得非常困难,必须具备多学科交叉能力才行.因此,只有系统全面地掌握偏微分方程的理论与方法,才能训练出从方程解的性质反推出模型的形式的能力,这里方程解的性质是由实验数据与观测资料所提供.这种模型反推能力再结物理直觉就是现在建立数学模型的基本要求;(2)从已知的方程和模型推导出新的发现和预言.这个方面可以说是科学发展最重要的环节之一;(3)从控制自然现象的微分方程中得到问题的机理和解释;(4)最后一个方面就是从数学模型获得与实验和观测相吻合的性质和结论.虽然这类工作不能提供新的科学结果,但能使我们加深对问题的理解,体现自然美与数学美的有机结合.在总结了偏微分方程理论所研究的内容及其特点以后,我们该怎样学习基本理论呢?首先,对于每一类方程,我们要了解它的物理背景及其意义,否则,我们根本不知道它在说什么.事实上,同一个方程有许多不同的来源,这一方面是偏微分方程理论具有广泛应用的原因之一.同时对于不同的来源进行类比研究可以更好地解释物理过程的某些特性,因为某个具体物理特性在某个物理过程还没有被观察到或没有引起注意,而在另外某个物理过程已经被观察注意到了,如果这两个物理过程服从同一个偏微分方程,则在原来的物理过程中应该也具有这个特性.其次,在对数学模型研究之后,需要有意识地讲数学解带回原来的物理意义中,去理解,解释物理现象.这一方面可以验证数学模型的有效性,另一方面可以更好地理解已知的物理现象,从而更加深刻地了解其在现实中的意义.然后,要善于去思考,总结,归纳.逐步提高分析、解决实际问题的能力.至于与数学其他学科的联系,比如,求解过程中将会用到许多微积分或数学分析的概念,思想,和定理,解的表达形式也是有积分形式的或级数形式的,解空间的结构则用到许多线性代数的知识.最后,学好泛函分析也是同等重要的,因为偏微分方程解的唯一性和连续依赖性需要许多实变和泛函分析的理论和方法.所以在重视偏微分方程基本理论时(实变函数和泛函分析的许多思想方法都是来源于偏微分程理论研究),也要同样学好泛函分析.参考文献(1)王明新,偏微分方程基本理论;(2)马天,偏微分方程理论与方法;(3)王明新,数学物理方程.。
偏微分方程重点知识点总结

偏微分方程重点知识点总结一、偏微分方程的基本概念1. 偏导数偏微分方程是指含有多个自变量的函数的偏导数的方程。
在一元函数中,我们只需要考虑函数关于一个自变量的变化率,而在多元函数中,我们需要考虑函数关于每一个自变量的变化率,这就是偏导数的概念。
假设有一个函数f(x, y),它对x的偏导数记作∂f/∂x,对y的偏导数记作∂f/∂y。
分别表示函数f关于x和y的变化率。
2. 偏微分方程的定义偏微分方程是一类包含多个自变量的偏导数的方程。
它通常表示物理、化学或工程问题中的一些基本规律。
偏微分方程通常可以用数学语言描述为F(x, y, u, ∂u/∂x, ∂u/∂y, ∂^2u/∂x^2, ∂^2u/∂y^2,…) = 0其中u是未知函数,x和y是自变量,F是已知函数。
二、偏微分方程的分类1. 齐次偏微分方程和非齐次偏微分方程齐次偏微分方程是指方程中不含有常数项或只含有未知函数及其偏导数项的方程,非齐次偏微分方程是指方程中含有常数项或者其他函数的项的方程。
2. 线性偏微分方程和非线性偏微分方程线性偏微分方程是指偏微分方程中未知函数及其各阶偏导数只含一次且不含未知函数的乘积的方程,非线性偏微分方程是指未知函数及其各阶偏导数含有未知函数的乘积的方程。
3. 定解问题定解问题是指在偏微分方程中,给出一些附加条件,使得可以从整个解的集合中找到符合这些条件的特定解。
定解问题通常包括边界条件和初始条件。
三、偏微分方程的解法1. 分离变量法分离变量法是对于一些特定形式的偏微分方程,可以通过假设解具有特定的形式来进行求解。
例如,对于一些可以分离变量的方程,我们可以假设解为u(x, y) = X(x)Y(y),然后将方程进行变形,从而可以将偏微分方程化简为两个常微分方程,然后对这两个常微分方程分别求解。
2. 特征线法对于二阶线性偏微分方程,可以通过引入特征线的方法进行求解。
特征线方法可以将二阶偏微分方程化为两个一阶偏微分方程,然后对这两个一阶偏微分方程进行分别求解。
大学数学偏微分方程理论学习

偏微分方程理论学习一. 偏微分方程发展简介1. 常微分方程十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与理学中的新问题。
结果是在天体理学中不仅能得到并解释早先已经知晓的那些事实,而且得到了性的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。
2. 偏微分方程偏微分方程的研究要晚得多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。
J.达朗贝尔(D’Alembert )(1717-1783)、L.欧拉(Euler )(1707-1783)、D.伯努利(Bernoulli )(1700-1782)、J.拉格朗日(Lagrange )(1736-1813)、P.拉普拉斯(Laplace )(1749-1827)、S.泊松(Poisson )(1781-1840)、J.傅里叶(Fourier )(1768-1830)等人的工作为这一学科分支奠定了基础。
它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。
十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。
傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。
在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程其中k 是一个参数,其值依赖于物体的质料。
傅里叶当时解决的是如下特殊的热传导问题:设所考虑的物体为两端保持在温度0度、表面绝热且无热流通过的柱轴。
在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题也就是求解偏微分方程⎪⎪⎩⎪⎪⎨⎧<<=>==∂∂=∂∂,0),()0,(,0,0),(,0),0(T T 222l x x f x T t t l T t T x k x ,其中后面两项分别是边界条件和初始条件。
高等数学中的偏微分方程

高等数学中的偏微分方程在高等数学领域中,偏微分方程是一个重要的研究对象。
它是通过对函数的偏导数进行求解得到的方程,常常被用来描述自然界中的一些现象和非线性动态系统。
本文将介绍偏微分方程的基本概念、分类、解的方法以及在实际应用中的一些例子。
一、基本概念偏微分方程是包含多个未知函数的方程,其中函数的偏导数是方程的基本构成部分。
偏微分方程通常用来描述物理、生物、经济等领域中的问题,在不同的领域中有着不同的应用。
二、分类根据方程中出现的未知函数的个数和偏导数的阶数,偏微分方程可以分为几个主要类型:椭圆型偏微分方程、双曲型偏微分方程和抛物型偏微分方程。
具体的分类方法可以根据方程的形式和性质进行。
1. 椭圆型偏微分方程椭圆型偏微分方程的特点是方程中出现的未知函数的二阶偏导数的系数均不为零,通常用来描述稳态问题和静电场分布等现象。
2. 双曲型偏微分方程双曲型偏微分方程的特点是方程中出现的未知函数的二阶偏导数的系数满足双曲性条件,通常用来描述波动、传播等动态问题。
3. 抛物型偏微分方程抛物型偏微分方程的特点是方程中出现的未知函数的二阶偏导数的系数满足抛物性条件,通常用来描述热传导和扩散等问题。
三、解的方法求解偏微分方程通常是一个复杂的问题,不同类型的方程需要采用不同的方法进行求解。
下面介绍几种常用的解的方法。
1. 分离变量法分离变量法适用于一些特殊的偏微分方程,可以将多元函数的偏导数分离为几个单变量函数的常微分方程,通过求解这些常微分方程得到原方程的解。
2. 特征线法特征线法适用于一些双曲型偏微分方程,可以通过选取合适的坐标系和变换将方程化为常微分方程,进而求解得到解的形式。
3. 变换方法变换方法是一种常用的解偏微分方程的技巧,可以通过适当的变量代换将原方程转化为更简单的形式,然后进一步求解。
四、实际应用偏微分方程在实际应用中有着广泛的应用。
以下是一些例子:1. 热传导方程热传导方程是抛物型偏微分方程的一种,在描述热传导过程中起着重要的作用。
偏微分方程理论学习总结

偏微分方程理论学习总结>任荣珍院系:理学院|班级:19 班学号:34偏微分方程理论学习总结偏微分方程这一门学科在我脑海中的印象不是很深,本科时学的是常微分方程,在课堂上听到老师提起过偏微分方程,因此,在研究生阶段选课时就选了这门课,以前不了解偏微分,再选了这门课之后对偏微分也算有一定的了解,接下来我想就我这学期学习了这门课做一个简单的总结。
下面就来介绍有关偏微分方程的发展简介:谈到偏微分方程,我们就会想到本科时学的常微分方程,而偏微分方程的发展没有常微分方程的发展早,所以要谈偏微分方程就先来谈一下常微分方程。
)十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程解决几何与理学中的新问题,结果是在天体理学中不仅能得到并解释早已知晓的那些事实,而且得到了新的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。
而偏微分方程的研究要晚的多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支——数学物理方程的建立。
J.达朗贝尔(D ’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利 (Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P .拉普拉斯(Laplace) (1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础,它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。
十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。
而十九世纪偏微分方程的另一个重要发现是围绕着位势方程来进行的,这方面的代表人物格林是一位磨坊工出身、自学成才的英国数学家,位势方程也称为拉普拉斯方程:2222220V V VV x y z∂∂∂∆=++=∂∂∂偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来,而本学期学习的偏微分方程理论的第一篇就介绍了线性椭圆形方程,椭圆形方程它的方法是先验估计加泛函分析手段,在线性椭圆形这一块以6章来详细介绍线性椭圆形方程,在这一篇中讲到了很多内容和知识点,下面我就来介绍一些关于线性椭圆形方程的一些定理及应用(在第一章预备知识这一块主要学习了若干技巧和一些重要的不等式,若干技巧分单位分解定理、齐次化边界条件、振动方法等单位分解定理:(设12,,...,k ΩΩΩ是开集组,K 是紧集,满足1kj j K ϕ=⊂,则存在函数0()j j C ϕ+∞∈Ω,使得0j ϕ≥,11kj j ϕ=≤∑,且在K 的领域内11kj j ϕ==∑)、;接下来介绍一些重要的不等式: 一、基本不等式 (1) Cauchy 不等式对任意的,0a b ≥,有2222a b ab ≤+:(2) 带ε的Cauchy 不等式对任意的,0a b >和0ε>,有2222a b ab εε≤+(3) Jensen 不等式设:R R ϕ→是下凸的,则11(())(())b ba a f t dt f t dtb a b aϕϕ≤--⎰⎰ 对有限区间[,]a b 及可积函数:[,]f a b R →均成立 (4) Young 不等式~对任意,0a b ≥,1,p q <<∞,111p q+=,有 p qa b ab p q≤+(5) 带ε的Young 不等式对任意,0a b ≥和0ε>,1,p q <<∞,111p q +=,有 pq p qa b ab pqεε-≤+(6) Holder 不等式pp LL uvdx uv Ω≤⎰, 1,p q ≤≤∞,111pq+=(7)一般的Holder 不等式^121212......p p p kk kL L L u u u dx u u u Ω≤⎰,111...1kp p ++= (7’) Minkowski 不等式设1,p q ≤≤∞,,()p f g L ∈Ω,则()p f g L +∈Ω,使()()()p p p L L L f gfgΩΩΩ+≤+(8) 几何与算术平均不等式对任意12,,...,0k a a a ≥,有11212...(...)k k k a a a a a a k++≤(9) p L 空间的内插不等式;1rsta a LLLuuu-≤, s r t ≤≤,11a a r s t-=+ 二、内插不等式 (1) (Green 恒等式)2u u udx u dx uds nΩΩ∂Ω∂∆=-∇+∂⎰⎰⎰ 记号()()()()()i i x x u x u x n x u x n x n∂=∇=∂为u 在点x 的外法向导数。
对偏微分方程的认识与收获

对偏微分方程的认识与收获
偏微分方程是关于多元函数的方程,其中包含函数的偏导数。
它在数学和物理学等领域具有广泛的应用。
对于我个人而言,学习和研究偏微分方程带给我许多认识和收获。
首先,通过学习偏微分方程,我认识到这门学科是解决现实世界中许多实际问题的强有力工具。
偏微分方程可以描述和预测自然界中的现象,例如热传导、流体流动、电磁场等等。
通过对这些方程进行求解,我们可以了解这些现象背后的物理机制,并为相关工程和科学研究提供指导。
其次,对于我个人而言,学习偏微分方程使我深入了解了数学的美妙之处。
偏微分方程是数学分析的重要分支,它涉及到许多高深的数学概念和技巧,如函数空间、变分原理、特征线等。
通过研究这些概念和技巧,我逐渐意识到数学的严密性和优雅性。
通过解析解或数值方法求解偏微分方程,我能够欣赏到数学在解决实际问题中的独特魅力。
此外,学习偏微分方程也让我意识到数学与其他学科的紧密联系。
偏微分方程广泛应用于物理学、工程学、生物学等领域,它们提供了这些学科中许多问题的数学建模和分析方法。
通过研究偏微分方程,我能够拓宽自己的学科视野,将数学与其他学科结合起来,为解决实际问题提供更全面的方法。
总之,对偏微分方程的学习和研究给予我深刻的认识和丰富的收获。
它不仅增强了我对数学的理解和欣赏,还为我提供了解决实际问题的有力工具。
无论是在学术研究中还是在实际应用中,对偏微分方程的认识和掌握都能够为我提供宝贵的支持和帮助。
大学数学易考知识点偏微分方程的基本理论和解法

大学数学易考知识点偏微分方程的基本理论和解法大学数学易考知识点:偏微分方程的基本理论和解法一、引言数学作为一门基础学科,广泛应用于各行各业。
在大学数学课程中,偏微分方程是一个重要的知识点。
本文将介绍偏微分方程的基本理论和解法,帮助大家更好地掌握这一知识点。
二、偏微分方程的基本概念1. 偏微分方程的定义偏微分方程是含有未知函数及其偏导数的方程。
它与常微分方程不同之处在于,偏微分方程中的未知函数不仅依赖于自变量,还依赖于各个自变量的偏导数。
2. 偏微分方程的分类偏微分方程根据方程中出现的未知函数的偏导数的阶数和个数,可以分为常系数偏微分方程和变系数偏微分方程;根据方程类型,可以分为椭圆型、双曲型和抛物型等不同类型的方程。
三、偏微分方程的基本理论1. 解的存在性和唯一性对于线性偏微分方程,满足一定的初值条件和边值条件时,解的存在性和唯一性可以得到保证。
这一结论对于求解实际问题具有重要的意义。
2. 偏微分方程的解的性质偏微分方程解的性质包括可微性、连续性以及一定的物理意义。
解的性质可以通过数学推导和物理分析得到。
四、偏微分方程的解法1. 常系数偏微分方程的解法常系数偏微分方程包括常系数线性偏微分方程和常系数非线性偏微分方程。
对于常系数线性偏微分方程,可以使用特征线法、分离变量法等方法求解;对于常系数非线性偏微分方程,可以使用变量分离法等方法求解。
2. 变系数偏微分方程的解法对于变系数偏微分方程,一般的解法是利用变换法将其转化为常系数偏微分方程。
常用的变换方法包括相似变量法、积分因子法等。
五、应用实例1. 热传导方程的求解热传导方程是一个典型的偏微分方程,描述了物体内部温度随时间和空间的变化规律。
采用分离变量法或者变量分离法可以求解该方程,从而得到物体内部的温度分布。
2. 波动方程的求解波动方程描述了波动现象的传播规律。
通过变量分离法或者特征线法可以求解波动方程,得到波动的传播速度和波形。
六、总结通过对偏微分方程的基本理论和解法的介绍,我们可以看到偏微分方程是数学中一个重要且广泛应用的知识点。
偏微分方程学习笔记

偏微分方程一.预备知识1.平面凸集定义:若E 是一个平面凸集,则对于E 中任意两点x ,y ,连接这两点的线段也在E 内。
即λ x + (1-λ) y ∈E ( 任意x , y ∈E ,任意0≤λ ≤ 1)2.空间凸集定义:设X 是线性空间,E 是X 中一个空间凸集,如果λ x + (1-λ) y ∈E ( 任意x , y ∈E ,任意0≤λ ≤ 1)3.设D 是E 的一个子集,为凸集,泛函 f : D → R ,称为在D 上是凸的 是指任意x ,y ∈D ,t ∈ [0,1]均有f (tx + (1-t ) y )≤t f ( x )+ (1-t ) f ( y ) 若只在x = y 时取等号,则称f 是严格凸的.4.Cauchy 不等式: 2222a b ab ≤+.(,)a b R ∈证明:由于()22202a b a b ab ≤-=+-,可得2222a b ab ≤+.5.带ε的Cauchy 不等式: 2222a b ab εε≤+.(0)ε>证明:在公式2222a b ab ≤+中,令a ,b ,则有2222a b ab εε=≤+6.Young 不等式:设0,0,1,1,a b p q >>>>且111.p q+=则有.p q a b ab p q ≤+证明: 泛函 f : x → x e ,是凸的,因此有(1)(1)tx t yx y e te t e +-≤+-从而有11ln ln ln ln ln ln 11.p q p q p qa b a ba b p qa b ab eee e p q p q++==≤+=+ 7. 带ε的Young 不等式: 设0,0,0,1,1,a b p q ε>>>>>且111.p q+=则有.qpqpqpq pab ab a b pqεεεε--≤+≤+证明:在不等式p qa b ab p q≤+中用1p a ε和1p b ε-代替,a b ,可得11.ppqpqpqpq pab ab a b a b pqεεεεεε---=⋅≤+≤+8.Holder 不等式:设1,1,p q >>且111.p q+=若(),(),p q u L v L ∈Ω∈Ω则1(),u v L ⋅∈Ω且()().p q L L uvdx uvΩΩΩ≤⋅⎰证明:设1()t x 与1()s x 是Ω中这样的可测函数11()1,()1,p qt x dx s x dx ΩΩ==⎰⎰(★)根据Young 不等式有 111111.(0,0)p q t s t s t s p q ≤+>>,111.p q+=对上述不等式两边在Ω上积分得1111p q t s t s dx dx dx p q ΩΩΩ≤+⎰⎰⎰111p q=+= 其次,若(),()p q u L v L ∈Ω∈Ω,则函数1111()()(),()(())(())pqpqu x v x t x s x u x dx v x dx ΩΩ==⎰⎰满足(★)式的条件,故有1111()()()()1(())(())pqpqu x v x t x s x dx dx u x dx v x dx ΩΩΩΩ=⋅≤⎰⎰⎰⎰即 11()()(())(())pqpqu x v x dx u x dx v x dx ΩΩΩ≤⎰⎰⎰也就是()()()()()().p q L L u x v x dx u x v x ΩΩΩ≤⎰推论:(1)若11(),()0,1,u x v x pq≥+=则有11()()(())(()).p q pqu x v x dx u x dx v x dx ΩΩΩ≤⎰⎰⎰(2)若121,,,,m p p p ≤≤∞且121111,mp p p +++= 设(),(1,2,,),kp k u L k m ∈Ω=则有211212()()().p p p m m mL L L u u u dx u u u ΩΩΩΩ≤⋅⋅⋅⎰9.Minkowski ’s 不等式:设1p ≤≤∞,且,().p u v L U ∈则有 ()()().pp p L U L U L U u v uv+≤+证明:()1()p L U ppp UUu vu v dx u vu v dx -+=+≤++⎰⎰而111()p p p UU Uu v u v dx u vu dx u vvdx ---++=+++⎰⎰⎰()()111111, 1.qpqp p pUU Uu vu dx u vdx u dxq p --⎛⎫+≤++= ⎪⎝⎭⎰⎰⎰ ()()111111, 1.qpqp p pUU Uu vvdx u vdx v dxq p--⎛⎫+≤++= ⎪⎝⎭⎰⎰⎰从而有,1pq p =-因此有 ()()11111p p pp p p pp UU Uu vu dx u vdx u dx ----⎛⎫+≤+ ⎪ ⎪⎝⎭⎰⎰⎰()()11111p p ppp p pp UU Uu vv dx u vdx v dx----⎛⎫+≤+ ⎪ ⎪⎝⎭⎰⎰⎰上面两式相加得()()()()111111p p pp pp p ppp UU UUu v u v dx u vdx u dx v dx----⎛⎫⎛⎫ ⎪++≤++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰()1111(()())p ppppppUUUu v dxu dx v dx -⎛⎫=++ ⎪ ⎪⎝⎭⎰⎰⎰=1()()()()pp p p L U L U L U u v uv -++即是: 1()()()()()pp p p p p L U L U L U L U u v u vuv-+≤++,因此()()()()().p p p p L U L U L U L U u vu v u v +≤++10.-norms p L 内插不等式:设1,s r t ≤≤≤≤∞且有()11,rstθθ-=+若()().s t u L U L U ∈则有(),r u L U ∈且有()()1().rs t L U L U L U uuuθθ-≤证明:我们计算(1)rrrU U u dx uudx θθ-=⎰⎰,因为()11,r s tθθ-=+即是()11,r rstθθ-+=利用赫尔德不等式有()()(1)(1)(1)(1)rr s t s tr rrr rrrUUU Uu dx uudx udx u dx θθθθθθθθ----⎛⎫⎛⎫=≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰两边同时1r次方得到:()()1().rs t L U L U L U uuuθθ-≤11.柯西-施瓦茨不等式:,(,).n x y x y x y R ≤∈证明:让0,ε>并注意到222202.x y x x y y εεε≤±=±+从而有下列结果221.22x y x y εε±≤+设,0xy yε=≠时取右边的最小值得到,(,).n x y x y x y R ≤∈ 12.Gronwall ’s 不等式(differential form).(i)Let ()η be a nonnegative, Absolutely continuous function on[0,],T which satisfies for a.e t theDifferential inequality(15) ()()()(),t t t t ηφηψ'≤+Where ()x φ and ()x ψ are nonnegative, summable functions on[0,].T Then(16) 0()0()(0)()tt s ds t es ds φηηψ⎰⎡⎤≤+⎢⎥⎣⎦⎰ For all 0.t T ≤≤(ii)In particular, if on[0,T]and (0)=0,ηφηη'≤then 0on[0,T].η≡ Proof. From (15) we see()000()()()()()()()()sssr dr r dr r dr d s e e s s s e s ds φφφηηφηψ---⎛⎫⎰⎰⎰'=-≤ ⎪⎝⎭For a.e 0.s T ≤≤因此对每一个0,t T ≤≤we have00()()()0()(0)()(0)().(1)ts st t r drr dr r drt e e s ds s ds e φφφηηψηψ---⎰⎰⎰≤+≤+≤⎰⎰This implies inequality(16).13.Gronwall ’s inequality ( integral form ).(i)Let ()t ζ be a nonnegative, summable function on [0,T] which satisfies for a.e. t the integral inequality (17) 120()()tt C s ds C ζζ≤+⎰ For constants 12,0.C C ≥ Then(18) 121()(1)C t t C C te ζ≤+for a.e. 0.t T ≤≤ (ii) In particular, if10()()tt C s ds ζζ≤⎰for a.e 0.t T ≤≤ then ()0..t a e ζ=Proof. Let 120():();()..[0,].tt s ds then t C C a e in T ηζηζη'==≤+⎰According to the differential form of Gronwall ’s inequality above1122()((0))C t C t t e C t C te ηη≤+=Then (17) implies11221()()(1).C t t C t C C C te ζη≤+≤+14.Poincare 不等式(也叫Friedrichs 不等式)符号说明:()(){()}122,,1,2,,n iuR H u L L i n x ∂Ω⊆Ω=∈Ω∈Ω=∂L 这个集合是线性的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏微分方程基本理论的归纳与总结
偏微分方程就是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来、最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性、微分方程就是一个庞大的体系,它的基本问题就就是解的存在性与唯一性、该学科的主要特征就是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法与理论、这就是与常微分方程有显著差异的地方、这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面、从数学的角度,方程的类型一般总就是对应于一些普遍的理论与工具、换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来、而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类、当然这两种方式常常不能截然区分,通常它们就是相互关联的,这就造成方程的概念有许多重叠现象、
根据数学的特征,偏微分方程主要被分为五大类,它们就是:
(1)线性与拟微分方程,研究这类方程的主要工具就是Fourier分析方法;
(2)椭圆型方程,它的方法就是先验估计+泛函分析手段;
(3)抛物型方程,主要就是Galerkin方法,算子半群,及正则性估计;
(4)双曲型方程,对应于Galerkin方法;
(5)一阶偏微分方程,主要工具就是数学分析方法、
从自然界的运动类型出发,偏微分方程可分为如下几大类:
(1)稳态方程(非时间演化方程);
(2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动、相变与混沌就是它们的主要内容;
(3)保守系统,如具有势能的波方程、该系统控制的运动就是与外界隔离的,及无能量输入,也无能量损耗、行波现象与周期运动就是它们的主要特征;
(4)守恒律系统,这类方程就是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒、激波行为就是由守恒律系统来控制、
下面具体来介绍三类经典方程:
三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论、
关于三类典型方程定解问题的解题方法,它们主要就是分离变量法、积分变换法、特征线法、球面平均法、降维法与Green 函数方法、
关于三类典型方程的基本理论——极值原理与能量估计,并由此给出了解的唯一性与稳定性的相关结论、
具体来说,关于二阶线性椭圆形方程,我们研究它的古典解与弱解、前者主要介绍了基本解、调与函数的基本性质、Green 函数、极值原理、最大模估计、能量方法与变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式与方程组的最大值原理以及最大模估计、带有非经典边界条件与非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性、
椭圆、抛物与双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程与波动方程作为代表、具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程与定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解就是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数
空间中考虑,我们将在连续函数空间与平方可积函数空间中分别讨论解关于输入数据的连续依赖性问题
学习偏微分方程理论以及偏微分方程分析就是研究其它一切的基础、首先有必要解释一下解的适定性、简单地说,一个偏微分方程就是适定性的,若它有解(存在性)解唯一(唯一性)且对输入数据的微小改变的响应也就是很小的改变(连续依赖性)、前两个准则就是一个有意义的物理模型所要求的,第三个准则就是实验观察的基础、考虑适定性时,还应记得对有实际意义的问题通常不可能求得显示解,从而可考虑逼近格式,特别就是数值解在应用中就具有特别的重要性、因此,适定性问题与偏微分方程科学计算的如下中心问题有密切联系:对一个问题给定一定精度的数据,数值解计算输出有多少精度?正因为这个问题对现代定量科学的重要性,适定性成为偏微分方程理论的核心内容、
因此,偏微分方程的学习应以三类线性偏微分方程的适定性问题为主要研究对象、同时,考虑到偏微分方程理论的两个特点:一就是与应用、与物理的紧密联系;二就是与数学其它分支的联系、以下,我们具体来说一下其两个具有应用价值的特点、
针对特点一:首先,数学物理方程就是自然科学与工程技术的各门分支中出现的偏微分方程,这些方程给出了所考察的物理量关于自变量(时间变量与空间变量)的偏导数的关系、例如连续介质力学、电磁学、量子力学等方面的基本方程都属于数学物理的范畴,数学物理方程侧重于模型的建立与定解问题的解题方法,而偏微分方程则侧重于其自身的数学理论,所以偏微分方程理论的研究就是能够更好地将其运用于物理当中、
针对特点二:偏微分方程理论与其她数学分支如泛函分析、数论、拓扑学、代数、复分析等紧密联系、偏微分方程理论广泛应用数学这些领域中的基本概念,基础思想与基本方法,并且它本身也给这些学科分支的研究问题的范围与方向以影响、
鉴于此,对于应用数学而言,掌握与研究偏微分方程的目的主要应该放在以下几个方面:
(1)建立模型、在经典物理中,具有普遍意义的自然定律不仅可以用实验手段获得,而且根据这些定律很容易对相应的自然现象建立数学模型、如天体力学,连续介质力学,流体动力学以及经典电磁学中的物理定律就属于这种情况、在近代物理中,情况有一些变化、咋爱量子力学与广义相对论中,一些自然规则与物理定律就是隐而不见的,此时数学物理方程就是依靠部分物理原则与实验数据猜测出来的、然而,到了现代数学阶段,大多数面临的问题仅依靠物理或数学的单一学科知识与直觉建立模型已变得非常困难,必须具备多学科交叉能力才行、因此,只有系统全面地掌握偏微分方程的理论与方法,才能训练出从方程解的性质反推出模型的形式的能力,这里方程解的性质就是由实验数据与观测资料所提供、这种模型反推能力再结物理直觉就就是现在建立数学模型的基本要求;
(2)从已知的方程与模型推导出新的发现与预言、这个方面可以说就是科学发展最重要的环节之一;
(3)从控制自然现象的微分方程中得到问题的机理与解释;
(4)最后一个方面就就是从数学模型获得与实验与观测相吻合的性质与结论、虽然这类工作不能提供新的科学结果,但能使我们加深对问题的理解,体现自然美与数学美的有机结合、
在总结了偏微分方程理论所研究的内容及其特点以后,我们该怎样学习基本理论呢?
首先,对于每一类方程,我们要了解它的物理背景及其意义,否则,我们根本不知道它在说什么、事实上,同一个方程有许多不同的来源,这一方面就是偏微分方程理论具有广泛应用的原因之一、同时对于不同的来源进行类比研究可以更好地解释物理过程的某些特性,因为某个具体物理特性在某个物理过程还没有被观察到或没有引起注意,而在另外某个物理过程已经被观察注意到了,如果这两个物理过程服从同一个偏微分方程,则在原来的物理过程中应该也具有这个特性、其次,在对数学模型研究之后,需要有意识地讲数学解带回原来的物理意义
中,去理解,解释物理现象、这一方面可以验证数学模型的有效性,另一方面可以更好地理解已知的物理现象,从而更加深刻地了解其在现实中的意义、
然后,要善于去思考,总结,归纳、逐步提高分析、解决实际问题的能力、至于与数学其她学科的联系,比如,求解过程中将会用到许多微积分或数学分析的概念,思想,与定理,解的表达形式也就是有积分形式的或级数形式的,解空间的结构则用到许多线性代数的知识、最后,学好泛函分析也就是同等重要的,因为偏微分方程解的唯一性与连续依赖性需要许多实变与泛函分析的理论与方法、所以在重视偏微分方程基本理论时(实变函数与泛函分析的许多思想方法都就是来源于偏微分程理论研究),也要同样学好泛函分析、
参考文献
(1)王明新,偏微分方程基本理论;
(2)马天,偏微分方程理论与方法;
(3)王明新,数学物理方程、。