燃料及燃烧2 燃烧计算及燃烧理论

合集下载

燃料及燃烧

燃料及燃烧
22.4 C 用 H 用 S 用 N 用 W 用 V0 ( ) 0.79 L0 100 12 2 32 28 18
理论燃烧产物量
(二)实际空气需求量和实际燃烧产物量的计算 实际空气需要量 实际燃烧产物量 (三)燃烧产物成分和密度的计算 1.燃烧产物成分 用
烟煤 :烟煤比褐煤炭化更完全,水分和挥发分进一步减少,固体碳 增加。低发热量较高;一般都在23000~29300千焦/千克。 作冶金炉燃料时,主要考虑的指标是:挥发分和发热量;灰分 含量及其熔点;含硫量;煤的粒度大小。 分类:长焰煤、气煤、肥煤、结焦煤、瘦煤。 无烟煤 :无烟煤是炭化程度最完全的煤,其中挥发分很少。无烟煤 挥发分少,燃烧时火焰很短,故在冶金生产中很少使用。焦炭缺乏 时,可用无烟煤暂代。
②氢(H): H 2 1 O2 H 2O(汽) 119915( KJ / Kg )
③氧(O):有害元素 ④氮(N):惰性物质
1 C O2 CO 10258( KJ / Kg ) 2
2
⑤硫(S):有害杂质。S
O2 SO2 409930 KJ
存在形式:有机硫,黄铁矿硫硫酸盐 ⑥水分(W):有害成分。水分来源:外部水、吸附水、结晶水。 ⑦灰分(A):
2.焦炭 要求:①化学成分 ②机械强度
③块度
④灰分 ⑤反应能力 3.粉煤 将块煤或碎煤磨至0.05~0.07毫米的粒度称为粉煤。
任务2 燃烧计算
一 概述 1.完全燃烧与不完全燃烧 燃料中的可燃物全部与氧发生充分的化学反应,生成不能 燃烧的产物,叫完全燃烧。 燃料的不完全燃烧存在两种情况: ①化学性不完全燃烧:燃烧时燃料中的可燃物质没有得到足 够的氧,或者与氧接触不良,因而燃烧产物中还含有一部分 能燃烧的可燃物被排走,这种现象叫化学不完全燃烧。 ②机械不完全燃烧:燃料中的部分可燃成分未参加燃烧反应 就损失掉的那部分。如灰渣裹走的煤,炉栅漏下的煤,管道 漏掉的重油或煤气。

燃料及燃料燃烧计算

燃料及燃料燃烧计算

发电用煤的分类:VAMSST及Q分类方法 例如:V4A1M1S2ST1
焦结性:
煤受热析出挥发分后余下产物的焦结程度。一般炼焦煤 (Vdaf=18~26%)的焦结性最大,适于炼焦炭。 对层燃炉燃烧的影响: • 结焦性过强,导致通风不均,难于燃尽; • 结焦性过弱,易受热而松散,落到炉排下面,而损失掉。
煤样置于105~110℃的烘箱中使干燥至恒重, 失去的水分
化合结晶水分:石膏CaSO4•2H2O,高岭土Al2O3 •2SiO2 •2H2O
水分对锅炉运行的影响
• 煤中的不可燃成分,降低煤的发热量 • 推迟着火,在燃烧过程中汽化吸热,降低炉膛温度,
使着火困难 • 降低锅炉效率 • 易引起低温受热面腐蚀
100 100 Ad
§2-4 煤的工业分析和燃烧特性
煤的工业分析
气态物质 固态物质
水分Mad(%)-测定值
挥发分Vad(%)-测定值 灰分Aad(%)-测定值 固定炭FCad(%)-求定值
还包括发热量Q、焦渣特性、灰熔点、颗粒度
煤的挥发分:
煤在隔绝空气的情况下加热至一定温度时,煤中的部分有机 物和矿物质便发生分解,析出的气态产物。
灰熔点—表示了灰的熔化特性,一般在1000~1600℃之间, 变形温度DT(Deformation Temperature) 开始软化温度ST(Softening Temperature) 熔化温度FT(Fluid Temperature)
易熔灰:ST<1200C,适于液态排渣炉 难熔灰:ST>1400C,适于固态排渣炉
气田煤气: 94~98% CH4 ,压力高,热值36000kJ/Nm3
天 然 气
油田煤气:75~87% CH4,>10%的C2H6和C3H8,5~10% CO2,热值45000kJ/Nm3 煤矿矿井气: 52~60% CH4 ,>35% N2,热值18800kJ/Nm3

燃料燃烧计算

燃料燃烧计算

第三章 燃料及燃烧过程3-2 燃料燃烧计算一、燃料燃烧计算的内容及目的(一)计算内容:①空气需要量 ②烟气生成量 ③烟气成分 ④燃烧温度 (二)目的:通过对以上内容的计算,以便正确地进行窑炉的设计和对运行中的窑炉进行正确的调节。

二、燃烧计算的基本概念 (一)完全燃烧与不完全燃烧。

1、完全燃烧:燃料中可燃成分与完全化合,生成不可再燃烧的产物。

2、不完全燃烧:化学不完全燃烧:产物存在气态可燃物。

物理不完全燃烧:产物中存在固态可燃物。

(二)过剩空气系数 1、过剩空气系数的概念а=V a /V 0a2、影响过剩空气系数的因素:1)燃料种类:气、液、固体燃料,а值不同; 2)燃料加工状态:煤的细度、燃油的雾化粘度。

3)燃烧设备的构造及操作方法。

3、火焰的气氛:①氧化焰:а>1,燃烧产物中有过剩氧气。

②中性焰:а=1③还原焰:а<1,燃烧产物中含还原性气体(CO 、H 2)三、空气需要量、烟气生成量及烟气成分、密度的计算(一)固体、液体燃料:基准:计算时,一般以1kg 或100kg 燃料为基准,求其燃烧时空气需要量、烟气生成量。

方法:按燃烧反映方程式,算得氧气需要量及燃烧产量,然后相加,即可得空气需要量与烟气生成量。

1、理论空气量计算: 1)理论需氧量: V 0O2=12ar C +4ar H +32ar S -32ar O(Nm 3/kgr)2)理论空气量:V 0a =1004.22(12ar C +4ar H +32ar S -32ar O )21100=0.089C ar +0.267H ar +0.033(S ar -O ar ) (Nm 3/kgr)2、实际空气量计算: V a =а×V o a3、理论烟气生成量的计算:V 0L =V CO2+V H2O +V SO2+V N2=1004.22 (12ar C +2ar H +18ar M +32ar S +28arN )×V o a +0.79V o a =0.01865C ar +0.112H ar +0.01243M ar +0.0068S ar +0.008N ar +0.79V o a4、实际烟气生成量的计算: 1)а>1时,V L = V 0L +(а-1)×V o a2)а<1时,在工程上进上近似认为其燃烧产物中只含有CO 一种可燃气体。

第二章 燃料及燃料燃烧计算

第二章 燃料及燃料燃烧计算
29
(二)各类煤质的燃烧特性
烟煤 含碳量较无烟煤低 40%~70%; 挥发分含量较多 20%~40%,易点燃,燃烧快,火焰长; 氢含量较高 发热量较高。 褐煤
碳化程度低,含碳量低 约为40~50%,
水分及灰分很高 发热量低; 挥发分含量高 约40~50%,甚至60%,挥发分的析出温度 低,着火及燃烧均较容易。
热量。
约占2%~6%。 多以碳氢化合物的形式存在。
3、氧(O)和氮(N)
不可燃元素。 氧含量变化很大,少的约占1%~2%,多的占40% 氮的含量约占0.5%~2.5%。
5
一、煤的成分及分析基准
4、硫(S)
有害成分,约占2%,个别高达8%~10%。 存在形式:
① 有机硫(与C、H、O等结合成复杂的有机物)
第二章 燃料及燃料燃烧计算
燃料的成分及其主要特性 燃料燃烧计算 烟气分析方法 空气和烟气焓的计算
1
§2.1 燃料的成分及其主要特性
燃料:
核燃料 有机燃料 固体燃料(煤、木料、油页岩等)
有机燃料 :
液体燃料(石油及其产品) 气体燃料(天然气、高炉煤气、焦炉煤气等)
电厂锅炉以煤为主要燃料,并尽量利用水分和灰分含
Q Q 226 H d , n, et p d , gr d
干燥基 高位发热量与低位发热量之间的换算: 干燥无灰基 高位发热量与低位发热量之间的换算: Q Q 226 H daf , net , p daf , gr daf
18
(一)煤的发热量
高位发热量(Qgr) 各基准间的换算采用表2-1换算系数
为反映煤的燃烧特性,电厂煤粉锅炉用煤还以VAMST及Q法 分类
28
(二)各类煤质的燃烧特性

热工基础教案第4章:燃料及燃烧计算

热工基础教案第4章:燃料及燃烧计算

第二部分:热工计算(4-6章)第一次课课题: 4. 燃料及燃烧计算§4.1燃料的通性一、本课的基本要求:1.掌握燃料的化学组成及各种成分之间的相互转换。

2.燃料发热量的计算。

3.标准燃料的概念。

二、本课的重点、难点:1. 重点:燃料的化学组成。

2. 难点::燃料成分之间的相互转换。

三、作业:第4章燃料及燃烧计算1.燃料的定义:凡是在燃烧时(剧烈地氧化)能够放出大量的热,并且此热量能有效地被利用在工业或其他方面的物质称为燃料。

. 所谓有效地利用是指利用这些热源在技术上是可能的在经济上是合理的。

2.对燃料的要求:(1)在当今技术条件下,单位质量(体积)燃料燃烧时所放出的热可以有效地利用。

(2)燃烧生成物是气体状态,燃烧后的热量绝大部分含欲其气体生成物之中,而且可以在放热地点以外利用生成物中所含的热量。

(3)燃烧产物的性质时熔炼(加热)设备不起破坏作用,无毒、无腐蚀作用。

(4)燃烧过程易于控制。

(5)有足够多的蕴藏量,便于开采。

§4.1 燃料的通性一、燃料的化学组成1.固(液)体燃料的化学组成(1)固(液)体燃料的基本组成固液体燃料的基本组成有C、H、O、N、S、W(水分)及A(灰分),其中C、H、S 能燃烧放热构成可燃成分,但S燃烧后生成的而氧化硫为有毒气体。

所以视硫为有害成分;氧和氮的存在相对降低了可燃成分的含量,属于有害物质;水分(W)的存在不仅相对降低了可燃成分含量,而且水分在蒸发时要吸收大量的热,所以视水为有害物质;灰分的存在不仅降低了可燃成分的含量,而且影响燃烧过程的进行,在燃烧过程中易溶结成块,阻碍通讯,造成燃料浪费和增加排灰的困难。

(2)固(液)体燃料的成分分析固(液)体燃料的成分分析方法有元素分析法和工业分析法两种。

元素分析法是确定燃料中C、H、O、N、S的重量百分含量,它不能说明燃料由那些化合物组成及这些化合物的形式。

只能进行燃料的近似评价,但元素分析法的结果是燃料计算的重要原始数据。

第2章 燃料及燃烧计算=长沙理工大学锅炉原理

第2章 燃料及燃烧计算=长沙理工大学锅炉原理

煤的可磨性系数与磨损指数
煤的可磨性系数:
国际标准:哈德格罗夫法(Hardgrove法),测定哈氏可磨性指数HGI
煤的磨损性指数 表示磨损的轻重程度;旋转磨损试验仪;冲刷式磨损试验仪:Ke=E/At
Page 14
Principles of Boiler
2013-8-2
长沙理工大学能动学院
煤的分类
我国动力煤的分类(分类依据: Vadf)
氧)可通过燃料中可燃元素(C、H、S)的燃烧化学反应方程式求得
V 0 1 (1.866 C a r 5.56 H a r 0.7 S a r - 0.7 O a r ) 0.21 100 100 100 100
0.0889(Car 0.375Sar ) 0.265H ar 0.333Oar
0 O Vy0 VRO2 VN2 VH 2O
(Car 0.375Sar ) N 0.8 ar 0.79V 0 100 100 H ar M ar 11.1 1.24 0.0161V 0 , Nm3 / kg 100 100 1.866
Page 15 Principles of Boiler 2013-8-2
长沙理工大学能动学院
煤的类型
无烟煤
碳化程度高,含碳量很高,达95%,杂质很少,发热量很高,约 为25000~32500 kJ/kg;
挥发份很少,小于10%,Vdaf析出的温度较高(可达400℃),着 火和燃尽均较困难,储存时不易自燃 褐煤 碳化程度低,含碳量低,约为40~50%,水分及灰分很高,发热 量低, 约10000~21000 kJ/kg; 挥发分含量高,约40~50%,甚至60%,挥发分的析出温度低 (<200℃),着火及燃烧均较容易

节能基础知识--燃料与燃烧

节能基础知识--燃料与燃烧

(四)煤的分类
煤一般可以分为无烟煤、烟煤、贫煤、褐煤、石煤与煤矸石。见表 ! * %。
表!*% 特性 煤种 石 煤 褐 矸 煤 石 煤 !类 无烟煤 "类 #类 贫 煤 !类 烟 煤 "类 #类
注:!+,-. 6 %&!787+9
工业用煤分类表 水分 灰分 (() 1 )# 1 )# 应用基低位热值 ( +,-. / +0) !### 2 ")## !)## 2 ")## "### 2 3)## 4 )### 1 )### 1 )### 1 %)## 1 "5## 2 35## 1 35## 2 %5## 1 %5##
一、燃料知识 (一)燃料的分类
燃料按状态可分成三类:固体燃料、液体燃料和气体燃料。 固体燃料有煤炭、油页岩、木柴和植物燃料(如农作物秸秆) 。其中煤炭应用最为 普遍,在我国目前和今后相当长时间内都是最基本的能源。 液体燃料有石油(原油)及其加工产品等。石油在常压下蒸馏可分别提炼出汽油、 煤油、柴油等高质量燃料。 气体燃料有天然气及人造煤气。天然气多从油田或煤田附近地层逸出,是一种高质 量的燃料。人造煤气种类很多,有石油气、焦炉煤气、高炉煤气、水煤气、发生炉煤气 及城市煤气等。
注:+"#$% 3 *)+(/("4
(三)煤的工业分析
对煤进行工业分析的主要目的是为了判断其燃料特性,从而在锅炉运行中采取相应 的技术措施,调节和控制燃烧过程。煤的工业分析项目有挥发物、固定碳、灰分、水分 和发热量等。 :煤加热到一定温度,首先排放出一些气体,开始着火燃烧,这些 +) 挥发物(5) 气体就是挥发物,如一氧化碳、氢气和各种碳氢化合物等。挥发物析出后就很快着火燃 烧,使煤粒周围形成一层火膜,将煤粒迅速加热到较高的温度,同时挥发物析出后煤粒 中间出现孔隙,增加煤与空气的接触面积。当煤的挥发物含量相当比例时,容易着火, 有利于燃烧;但当煤的挥发物含量过高时,相对减少了固定碳的含量,使煤发热值降 低。一般锅炉用煤的挥发物含量最好在 2,! 以上。 :煤中的挥发物燃烧后,剩下是固定碳和灰分。固定碳在完全燃烧 2) 固定碳( 6) 时和氧化合成二氧化碳,将放出 00.,*"4 & "’((,-,"#$% & "’)热量。 :煤燃烧后,残留下来不能燃烧的固体杂质便是灰分。主要是混入煤 0) 灰分(7) 中的砂石、灰土、氧化铁、氧化钙等,灰分是煤中的有害成分,它含量过大,使煤发热 —

燃烧理论分析及相应计算

燃烧理论分析及相应计算

燃烧机理分析林树军浙江温岭燃烧过程高速摄影1燃料和空气混合气缸混合气残余废气过程湍流火焰燃气混合物燃料空气点火TDC@1430r/min&部分负荷Lamberda=1.30喷油角度为30CRA BTC出现火焰达到离火花塞最远的气缸壁理论温度最高点燃烧阶段划分火焰高速传播期火焰传播火焰扩散期早期火焰传播火焰终止火花点燃2燃烧机理解释内燃机的燃烧过程是湍流燃烧,而湍流燃烧是一种极其复杂的带化学反应的流动现象,湍流与燃烧的相互作用涉及许多因素,流动参数与化学动力学参数之间的耦合的机理极其复杂,用数值模拟方法分析和预测湍流燃烧现象的关键问题是正确模拟平均化学反应率,即燃料的湍流燃烧速率。

3燃烧湍流模型Eddy Break up(涡团破碎模型)Spalding的涡团破碎模型,其基本思想是:对预燃火焰、湍流燃烧区中的已燃气体和未燃气体都是以大小不等并作随机运动的涡团形式存在。

化学反应在这两种涡团的交界面上发生。

化学反应的速率取决于未燃气体涡团在湍动能作用下破碎成更小的涡团的速率,而此破碎速率正比于湍流脉动动能k的耗散率,其基本表达方式如下:该模型是AVL公司fire软件里面计算燃烧的基础计算模型。

4缸内传热模型5内燃机的传热既是与燃烧现象密切耦合的一个子过程,又是整个燃烧循环模拟的一个重要环节。

然而,内燃机的传热问题又被认为热问题中最复杂的一个,这是因为由于内燃机工作过程强烈非定温度变化的高度瞬变性,以致在毫秒量级的时间内,燃烧室表面的热流量从零变化到10MW/m2,同时温度和热流的空变化也非常剧烈。

在1cm 的位置上,热流峰值相差可达5MW/m2。

一般而言,发动机的传热计算包括3个方面:(1)工质与燃烧室热量的交换(包括对流和辐射两种方式);(2)燃烧室壁内部的热传导;(3)燃烧室外壁与冷却对流和沸腾传热。

对于内燃机燃烧过程来说,主要考虑的第一项,因而对于内燃机传热模型方面主要考虑两个方面:1、工质与壁面之间的对流换热模型,2、是辐射换热模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Va0 VO0 2
100 8.9Car 26.7 H ar 3.3( Sar Oar )(Nm3 / kg) 21
洛阳理工学院
材料工程基础
②气体燃料
院系:材料科学与工程系
教师:罗伟
可燃组成有CO2、 CO、H2、CH4、CmHn、H2S、H2O、N2、O2(体积百 分含量)
0 百分含量,VO 和 VO0分别为生成RO2和H2O的需氧量( /m3) 2 2

0 0 (VO2 RO2 VO2 H 2 O ) O2
V
0 O2
RO2 V H 2 O
0 O2
令k
0 0 VO2 RO2 VO2 H 2O
RO2
K:单位燃料燃烧时的理论需氧量 与该烟气中RO2百分含量的比值。 组成变动不大的同种燃料的k值近 似为常数。列于表。
洛阳理工学院
材料工程基础
院系:材料科学与工程系
教师:罗伟
第三节
燃烧计算
洛阳理工学院
材料工程基础

院系:材料科学与工程系
教师:罗伟
在设计窑炉时(设计计算) 1、已知燃料的组成及燃烧条件, 2、需计算单位质量(或体积)燃料燃烧所需的空气量、烟气 生成量、烟气组成及燃烧温度 3、以确定空气管道、烟道、烟囱及燃烧室的尺寸,选择风机 型号。
CO2=
VCO2 0 V
0
×100(%)
洛阳理工学院
材料工程基础
② 气体燃料
院系:材料科学与工程系
教师:罗伟
可燃组成有CO2、CO、H2、CH4、CmHn、H2S、H2O、N2、O2(体积百 分含量)
CO + 1/2O2 → CO2 CO2 H2 + 1/2O2 → H2O CH4 + 2O2 → CO2 + 2H2O CmHn +(m+n/4)O2→ m CO2 + n/2 H2O 1Nm3 H2生成 1 Nm3 HO2 …… ...... 1Nm3 CO 生成 1 Nm3

N 2 燃料中N 2 量 1 1 ( N 2 燃料中N 2 量) O2 CO H 2 m 2 2 79 n Cm H n 4 21
1.10~1.15 1.20~1.25 1.03~1.05 1.05~1.20
固体燃料
液体燃料
气体燃料
洛阳理工学院
材料工程基础
3.2
1. 理论烟气量
院系:材科学与工程系
教师:罗伟
烟气量和烟气组成的计算
单位质量(或体积)燃料与空气完全燃烧产生的最少烟 气量;或单位质量(或体积)燃料与理论空气量进行完 全燃烧时所产生的烟气量。

在窑炉生产中(操作计算) 通过烟气成分来进行计算及分析,判断其燃烧是否合理, 窑炉设备各部位是否漏气,以便及时调节。
洛阳理工学院
材料工程基础
院系:材料科学与工程系
教师:罗伟
1
2 3 4
燃料燃烧所需空气量的计算 烟气量及烟气组成 生产中热工计算 燃烧温度计算
洛阳理工学院
材料工程基础
3.1
院系:材料科学与工程系
0 VCO2 CO2= 100% V
……
洛阳理工学院
材料工程基础
院系:材料科学与工程系
教师:罗伟
当 <1时:空气量(即氧量)供应不足,燃料中将有部分可燃物质不能 完全燃烧。在一般的工程计算中,对于此类的不完全燃烧可近似认为其燃 烧产物中只含有CO一种可燃气体。 导致烟气中CO生成的不足氧量为:(1-α)VO20(Nm3/kg) C+O2 →2CO 烟气中的CO量为:VCO=2(1-α)VO20(Nm3/kg) 烟气中:
式中:CO、H2、CH4—烟气中各组成的百分含量
洛阳理工学院
材料工程基础
氮平衡方法: 适用于在空气中燃烧时


院系:材料科学与工程系
教师:罗伟
实际空气量V 实际空气量 实际空气量 过剩空气量 理论空气量V0
实际空气中N 2 量 实际空气中N 2 量 过剩空气中N 2 量
洛阳理工学院

kRO2 O2 kRO2
洛阳理工学院
材料工程基础
院系:材料科学与工程系
教师:罗伟
不完全燃烧时:烟气中仍有CO、H2、CH4和碳粒等可燃成分,值为:
k ( RO 2 CO CH 4 ) O2 (0.5CO 0.5H 2 2CH 4 ) k ( RO 2 CO CH 4 )
洛阳理工学院
材料工程基础
2. 实际空气量(Va)
院系:材料科学与工程系
教师:罗伟
在实际燃烧设备中,由于燃料和空气的混合往往不够完善, 若只将理论所需要的空气量送入炉内,则不能保证燃料的完
全燃烧。因此为保证炉内燃料的完全燃烧,实际使用空气量
常较理论空气量多。 空气系数 亦即 = Va / Va0 Va = Va0
烟气组成: CO2、SO2、H2O、N2
洛阳理工学院
材料工程基础
① 固体、液体燃料
院系:材料科学与工程系
教师:罗伟
CO2、SO2、H2O可按化学计量方程式计算,N2含量可根据燃料中Nar
及理论空气量计算。
CO2含量 VCO20 : H2O含量 VH2O0 : SO2含量 VSO20 : N2含量 VN20 :
H2S +3/2O2 → SO2 + H20 理论烟气量:
V 0 VCO20 VH 2O 0 VSO20 VN 20
……
n 79 [CO2 CO H 2O 3CH 4 (m )C m H n H 2 S N 2 ] VO2 0 2 21
洛阳理工学院
理论燃烧需要氧气的摩尔量为 :
Car H ar 1 Sar Oar 12 2 2 32 32 标准状态下1kg固体或液体燃料燃烧所需理论氧气量(VO20)为: VO 0* 2
H O 1 S C VO 0 ar ar ar ar 22.4(Nm3 / kg) 2 2 2 32 32 12 理论燃烧所需空气量:
CO2量: VCO20=
Car 0 3 12 ×22.4-2(1-α)VO2 (Nm /kg)
79 N ar 0× ×22.4+αVO2 N2量:VN20= 21 28
水蒸气量:VH2O 0=(Har/2 + Mar/18)×22.4 SO2量:VSO2 0=Sar/32×22.4 V=V0-(1-α)VO20×
1Nm3气体燃料完全燃烧所需理论氧气量 :
mn Cm H n 1.5H 2 S O2 ) /100 4 1Nm3气体燃料完全燃烧所需理论空气量(Nm3/kg燃料) 0 Va0 =VO2 100/21 VO0 (0.5CO 0.5H 2 2CH 4 2
=2.38(CO+H 2 )+9.52CH 4 +4.76(m+n/4)Cm H n +7.14H 2S 4.76 O 2
理论烟气量V0
Car/12×22.4 (Har/2 + Mar/18)×22.4 Sar/32×22.4 Nar/28×22.4 + VO20 ×79/21
C 0=( ar V
烟气成分:
M ar H ar Sar N ar + + + + )×22.4+VO20× 12 18 2 32 28
79 21
洛阳理工学院
材料工程基础
例:已知某窑所用煤的收到基组成为:
院系:材料科学与工程系
教师:罗伟
组分(wt%)Car Har Oar Nar
组分(%) VCO2 VO2 VN2
Sar
Mar
Aar
高温阶段在窑底处测定其干烟气组成为: 灰渣分析:含C Wc(%),含灰分WA( %)
解:首先根据C平衡计算烟气量,基准为1kg煤 ,烟气量(Nm3/h) 。
WC 22.4 1 ( ) 生成的干烟气量: x Car Aar WA 12 VCO2
M H 生成的水蒸气量: ar ar 22 .4 18 2 湿烟气=干烟气+水蒸气
(2)空气量的计算
根据N平衡计算空气量
设1kg煤需要空气量为yNm3,
氮平衡
燃料中N2+空气中N2=烟气中N2
设1kg煤生成干烟气量为xNm3
(1)烟气量的计算 Car 煤中C: 煤渣中C: 烟气中C:
Aar WC WA
VCO 2 x
12 22.4
洛阳理工学院
材料工程基础
煤中C=烟气中C+灰渣中C
院系:材料科学与工程系
教师:罗伟
Car Aar
WC 12 VCO2 x WA 22.4
教师:罗伟
燃料燃烧所需空气量的计算
1. 理论空气量(Va0):单位质量(或体积)燃料完全燃烧所 需要的最少空气量。
固体、液体燃料 气体燃料
Nm3/kg 燃料 Nm3空气/Nm3燃料
理论空气量的计算需要根据理论需要的氧气量来进行计算
洛阳理工学院
材料工程基础
院系:材料科学与工程系
教师:罗伟
①固体、液体燃料 可燃组成为Car、Har、Sar(质量百分含量) C + O2 → CO2 即 1kmolC需1kmolO2 H2 + 1/2O2 → H2O 即 1kmolH2需1/2kmolO2 S +O2 → SO2 即 1kmolS需1kmolO2
N ar 79 22.4 y VN 2 x 28 100
洛阳理工学院
材料工程基础
过剩空气系数(α)的计算
相关文档
最新文档