外文翻译中英对照版
外文翻译中英文对照

Strengths优势All these private sector banks hold strong position on CRM part, they have professional, dedicated and well-trained employees.所以这些私人银行在客户管理部分都持支持态度,他们拥有专业的、细致的、训练有素的员工。
Private sector banks offer a wide range of banking and financial products and financial services to corporate and retail customers through a variety of delivery channels such as ATMs, Internet-banking, mobile-banking, etc. 私有银行通过许多传递通道(如自动取款机、网上银行、手机银行等)提供大范围的银行和金融产品、金融服务进行合作并向客户零售。
The area could be Investment management banking, life and non-life insurance, venture capital and asset management, retail loans such as home loans, personal loans, educational loans, car loans, consumer durable loans, credit cards, etc. 涉及的领域包括投资管理银行、生命和非生命保险、风险投资与资产管理、零售贷款(如家庭贷款、个人贷款、教育贷款、汽车贷款、耐用消费品贷款、信用卡等)。
Private sector banks focus on customization of products that are designed to meet the specific needs of customers. 私人银行主要致力于为一些特殊需求的客户进行设计和产品定制。
岩土工程中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)原文:Safety Assurance for Challenging Geotechnical Civil Engineering Constructions in Urban AreasAbstractSafety is the most important aspect during design, construction and service time of any structure, especially for challenging projects like high-rise buildings and tunnels in urban areas. A high level design considering the soil-structure interaction, based on a qualified soil investigation is required for a safe and optimised design. Dueto the complexity of geotechnical constructions the safety assurance guaranteed by the 4-eye-principle is essential. The 4-eye-principle consists of an independent peer review by publicly certified experts combined with the observational method. The paper presents the fundamental aspects of safety assurance by the 4-eye-principle. The application is explained on several examples, as deep excavations, complex foundation systems for high-rise buildings and tunnel constructions in urban areas. The experiences made in the planning, design and construction phases are explained and for new inner urban projects recommendations are given.Key words: Natural Asset; Financial Value; Neural Network1.IntroductionA safety design and construction of challenging projects in urban areas is based on the following main aspects:Qualified experts for planning, design and construction;Interaction between architects, structural engineers and geotechnical engineers;Adequate soil investigation;Design of deep foundation systems using the FiniteElement-Method (FEM) in combination with enhanced in-situ load tests for calibrating the soil parameters used in the numerical simulations;Quality assurance by an independent peer review process and the observational method (4-eye-principle).These facts will be explained by large construction projects which are located in difficult soil and groundwater conditions.2.The 4-Eye-PrincipleThe basis for safety assurance is the 4-eye-principle. This 4-eye-principle is a process of an independent peer review as shown in Figure 1. It consists of 3 parts. The investor, the experts for planning and design and the construction company belong to the first division. Planning and design are done accordingto the requirements of the investor and all relevant documents to obtain the building permission are prepared. The building authorities are the second part and are responsible for the buildingpermission which is given to the investor. The thirddivision consists of the publicly certified experts.They are appointed by the building authorities but work as independent experts. They are responsible for the technical supervision of the planning, design and the construction.In order to achieve the license as a publicly certified expert for geotechnical engineering by the building authorities intensive studies of geotechnical engineering in university and large experiences in geotechnical engineering with special knowledge about the soil-structure interaction have to be proven.The independent peer review by publicly certified experts for geotechnical engineering makes sure that all information including the results of the soil investigation consisting of labor field tests and the boundary conditions defined for the geotechnical design are complete and correct.In the case of a defect or collapse the publicly certified expert for geotechnical engineering can be involved as an independent expert to find out the reasons for the defect or damage and to develop a concept for stabilization and reconstruction [1].For all difficult projects an independent peer review is essential for the successful realization of the project.3.Observational MethodThe observational method is practical to projects with difficult boundary conditions for verification of the design during the construction time and, if necessary, during service time. For example in the European Standard Eurocode 7 (EC 7) the effect and the boundary conditions of the observational method are defined.The application of the observational method is recommended for the following types of construction projects [2]:very complicated/complex projects;projects with a distinctive soil-structure-interaction,e.g. mixed shallow and deep foundations, retaining walls for deep excavations, Combined Pile-Raft Foundations (CPRFs);projects with a high and variable water pressure;complex interaction situations consisting of ground,excavation and neighbouring buildings and structures;projects with pore-water pressures reducing the stability;projects on slopes.The observational method is always a combination of the common geotechnical investigations before and during the construction phase together with the theoretical modeling and a plan of contingency actions(Figure 2). Only monitoring to ensure the stability and the service ability of the structure is not sufficient and,according to the standardization, not permitted for this purpose. Overall the observational method is an institutionalized controlling instrument to verify the soil and rock mechanical modeling [3,4].The identification of all potential failure mechanismsis essential for defining the measure concept. The concept has to be designed in that way that all these mechanisms can be observed. The measurements need to beof an adequate accuracy to allow the identification ocritical tendencies. The required accuracy as well as the boundary values need to be identified within the design phase of the observational method . Contingency actions needs to be planned in the design phase of the observational method and depend on the ductility of the systems.The observational method must not be seen as a potential alternative for a comprehensive soil investigation campaign. A comprehensive soil investigation campaignis in any way of essential importance. Additionally the observational method is a tool of quality assurance and allows the verification of the parameters and calculations applied in the design phase. The observational method helps to achieve an economic and save construction [5].4.In-Situ Load TestOn project and site related soil investigations with coredrillings and laboratory tests the soil parameters are determined. Laboratory tests are important and essential for the initial definition of soil mechanical properties of the soil layer, but usually not sufficient for an entire and realistic capture of the complex conditions, caused by theinteraction of subsoil and construction [6].In order to reliably determine the ultimate bearing capacity of piles, load tests need to be carried out [7]. Forpile load tests often very high counter weights or strong anchor systems are necessary. By using the Osterberg method high loads can be reached without install inganchors or counter weights. Hydraulic jacks induce the load in the pile using the pile itself partly as abutment.The results of the field tests allow a calibration of the numerical simulations.The principle scheme of pile load tests is shown in Figure 3.5.Examples for Engineering Practice5.1. Classic Pile Foundation for a High-Rise Building in Frankfurt Clay and LimestoneIn the downtown of Frankfurt am Main, Germany, on aconstruction site of 17,400 m2 the high-rise buildingproject “PalaisQuartier” has been realized (Figure 4). The construction was finished in 2010.The complex consists of several structures with a total of 180,000 m2 floor space, there of 60,000 m2 underground (Figure 5). The project includes the historic building “Thurn-und Taxis-Palais” whose facade has been preserved (Unit A). The office building (Unit B),which is the highest building of the project with a height of 136 m has 34 floors each with a floor space of 1340 m2. The hotel building (Unit C) has a height of 99 m with 24 upper floors. The retail area (Unit D)runs along the total length of the eastern part of the site and consists of eight upper floors with a total height of 43 m.The underground parking garage with five floors spans across the complete project area. With an 8 m high first sublevel, partially with mezzanine floor, and four more sub-levels the foundation depth results to 22 m below ground level. There by excavation bottom is at 80m above sea level (msl). A total of 302 foundation piles(diameter up to 1.86 m, length up to 27 m) reach down to depths of 53.2 m to 70.1 m. above sea level depending on the structural requirements.The pile head of the 543 retaining wall piles (diameter1.5 m, length up to 38 m)were located between 94.1 m and 99.6 m above sea level, the pile base was between 59.8 m and 73.4 m above sea level depending on the structural requirements. As shown in the sectional view(Figure 6), the upper part of the piles is in the Frankfurt Clay and the base of the piles is set in the rocky Frankfurt Limestone.Regarding the large number of piles and the high pile loads a pile load test has been carried out for optimization of the classic pile foundation. Osterberg-Cells(O-Cells) have been installed in two levels in order to assess the influence of pile shaft grouting on the limit skin friction of the piles in the Frankfurt Limestone(Figure 6). The test pile with a total length of 12.9 m and a diameter of 1.68 m consist of three segments and has been installed in the Frankfurt Limestone layer 31.7 m below ground level. The upper pile segment above the upper cell level and the middle pile segment between the two cell levels can be tested independently. In the first phase of the test the upper part was loaded by using the middle and the lower part as abutment. A limit of 24 MN could be reached (Figure 7). The upper segment was lifted about 1.5 cm, the settlement of the middle and lower part was 1.0 cm. The mobilized shaft friction was about 830 kN/m2.Subsequently the upper pile segment was uncoupled by discharging the upper cell level. In the second test phase the middle pile segment was loaded by using the lower segment as abutment. The limit load of the middle segment with shaft grouting was 27.5 MN (Figure 7).The skin friction was 1040 kN/m2, this means 24% higher than without shaft grouting. Based on the results of the pile load test using O-Cells the majority of the 290 foundation piles were made by applying shaft grouting. Due to pile load test the total length of was reduced significantly.5.2. CPRF for a High-Rise Building in Clay MarlIn the scope of the project Mirax Plaza in Kiev, Ukraine,2 high-rise buildings, each of them 192 m (46 storeys)high, a shopping and entertainment mall and an underground parking are under construction (Figure 8). The area of the project is about 294,000 m2 and cuts a 30 m high natural slope.The geotechnical investigations have been executed 70m deep. The soil conditions at the construction site are as follows: fill to a depth of 2 m to 3mquaternary silty sand and sandy silt with a thickness of 5 m to 10 m tertiary silt and sand (Charkow and Poltaw formation) with a thickness of 0 m to 24 m tertiary clayey silt and clay marl of the Kiev and But schak formation with a thickness of about 20 m tertiary fine sand of the But schak formation up to the investigation depthThe ground water level is in a depth of about 2 m below the ground surface. The soil conditions and a cross section of the project are shown in Figure 9.For verification of the shaft and base resistance of the deep foundation elements and for calibration of the numerical simulations pile load tests have been carried out on the construction yard. The piles had a diameter of 0.82 m and a length of about 10 m to 44 m. Using the results of the load tests the back analysis for verification of the FEM simulations was done. The soil properties in accordance with the results of the back analysis were partly 3 times higher than indicated in the geotechnical report. Figure 10 shows the results of the load test No. 2 and the numerical back analysis. Measurement and calculation show a good accordance.The obtained results of the pile load tests and of the executed back analysis were applied in 3-dimensionalFEM-simulations of the foundation for Tower A, taking advantage of the symmetry of the footprint of the building. The overall load of the Tower A is about 2200 MN and the area of the foundation about 2000 m2 (Figure11).The foundation design considers a CPRF with 64 barrettes with 33 m length and a cross section of 2.8 m × 0.8m. The raft of 3 m thickness is located in Kiev Clay Marl at about 10 m depth below the ground surface. The barrettes are penetrating the layer of Kiev Clay Marl reaching the Butschak Sands.The calculated loads on the barrettes were in the range of 22.1 MN to 44.5 MN. The load on the outer barrettes was about 41.2 MN to 44.5 MN which significantly exceeds the loads on the inner barrettes with the maximum value of 30.7 MN. This behavior is typical for a CPRF.The outer deep foundation elements take more loads because of their higher stiffness due to the higher volume of the activated soil. The CPRF coefficient is 0.88 =CPRF . Maximum settlements of about 12 cm werecalculated due to the settlement-relevant load of 85% of the total design load. The pressure under the foundation raft is calculated in the most areas not exceeding 200 kN/m2, at the raft edge the pressure reaches 400 kN/m2.The calculated base pressure of the outer barrettes has anaverage of 5100 kN/m2 and for inner barrettes an average of 4130 kN/m2. The mobilized shaft resistance increases with the depth reaching 180 kN/m2 for outer barrettes and 150 kN/m2 for inner barrettes.During the construction of Mirax Plaza the observational method according to EC 7 is applied. Especially the distribution of the loads between the barrettes and the raft is monitored. For this reason 3 earth pressure devices were installed under the raft and 2 barrettes (most loaded outer barrette and average loaded inner barrette) were instrumented over the length.In the scope of the project Mirax Plaza the new allowable shaft resistance and base resistance were defined for typical soil layers in Kiev. This unique experience will be used for the skyscrapers of new generation in Ukraine.The CPRF of the high-rise building project MiraxPlaza represents the first authorized CPRF in the Ukraine. Using the advanced optimization approaches and taking advantage of the positive effect of CPRF the number of barrettes could be reduced from 120 barrettes with 40 mlength to 64 barrettes with 33 m length. The foundation optimization leads to considerable decrease of the utilized resources (cement, aggregates, water, energy etc.)and cost savings of about 3.3 Million US$.译文:安全保证岩土公民发起挑战工程建设在城市地区摘要安全是最重要的方面在设计、施工和服务时间的任何结构,特别是对具有挑战性的项目,如高层建筑和隧道在城市地区。
经典英汉翻译

许渊冲译文:不见棺材不掉泪。 / 不到俄 岛我不倒。
马红军译文:落败孤岛孤败落。 / 若非孤 岛孤非弱。
Better late than the late.
晚了总比完了好。 宁迟一时,不迟一世。 慢行回家, 快行回老家。
You reckon your Dodge would help you up to all these dodges again?
Begot by butchers, but by butchers bred, / How high his highness holds his haughty head.
译文一:屠夫所生,屠夫所养;如此高贵, 这般高尚。
君居屠户屋,君属屠户后;俯仰何佼佼, 倨傲俨倬倬。
不爱红妆爱武装
你以为坐上你的道奇跑车就可以再 次跑掉么?
The output of the U.N. has not been commensurate with the input.
联合国所起的作用与其所耗的费用已不 相称了。
联合国的作用已难抵其费用。
The ballot is stronger than the bullet.
马红军译文:Monastical men make monks, / But become Buddhas barely; / Miserable maidens make maids, / Styled slaves so squarely.
三个臭皮匠,合成一个诸葛亮。 Three cobblers with their wits combined,
Equal Zhu Geliang the mastermind.
中英互译1

中英互译1.一举两得- Kill two birds with one stone2.杯弓蛇影- A figment of one's imagination3.画蛇添足- To overdo something and spoil it4.自相矛盾- Self-contradictory, inconsistent5.刻舟求剑- Focused on old outdated solutions6.对牛弹琴- Cast pearls before swine7.守株待兔- Waste time and effort waiting for something unlikely to happen8.虎头蛇尾- Strong start but weak ending9.杞人忧天- Fretting over imaginary troubles10.坐井观天- Limited view of the world11.画龙点睛- The finishing touch12.塞翁失马- Misfortune may be a blessing in disguise13.夜郎自大- Arrogant and ignorant14.九牛二虎之力- Tremendous strength15.一毛不拔- Stingy16.求仁得仁- One gets what he deserves17.铁杵成针- Perseverance can turn a hopeless situation around18.纸上谈兵- Armchair theorizing19.入乡随俗- When in Rome, do as the Romans do20.掩耳盗铃- Deceiving oneself21.心有灵犀一点通- Mutual understanding without communication22.路遥知马力,日久见人心- Time reveals all secrets23.两全其美- Best of both worlds24.打草惊蛇- Unnecessary action that alerts the enemy25.东施效颦- Imitating others without success26.言简意赅- Simple and to the point27.悬崖勒马- Stop short of the point of no return28.乐极生悲- Extreme joy begets sorrow29.多此一举- Superfluous, unnecessary30.抛砖引玉- Start a topic to invite other's opinions31.海底捞针- Finding a needle in a haystack32.骑虎难下- Hard to get off the tiger once you are riding it33.狐假虎威- To feign power34.画地为牢- Set boundaries35.授人以鱼不如授人以渔- Teaching someone how to do something is better than doing it for them36.无源之水,无本之木- Something without source or foundation37.虚虚实实- Half real and half imaginary38.有的放矢- Aimed and targeted39.明枪易躲,暗箭难防- Hidden danger is more difficult to handle40.守口如瓶- Keep one's mouth shut41.百年树人- Educate people that will last generations42.事半功倍- Half the effort, twice the effect43.束手无策- Unable to find a way out44.貌似天仙,实则蝼蚁- The appearance is beautiful, but the reality is insignificant45.亡羊补牢- Better late than never46.安居乐业- Live and work in peace and contentment47.鞠躬尽瘁,死而后已- Work hard until one's last breath48.碧血丹心- Loyalty and devotion49.画饼充饥- Deceiving oneself with false hope50.白驹过隙- Time flies51.得过且过- Coast along without planning for the future52.殊途同归- Different paths lead to the same destination53.人山人海- Crowded with people54.四海为家- Feel at home everywhere55.同舟共济- Work together when facing difficulties56.入木三分- Penetrate deeply57.一毫不差-Accurate to the smallest detail58.不可思议- Unbelievable59.顺手牵羊- Snatch something without effort60.水落石出- Truth will eventually come to light61.含沙射影- Imply something indirectly62.奉公守法- Be law-abiding63.扬眉吐气- Defeat an enemy and feel proud64.青梅竹马- Childhood sweethearts65.轻松自如- Easy and comfortable66.老马识途- Experienced and knowledgeable67.七上八下- Feel anxious68.星星之火,可以燎原- Small sparks can start a big fire69.万无一失- Foolproof70.心惊肉跳- Frightened and trembling71.四面楚歌- Enemies on all sides72.投桃报李- Return a favor with a greater favor73.不打不成器- Spare the rod, spoil the child74.五体投地- Admire and worship someone75.刮目相看- Look at someone with new respect76.一日千里- Rapid progress77.身体力行- Put into practice78.不遗余力- Spare no effort79.如鱼得水- Feel at home80.金玉满堂- Abundant wealth and treasures81.入情入理- Full of sentiment and reason82.恍然大悟- Suddenly understand something83.刮骨疗伤- Cure a deep-rooted problem84.石破天惊- Astonishing and shocking85.七手八脚- Busy and bustling86.受宠若惊- Surprised by special treatment87.不知所措- At a loss what to do88.假以时日- Given enough time, anything can be accomplished89.面目全非- Completely changed in appearance90.人云亦云- Follow the crowd blindly91.先发制人- Strike first to gain the upper hand92.独善其身- Only concerned with oneself93.风雨同舟- In the same boat through thick and thin94.放眼世界- Take a worldly view95.如履薄冰- Tread on thin ice96.垂头丧气- Feel dejected97.大惊小怪- Make a fuss over nothing98.力不从心- Unable to live up to one's aspirations99.视同路人- Treat someone as a stranger100.恩将仇报- Repay kindness with enmity。
薪酬管理体系中英文对照外文翻译文献

薪酬管理体系中英文对照外文翻译文献XXX people。
XXX enterprise management。
as it has a XXX attract。
retain。
and motivate employees。
particularly key talent。
As such。
it has XXX。
retain。
objective。
XXX on the design of salary XXX.2 The Importance of Salary System DesignThe design of a salary system is XXX's success。
An effective salary system can help attract and retain employees。
XXX。
XXX them to perform at their best。
In contrast。
a poorly designed salary system can lead to employee n and XXX。
which can XXX.To design an effective salary system。
XXX factors。
including the industry。
the enterprise's size and stage of development。
and the specific needs and goals of the XXX。
XXX.3 XXXXXX。
XXX incentives can help align the XXX with those of the enterprise and its shareholders。
XXX to perform at their best.When designing equity incentives。
基因工程外文翻译(中英对照)(可编辑)

基因工程外文翻译(中英对照)Retrovirus-mediated gene transfer and expression cloning: Powerful tools in functional genomics Most of the human genome has now been sequenced and about 30,000 potential open reading frames have been identified, indicating that we use these 30,000 genes to functionally organize our biologic activities. However, functions of many genes are still unknown despite intensive efforts using bioinformatics as well as transgenic and knockout mice. Retrovirus-mediated gene transfer is a powerful tool that can be used to understand gene functions. We have developed a variety of retrovirus vectors and efficient packaging cell lines that have facilitated the development of efficient functional expression cloning methods. In this review, we describe retrovirus-mediated strategies used for investigation of gene functions and function-based screening strategies 2003 International Society for Experimental Hematology. Published by Elsevier Inc.摘要:人类基因组的大部分现在已经测序完成,大约30,000潜在的开放阅读框已经确定,表明我们使用这30,000个基因管理我们的生物学活和功能性。
家具设计中英文对照外文翻译文献

家具设计中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Researches and Development of InteractiveEducational Toys for ChildrenAbstract: For Oriented by the teaching philosophy "game based learning", this paper carried out an in-depth research on the interactive mode of children's educational toys. In the research process, it attempted to build a new immersed educational-game scenario for children by using the new interactive technology so as to inspire the children's interest in learning and exploration. The research object in this paper was an interactive educational toy-"funny tap" English learning machine for children. After integrating the design concept of this product from an industrial designperspective, we selected specific interactive technology and completed the engineering. Moreover, we have conducted tests of work principles and effect of usage based on the sample machine. The final result indicated that there is a promising and huge market potential to apply the new interactive technology to development of educational toys.Keywords: Interactive Educational Toys, Interactive Design, interactive mode1.INTRODUCTIONSince 1980s, human beings including the children have entered a digital age. Under the influence of the advanced information, early stage education machines, electronic building blocks, electronic wall charts, and other new toys have become children's new favorites. With the influence of the west teaching philosophy-"game based learning", parents are strongly agreed with such toys for children. These modern educational toys will become the mainstream of toy development due to their promotion of children's learning, practical ability, creativity and imagination.Interaction exists in all things contacted by humans, and interactive design emerged to design a kind of communication and dialogue between human and objects to minimize the "cognitive conflict". As a new design theory, interactive design has a wide range of applications in designing educational toys.2. THE PLAN AND BENEFITS OF THE INTERACTIVE MODE OFCHILDREN 'S TOYSThe rise of various digital technologies, such as voice recognition, 3D video, and virtual reality technology etc., gives new experience to people's perception. The author aimed to apply these new digital technologies to the researches of interactive educational toys design.The plan of the interactive mode of children's educational toys:2.1. Voice InteractionVoice interaction voice includes touch voice interaction, voice command interaction and intelligent voice interaction. Touch voice interaction and voice command interaction have been very common, such as electronic wall charts, televox;intelligent voice interaction is the author's aim to create a genuine dialogue between children and simulation toys through digital technology, to foster children's language ability, particularly in a family with only one child, the children need a "partner" to accompany them to learn and play with.2.2. Video InteractionVideo interaction can be divided into 2D image interaction and 3D video interaction. The former has been broadly used in toys, such as in multimedia courseware, image or video of horse will appear when referring to "horse"; 3D video interaction is the author's aim to apply 3D projection technology in the "play" process, for instance, when referring to a green grassland, a grassland projection will appear so that children feel like being on the grassland, which enhances children's learning experience; meanwhile, this enhanced emotional experience will prolong the memory retention time or even extend to a ultra- long-term memory.2.3. Narrative InteractionNarrative interaction is to conceive a story for the toy and offer a task role for children to make them participate in the story. The steps are shown in Figure 1:Fig. 1. The steps of narrative interactionBased on children's curiosity and imitation psychology as well as the investigation of the games, the author found the correct application of story interaction in educational toys can greatly mobilize children's learning enthusiasm, for example, we conceive an English learning process as treasure hunt activity. In this activity, the words are hidden in the treasure box, and children themselves are explorers, if they put one or a few words together, they will get a treasure box, and they can also make a competition with peers to get the treasure boxes. Through establishment of game theme, selection of roles, and plot development in the activities, children not only increase their knowledge of English, also learn how to get along with peers and develop good self-awareness.2.4. Web Virtual Reality InteractionWeb virtual reality interaction is virtual imaging through network connections, making you feel like your partners sitting, playing and learning with you, to deliberatethe loneliness in the contemporary families, and promote children's learning initiative in the competitive context.Psychological research shows that with respect to the learners, the learning behavior resulting in emotional pleasure experience will produce a positive emotional resonance, thereby enhancing the learners' learning initiative and enthusiasm. The realistic educational-game scenario created by interactive educational toys for children not only brings emotional pleasure experience to children so that learning is no longer boring for them with a purpose of mobilizing the enthusiasm of study and developing creative thinking, but also enhances children's social communication ability to help children establish good social character favorable for their life.3. DEVELOPMENT OF INTERACTIVE EDUCATIONAL TOY—"FUNNYTAP"Parents are head-ached on children's learning English, so we focus on developing an interactive English learning toy to help the children remembering words in game scenario and stimulate their interests in learning English, and training children's hand operation and brain coordination.The development practice procedure of interactive toy for children-"funny tap" is shown in Figure 2 as following:Fig. 2. The development practice procedure of "funny tap"3.1. The development process of interactive concept of interactive educational toy-"funny tap"It is the development process of "funny tap" interactive concept. After investigating the object group of children and parents about their needs of English learning machine, we summarized six key indicators such as security, fun and incentive. Here we mainly describe three models of interactions shaded in Figure 3.To meet the requirement of fun, the author designed a narrative interactive process, as is shown in Figure 3:Fig. 3. The narrative interactive process of "funny tap"The word learning process is conceived as a game of whack-a-mole, imagining there are N mole holes, and there are M letters in a word (i.e. M moles with a letter). If you tap down M jumping moles in accordance with the order, you will get the cheers, if the tap is not correct, it will continue to call "come on"; meanwhile, the action of "tap" is not only funny, but also effective to train children's hands and brain coordination.Voice interaction was prepared by the microcontroller program to control the voice modules. There are two features regarding the "funny pat": one is word pronunciation; the other is the design of the applause and cheering voices for reward and punishment, which help to reach the goal of incentive.In the first stage, video interaction was prepared by displaying the letters on buttons through LED dot matrix character display modules mainly controlled by microcontroller; in the second stage, we provided toy with 3D projector for projecting the whole process in the air to construct a 3D emotional scenario, and the action of "tap" is to tap the projections in the air.3.2. Principle diagram of interactive educational toy for children-"funny tap" The operation principle of "funny tap" is shown in Figure 4:Fig. 4. The operation principle of "funny tap"The system consists of six components, such as voice module, LED indicator, action back module, MCU, power module and LED dot matrix character display module. Among these, the three formers are connected with MCU through 8-bit data bus; LED dot matrix character display module is connected with the microcontroller through the 12C bus. Voice module stores English word pronunciation documents needed in the game, and MCU pronounces the word by controlling the voice module via the bus. LED dot matrix character display module consists of driver chips and the 8*8 LED matrix. MCU bus control LED dot matrix character display module via I2C to show the corresponding English letters. Action back module tests and captures the player's actions during the game for the MCU to judge whether the player conducts normal actions to control the game process.3.3. Appearance design process of interactive educational toy-"funny tap"The following Figure 5 is a design process from sketch, modelling, model-making to the final product and the drawing of the product structure explosion.Fig. 5. Appearance design process of "funny tap"3.4. Interaction testSample of N (N is an odd number) preschool children was randomly selected to test the product's availability, usability and user's willingness of using it. Mainly onsite testing observation and questionnaire survey, and then we improve the product according to the test results.Testing times are equal to or more than I so as to find the products with highest interaction. In the product final trial, most of parents fed back that this toy combined fun and knowledge well and the whole learning process was very smooth and the children were very happy when "learning".4. SUMMARY AND PROSPECTChina is a large country of toy manufacturing, but it still remains in the stage of imitating foreign design, especially in educational toy design. The research and practice of interactive educational toys in this study is expected to give some thought and inspiration to toy designers so as to further promote the development of Chinese toy industry.REFERENCES[I] Liu Zaihua, Children's Social Intelligence, Anhui People's Publishing House, 2008.[2] KARL T. ULRICH, STEVEN D. EPPINGER, Product Design and Developmen,Higher Education Press, 2005.[3] (U.S.) Robert J. stembeg, Translated by Yang Bingjun, Chen Yan, Chow Zhiling,Cognitive Psychology, Beijing: China Light Industry Press, 2006.[4] Zhang Zhcnzhong, Li Yanjun, Classification Research of Educational Toys,Textiles and Design, December 2008 Vol. 12.[5] Li Qiaodan, Xia Hongwen, On the Function of Digitized Bran-training Toys inElementary Education, China Education Informationalization Issuing Department.[6] Song Jun, Researches on Design Principles of Children's Educational Toys,[Online]. Available: [7] Liu Mingliang, " The Principle Production and Purchasing of Electronic Toys", New Era Press, 1992.Toy development and design based on the needs of olderpersonsAbstract:In china, aging and the life-quality of older persons has become today’s important issues of social concern, and how to solve this problem thus turns to be an important challenge in the design and development of supplies for the old. Now, the ensuing ways to solve varied. For instance, the design community has put emphasis on the design and development of the supplies for the old, but a large part of these de signs were for medical care and medical products of the senior person. The designsfor the vast majority of the healthy people in their senior age are rarely involved. In this, I think, for the function of toys, the emphasis on the development of physical and mental health of older persons is the key, so to rethink the development of toys for the old persons in china is one of the ways.Keywords: Toys for the old, Needs design, humane careMentions of the toys, we always unconsciously think of the innocent children, as if toys are just child’s belongings. With the improvement of living standards, emphasis on the toys is constantly improved. To meet the needs of children, various designs are brought out, and then from luxury goods, toys have gradually become the child’s necessities. However, the authorities of the china toy association state that the toy is no longer the children’s only product: toy concept has been extended and functional and practical range of modern toy has been further expanded. Toys not only inspire children, but also become the recreation products for the seniors. The old also need toys that could meet their spiritual needs and enrich their life in later years.1.Status of the development and design of toys for the seniorsIn china, toy for the old is still an industry to be developed. Senior people, as customers, they have needs and also purchasing power, but no targeted toys for them. There are as much as 130 million seniors in china who would be a huge consumer group, but the research and development of toys for old consumers has lagged behind developed country for more than 30 years.In America, the toys designed for the senior amount to 40% of the toy market. The toy market for old persons is more mature. They have many toy stores for the seniors throughout the urban and rural areas. Also our neighbor Japan does well in the development of toys for the old persons, and most toy companies have produced toys for seniors, and continued to introduce new products.2.The meaning of the development of toys for the seniorsRetiring from work, the senior people get more time than before. Besides watching TV at home, they have no many alternative entertainments. Some old people have been for a long period in loneliness. Over time, they are prone todepression, anxiety disorder and Alzheimer’s, seriously affecting their physical and mental health and become burden to children and society.Li guangqing in department of rehabilitation of Beijing Xuanwu Hospital once said: “with age increasing, the function of the body of the seniors gradually degraded, and their reaction will be clumsier. At the same time, retirement from work, the opportunity for the old to use their brain reduces, which further brings the decline of attention and cognitive ability. Except to maintain good habits and moderate exercise, to slow down brain aging, putting hands and brain in work at the same time is the most effective way, which is exactly the function of toys. for people with Alzheimer’s, playing with toys, to some extent, would alleviate the condition.Therefore, toys can develop people’s thinking ability, and improve our intelligence. If the seniors play with toys constantly, the aging of the brain and the Alzheimer’s would be effectively prevented. Medical experts found that to maintain old people’s intelligence, we must first fully protect the brain. In addition to proper nutrition and adequate sleep, the seniors should make most of the brain. Just as Chinese saying tells that”water does not rot, and the door hinge is never worm-eaten “, the more one use his brain, the more sensitive it becomes. Playing with toys is exactly a good way to use the brain. With toys, the old people not only receive more information, at the same time become more optimistic than before, thereby enhancing their immune system function.3.The needs-analysis of toys for the oldWhat is a needs analysis? This approach is to focus on the users’ needs. Users’needs are sources of many new products.What is the demand-design? it is the most front-end process for new product in its life cycle, and decides the success or failure of the new products. Needs-design starts from the businesses and designers’judgment of the market or the needs of users, and ends at planning proposals or technical specifications on description of the product development. Understand the market or user demand is a high-level investment for the success of the product.The development and design of toys for old persons should start from the needs ofthe seniors. Only a real understanding of the old consumers and their psychological and physiological needs can bring toys that give practical cares for the seniors physically and spiritually.Toys for the old should bring human care. Toy design process should be integrated into this concept. The aim of the toy design for the old is enhanced, with seniors-centered design principles, and with the help of analysis on the seniors’physiological psychological characteristics, cultural level and lifestyle. The toy design principle that shows humane care for the seniors is reflected at the same time.(1)Safety firstTo varying degrees, the judgment, cognitive ability and ability to respond of the old people weaken, thus in the process of using the product, they inevitably make mistakes. In case a threat to physical and mental health occurs, they usually are unable to escape the danger. Therefore, toys for the seniors should be fault-tolerant. So that, the old people even make a mistake, there will be no danger. Here the reduction of operation process and the set of message for safe operation is an effective way to ensure the safety of the seniors with toys.(2)Moderate difficultThe design of toys for the old should be of moderate difficulty, and the purpose is to arouse their interest in playing. If too simple, it would not enhance the interest of the seniors and thus would not achieve the aim of exercising the brain; if too difficult, it would be strenuous for them to learn, and consequently cause a sense of failure which is not conducive to their mental health.(3)Easy to identifyThe toy should have a familiar form and an understandable functional theory for the old. It should also be equipped with an interface in keeping with the experience and habits of the seniors. Besides, the toys that need interface design, should take into account the graphic symbols, size, color, clarity of sound, light intensity.(4)Facilitate communicationPeople’s feelings need to vent and exchange, especially for the seniors. For them, emotional communication is indispensable to maintain their vitality, andimprove the quality of life. Playing with toys, there are many ways for the old to choose, such as: taking turns to participate, working together and racing in the game. The development of multiple-persons playing toys is to create a harmonious environment in which they can talk when play. So the core of toy-development is to involve the participants as much as possible. For the participating ways, common collaborative participatory approach is the best, which is more conducive to conversation, and get to know some new friends. In this way the seniors can expand their social circle with emotional exchange.(5)The effect for keeping fitness and developing intelligenceIncreasing with age, people’s organ recession becomes an objective physiological phenomenon. In order to maintain good physical function and mental state, and improve the quality of life, fitness puzzle is a very important content in the lives of older persons. Body-building that can achieve with playing toys is the most basic needs of older persons. Old people by playing intellectual toys can effectively prevent Alzheimer’s disease, so to maintain the flexibility of the seniors’mind is the main direction of the toy development.(6)Cultural connotationsLife experiences bring the old people with more comprehensive concept of life, thus toys with a certain ideological and cultural depth usually put them in recollecting and thinking of issues. Toys for the seniors are different from those for children: a child plays a toy intuitively, while the old emphasize the toy’s inherent fun, and show great interest in the toys with cultural connotations. Of course, this culture must be familiar with the elderly, has gone deep into the ideological deep.Summing up, toys for the seniors have a promising market, for each one of us would inevitably become old. The design industry should make more efforts to improve the living standard of the seniors. One way is to develop toys for the old and help them improve their life quality with theses design. We all know, care for the old is to care for all mankind, and designing from the needs of the old has become an urgent task of today’s society.References:[1]Yang Guanghui. China’s Population Aging and the Industrial Structure [m].Liaoning Science and Technology Press, 2008.7.[2] Wang Lianhai. Chinese Toys, Art History [m], Hunan Fine Arts Publishing House, 2006.8.[3] Wang court. Toys And Innovative Design [m], Chemical Industry Press, 2005.12.儿童家具的人性化设计摘要:本文以儿童家具设计问题为出发点,提出人性化的概念在新的时代环境下的新解释,并指出新的人性化设计原则在儿童家具的设计方法中的实现,分析儿童家具的现状,并提出一些建议。
道路与桥梁工程中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Bridge research in EuropeA brief outline is given of the development of the European Union, together with the research platform in Europe. The special case of post-tensioned bridges in the UK is discussed. In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio: relating to the identification of voids in post-tensioned concrete bridges using digital impulse radar.IntroductionThe challenge in any research arena is to harness the findings of different research groups to identify a coherent mass of data, which enables research and practice to be better focused. A particular challenge exists with respect to Europe where language barriers are inevitably very significant. The European Community was formed in the 1960s based upon a political will within continental Europe to avoid the European civil wars, which developed into World War 2 from 1939 to 1945. The strong political motivation formed the original community of which Britain was not a member. Many of the continental countries saw Britain’s interest as being purelyeconomic. The 1970s saw Britain joining what was then the European Economic Community (EEC) and the 1990s has seen the widening of the community to a European Union, EU, with certain political goals together with the objective of a common European currency.Notwithstanding these financial and political developments, civil engineering and bridge engineering in particular have found great difficulty in forming any kind of common thread. Indeed the educational systems for University training are quite different between Britain and the European continental countries. The formation of the EU funding schemes —e.g. Socrates, Brite Euram and other programs have helped significantly. The Socrates scheme is based upon the exchange of students between Universities in different member states. The Brite Euram scheme has involved technical research grants given to consortia of academics and industrial partners within a number of the states— a Brite Euram bid would normally be led by an industrialist.In terms of dissemination of knowledge, two quite different strands appear to have emerged. The UK and the USA have concentrated primarily upon disseminating basic research in refereed journal publications: ASCE, ICE and other journals. Whereas the continental Europeans have frequently disseminated basic research at conferences where the circulation of the proceedings is restricted.Additionally, language barriers have proved to be very difficult to break down. In countries where English is a strong second language there has been enthusiastic participation in international conferences based within continental Europe —e.g. Germany, Italy, Belgium, The Netherlands and Switzerland. However, countries where English is not a strong second language have been hesitant participants }—e.g. France.European researchExamples of research relating to bridges in Europe can be divided into three types of structure:Masonry arch bridgesBritain has the largest stock of masonry arch bridges. In certain regions of the UK up to 60% of the road bridges are historic stone masonry arch bridges originally constructed for horse drawn traffic. This is less common in other parts of Europe as many of these bridges were destroyed during World War 2.Concrete bridgesA large stock of concrete bridges was constructed during the 1950s, 1960s and 1970s. At the time, these structures were seen as maintenance free. Europe also has a large number of post-tensioned concrete bridges with steel tendon ducts preventing radar inspection. This is a particular problem in France and the UK.Steel bridgesSteel bridges went out of fashion in the UK due to their need for maintenance as perceived in the 1960s and 1970s. However, they have been used for long span and rail bridges, and they are now returning to fashion for motorway widening schemes in the UK.Research activity in EuropeIt gives an indication certain areas of expertise and work being undertaken in Europe, but is by no means exhaustive.In order to illustrate the type of European research being undertaken, an example is given from the University of Edinburgh portfolio. The example relates to the identification of voids in post-tensioned concrete bridges, using digital impulse radar.Post-tensioned concrete rail bridge analysisOve Arup and Partners carried out an inspection and assessment of the superstructure of a 160 m long post-tensioned, segmental railway bridge in Manchester to determine its load-carrying capacity prior to a transfer of ownership, for use in the Metrolink light rail system..Particular attention was paid to the integrity of its post-tensioned steel elements. Physical inspection, non-destructive radar testing and other exploratory methods were used to investigate for possible weaknesses in the bridge.Since the sudden collapse of Ynys-y-Gwas Bridge in Wales, UK in 1985, there has been concern about the long-term integrity of segmental, post-tensioned concrete bridges which may b e prone to ‘brittle’ failure without warning. The corrosion protection of the post-tensioned steel cables, where they pass through joints between the segments, has been identified as a major factor affecting the long-term durability and consequent strength of this type of bridge. The identification of voids in grouted tendon ducts at vulnerable positions is recognized as an important step in the detection of such corrosion.Description of bridgeGeneral arrangementBesses o’ th’ Barn Bridge is a 160 m long, three span, segmental, post-tensionedconcrete railway bridge built in 1969. The main span of 90 m crosses over both the M62 motorway and A665 Bury to Prestwick Road. Minimum headroom is 5.18 m from the A665 and the M62 is cleared by approx 12.5 m.The superstructure consists of a central hollow trapezoidal concrete box section 6.7 m high and 4 m wide. The majority of the south and central spans are constructed using 1.27 m long pre-cast concrete trapezoidal box units, post-tensioned together. This box section supports the in site concrete transverse cantilever slabs at bottom flange level, which carry the rail tracks and ballast.The center and south span sections are of post-tensioned construction. These post-tensioned sections have five types of pre-stressing:1. Longitudinal tendons in grouted ducts within the top and bottom flanges.2. Longitudinal internal draped tendons located alongside the webs. These are deflected at internal diaphragm positions and are encased in in site concrete.3. Longitudinal macalloy bars in the transverse cantilever slabs in the central span .4. Vertical macalloy bars in the 229 mm wide webs to enhance shear capacity.5. Transverse macalloy bars through the bottom flange to support the transverse cantilever slabs.Segmental constructionThe pre-cast segmental system of construction used for the south and center span sections was an alternative method proposed by the contractor. Current thinking suggests that such a form of construction can lead to ‘brittle’ failure of the ent ire structure without warning due to corrosion of tendons across a construction joint,The original design concept had been for in site concrete construction.Inspection and assessmentInspectionInspection work was undertaken in a number of phases and was linked with the testing required for the structure. The initial inspections recorded a number of visible problems including:Defective waterproofing on the exposed surface of the top flange.Water trapped in the internal space of the hollow box with depths up to 300 mm.Various drainage problems at joints and abutments.Longitudinal cracking of the exposed soffit of the central span.Longitudinal cracking on sides of the top flange of the pre-stressed sections.Widespread sapling on some in site concrete surfaces with exposed rusting reinforcement.AssessmentThe subject of an earlier paper, the objectives of the assessment were:Estimate the present load-carrying capacity.Identify any structural deficiencies in the original design.Determine reasons for existing problems identified by the inspection.Conclusion to the inspection and assessmentFollowing the inspection and the analytical assessment one major element of doubt still existed. This concerned the condition of the embedded pre-stressing wires, strands, cables or bars. For the purpose of structural analysis these elements、had been assumed to be sound. However, due to the very high forces involved,、a risk to the structure, caused by corrosion to these primary elements, was identified.The initial recommendations which completed the first phase of the assessment were:1. Carry out detailed material testing to determine the condition of hidden structural elements, in particularthe grouted post-tensioned steel cables.2. Conduct concrete durability tests.3. Undertake repairs to defective waterproofing and surface defects in concrete.Testing proceduresNon-destructi v e radar testingDuring the first phase investigation at a joint between pre-cast deck segments the observation of a void in a post-tensioned cable duct gave rise to serious concern about corrosion and the integrity of the pre-stress. However, the extent of this problem was extremely difficult to determine. The bridge contains 93 joints with an average of 24 cables passing through each joint, i.e. there were approx. 2200 positions where investigations could be carried out. A typical section through such a joint is that the 24 draped tendons within the spine did not give rise to concern because these were protected by in site concrete poured without joints after the cables had been stressed.As it was clearly impractical to consider physically exposing all tendon/joint intersections, radar was used to investigate a large numbers of tendons and hence locate duct voids within a modest timescale. It was fortunate that the corrugated steel ducts around the tendons were discontinuous through the joints which allowed theradar to detect the tendons and voids. The problem, however, was still highly complex due to the high density of other steel elements which could interfere with the radar signals and the fact that the area of interest was at most 102 mm wide and embedded between 150 mm and 800 mm deep in thick concrete slabs.Trial radar investigations.Three companies were invited to visit the bridge and conduct a trial investigation. One company decided not to proceed. The remaining two were given 2 weeks to mobilize, test and report. Their results were then compared with physical explorations.To make the comparisons, observation holes were drilled vertically downwards into the ducts at a selection of 10 locations which included several where voids were predicted and several where the ducts were predicted to be fully grouted. A 25-mm diameter hole was required in order to facilitate use of the chosen horoscope. The results from the University of Edinburgh yielded an accuracy of around 60%.Main radar sur v ey, horoscope verification of v oids.Having completed a radar survey of the total structure, a baroscopic was then used to investigate all predicted voids and in more than 60% of cases this gave a clear confirmation of the radar findings. In several other cases some evidence of honeycombing in the in site stitch concrete above the duct was found.When viewing voids through the baroscopic, however, it proved impossible to determine their actual size or how far they extended along the tendon ducts although they only appeared to occupy less than the top 25% of the duct diameter. Most of these voids, in fact, were smaller than the diameter of the flexible baroscopic being used (approximately 9 mm) and were seen between the horizontal top surface of the grout and the curved upper limit of the duct. In a very few cases the tops of the pre-stressing strands were visible above the grout but no sign of any trapped water was seen. It was not possible, using the baroscopic, to see whether those cables were corroded.Digital radar testingThe test method involved exciting the joints using radio frequency radar antenna: 1 GHz, 900 MHz and 500 MHz. The highest frequency gives the highest resolution but has shallow depth penetration in the concrete. The lowest frequency gives the greatest depth penetration but yields lower resolution.The data collected on the radar sweeps were recorded on a GSSI SIR System 10.This system involves radar pulsing and recording. The data from the antenna is transformed from an analogue signal to a digital signal using a 16-bit analogue digital converter giving a very high resolution for subsequent data processing. The data is displayed on site on a high-resolution color monitor. Following visual inspection it is then stored digitally on a 2.3-gigabyte tape for subsequent analysis and signal processing. The tape first of all records a ‘header’ noting the digital radar settings together with the trace number prior to recording the actual data. When the data is played back, one is able to clearly identify all the relevant settings —making for accurate and reliable data reproduction.At particular locations along the traces, the trace was marked using a marker switch on the recording unit or the antenna.All the digital records were subsequently downloaded at the University’s NDT laboratory on to a micro-computer.(The raw data prior to processing consumed 35 megabytes of digital data.)Post-processing was undertaken using sophisticated signal processing software. Techniques available for the analysis include changing the color transform and changing the scales from linear to a skewed distribution in order to highlight、突出certain features. Also, the color transforms could be changed to highlight phase changes. In addition to these color transform facilities, sophisticated horizontal and vertical filtering procedures are available. Using a large screen monitor it is possible to display in split screens the raw data and the transformed processed data. Thus one is able to get an accurate indication of the processing which has taken place. The computer screen displays the time domain calibrations of the reflected signals on the vertical axis.A further facility of the software was the ability to display the individual radar pulses as time domain wiggle plots. This was a particularly valuable feature when looking at individual records in the vicinity of the tendons.Interpretation of findingsA full analysis of findings is given elsewhere, Essentially the digitized radar plots were transformed to color line scans and where double phase shifts were identified in the joints, then voiding was diagnosed.Conclusions1. An outline of the bridge research platform in Europe is given.2. The use of impulse radar has contributed considerably to the level of confidence in the assessment of the Besses o’ th’ Barn Rail Bridge.3. The radar investigations revealed extensive voiding within the post-tensioned cable ducts. However, no sign of corrosion on the stressing wires had been found except for the very first investigation.欧洲桥梁研究欧洲联盟共同的研究平台诞生于欧洲联盟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VOLUME 30 ISSUE 2 October 2008Journal of Achievements in Materials and Manufacturing EngineeringCopyright by International OCSCO World Press. All rights reserved.2008 151 Research paper 2008年十月期2卷30材料与制造工程成果期刊版权所有:国际OCSCO 世界出版社。
一切权利保有。
2008 ??151研究论文1. Introduction Friction stir welding (FSW) is a new solid-state welding method developed by The Welding Institute (TWI) in 1991 [1]. The weld is formed by the excessive deformation of the material at temperatures below its melting point, thus the method is a solid state joining technique. There is no melting of the material, so FSW has several advantages over the commonly used fusion welding techniques [2-10].1.导言摩擦搅拌焊接(FSW)是焊接学?会于1991年研发的一种新型固态焊接方法。
这种焊接?是由材料在低于其熔点的温度上过量变形形成,因此此技术是一种固态连接技术。
材料不熔化,所以FSW 相比常用的熔化焊接技术有若干优势。
例如,在焊接区无多孔性或破裂,工件(尤其薄板上)没有严重扭曲,并且在连接过程中不需要填料、保护气及昂贵的焊接准备there is no significant distortion of the workpieces (particularly in thin plates), and there is no need for filler materials, shielding gases and costly weld preparation during this joining process. FSW被认为是对若干材料例如铝合金、镁合金、黄铜、钛合金及钢最显著且最有潜在用途的焊接技术FSW is considered to be the most remarkable and potentially useful welding technique for several materials, such as Al-alloys, Mg-alloys, brasses, Ti-alloys, and steels [1-16]. 然而,在FSW过程中,用不合适的焊接参数能引起连接处失效,并且使FSW连接处的力学性能恶化。
However, during FSW process using inappropriate welding parameters can cause defects in the joint and deteriorate the mechanical properties of the FSW joints [2, 3]. 此技术起初就主要是为低熔点材料如铝合金、镁合金及铜合金而广泛研究的。
The technique has initially been widely investigated for mostly low melting materials, such as Al, Mg and Cu alloys. 此技术已被证明是很有用的,尤其在连接用于航空航天用途的如高合金2XXX及7XXX系列铝合金等难熔高强度的铝合金。
It has proven to be very useful, particularly in the joining of the difficult-to-fusion join high strength Al-alloys used in aerospace applications, such as highly alloyed 2XXX and 7XXX series aluminium alloys. 做出Al-5086 H32型板摩擦搅拌对焊的高强度、抗疲劳及断裂的力学性能?。
The difficulty of making high-strength, fatigue and fracture resistant Mechanical properties of frictionstir butt-welded Al-5086 H32 plateG. .am a,*, S. Gü.lüer b, A. .akan c, H.T. Serinda. aa Mustafa Kemal University, Faculty of Engineering and Architecture, 31040 Antakya, Turkeya 土耳其安塔卡亚31040,Mustafa Kemal大学建筑工程系b General Directorate of Highways of Turkey, Ankara, Turkeyb 土耳其安卡拉土耳其高速公路总理事会?c Abant Izzet Baysal University, Faculty of Engineering and Architecture, 14280 Bolu, Turkeyc 土耳其Bolu 14280 Abant Izzet Baysal 大学建筑工程系* Corresponding author: E-mail address: gurelcam@*相关作者电子邮箱地址:gurelcam@Received 30.06.2008; published in revised form 01.10.2008收录于2008年6月30日;修订形式出版于2008年10月1日Properties?Abstract摘要目的:此论文诣在研究工具旋转速度为1600rpm 时以不同焊接速度摩擦搅拌对焊的3mm厚A1-5086 H32型板。
Purpose: The purpose of the paper is to study Al-5086 H32 plates with a thickness of 3 mm friction stir butt-welded using different welding speeds at a tool rotational speed of 1600 rpm.设计/方法论/方法:通过进行光学显微检察、围观硬度测量及力学测试(也就是拉弯测试)研究焊接速度对连接处焊接性能的影响。
Design/methodology/approach: The effect of welding speed on the weld performance of the joints was investigated by conducting optical microscopy, microhardness measurements and mechanical tests (i.e. tensile and bend tests). 也确定了在摩擦搅拌焊接过程中热输入对冷辊A1-5086板微microstructure, and thus mechanical properties, of cold-rolled Al- 5086 plates was also determined.发现:实验结果表明连接处的最大拉伸强度,约为基板拉伸强度的75%,可在用比如1600rpm 的工具旋转速度时以200mm/minde的移动速度焊接得到,并且连接处的最大弯曲角度可达180。
另一方面,连接处的最大延展性能相对低些,如低约20%。
Findings: The experimental results indicated that the maximum tensile strength of the joints, which is about 75% that of the base plate, was obtained with a traverse speed of 200 mm/min at the tool rotational speed used, e.g. 1600 rpm, and the maximum bending angle of the joints can reach 180o. The maximum ductility performance of the joints was, on the other hand, relatively low, e.g. about 20%. 这些结果并不意外,由于焊接过程中的热输入亏损了焊接区的冷作硬化效应,因此?强度限制了搅拌区的塑性。
较高的焊缝性能也可通过增加Al-5086 H32板对磨搅拌焊时摩擦棒?的插入深度获得。
These results are not unexpected due to the loss of the cold-work strengthening in the weld region as a result of the heat input during welding, and thus the confined plasticity within the stirred zone owing to strength undermatching. Higher joint performances can also be achieved by increasing the penetration depth of the stirring probe in butt-friction stir welding of Al-5086 H32 plates.研究限制/ :结果表明强度与延展性都能通过优化工具插入深度提高。
Research limitations/implications: The results suggest that both strength and ductility performances can be increased by optimizing the tool penetration depth.独创性/价值:对摩擦搅拌对焊A1-5086 H32型板力学性能的研究。