51第一节 插值多项式的存在唯一性
数值计算方法教案51

第5章 多项式逼近与曲线拟合教学目的 1. 理解连续函数空间,正交多项式理论;2. 掌握最佳平方逼近及最小二乘逼 近函数的求解方法;3. 理解非线性模型举例的有关知识的基础上会求模型的逼近函数。
教学重点及难点 重点是最佳平方逼近及最小二乘逼近函数的求解。
难点是会求非线性模型的逼近函数。
教学时数 6学时 教学过程§1 引言在科学计算中有下述两类逼近问题。
1.关于数学函数的逼近问题由于电子计算机只能做算术运算,因此,在计算机上计算数学函数(例如x x f e x f x sin )(,)(==等在有限区间上计算)必须用其他简单的函数来逼近(例如用多项式或有理分式来逼近数学函数,)且用它来代替原来精确的数学函数的计算。
这种函数逼近的特点是:(a )要求是高精度逼近;(b )要快速计算(计算量越小越好)。
2.建立实验数据的数学模型给定函数的实验数据,需要用较简单和合适的函数来逼近(或拟合实验数据)。
例如,已知)(x f y =实验数据mm y y y x f x x x x 2121)(希望建立)(x f y =数学模型(近似表达式),这种逼近的特点是: (a )适度的精度是需要的; (b )实验数据有小的误差;(c )对于某些问题,可能有某些特殊的信息能够用来选择实验数据的数学模型。
事实上,我们已经学过一些用多项式逼近一个函数)(x f y =的问题,例如 (1)用在0x x =点Taylor 多项式逼近函数 设)(x f y =在[a,b]上各阶导数)1,,1,0)(()(+=n i x fi 存在且连续,],[0b a x ∈,则有)()(!)())((')()(00)(000x R x x n x f x x x f x f x f n n n +-++-+=)()(x R x P n n +≡其中εε],,[,)()!1()()(10)1(b a x x x n f x R n n ∈-+=++在0x 和x 之间。
计算方法第三章(插值法)解答

Aitken(埃特肯)算法 N 0,1,,k , p ( x) L( x) N 0,1,,k ( x)
N 0,1,,k 1, p ( x) N 0,1,,k ( x) x p xk
Neville(列维尔)算法
( x xk )
Ni ,i 1,,k ( x) L( x) Ni ,i 1,,k 1 ( x) Ni 1,i 2,k ( x) Ni ,i 1,,k 1 ( x) xk xi ( x xi )
( x0 , y0 ), ( x1 , y1 )
容易求出,该函数为:
x x0 x x1 y y0 y1 x0 x1 x1 x0
一般插值问题:求过n+1个点
( x0 , y0 ), ( x1 , y1 ),,( xn , yn )
的不超过n次多项式 Ln ( x )。
Ln ( x) yi li ( x )
例子:求方程 x3-2x-5=0 在(2 , 3)内的根 思路: 设 y = f(x) =x3-2x-5 ,其反函数为 x=f -1(y),则 根为x* =f -1(0) 。先用3= f -1(16), 2= f -1(-1)插值,得 N0,1 (y) ≈f -1(y), 计算N0,1 (0)= 2.058823, f(2.058823) = -0.39 ,以-0.39为新的节点,继续……
第三章 插值法
第一节 插值多项式的基本概念
假设已经获得n+1点上的函数值
f xi yi , i 0,1,, n,
即提供了一张数据表
x
y f x
x0
y0
x1
y1
x2
xn
y2
插值多项式

由插值条件
Pn ( xi ) yi
i 0, 1, , n
得到如下线性代数方程组:
1
a0
1
a0
x0a1 x1a1
x0nan x1nan
y0 y1
1 a0 xna1 xnnan yn
7
存在唯一性定理证明(续)
此方程组的系数行列式为
且 ( x0 ) ( x1 ) 0 存在 (x0, x1)使得 。
( ) 0
推广:若 ( x0 ) ( x1 ) ( x2 ) 0 0 ( x0 , x1 ), 1 ( x1, x2 )
使得 (0 ) (1 ) 0
函数值:
x x0 x1
xn1 xn
y y0 y1
yn1 yn
• 插值问题:根据这些已知数据来构造函数
y f (x) 的一种简单的近似表达式,以便于计算 点 x xi ,i 0,1,L , n 的函数值 f (x) ,或计算函数 的一阶、二阶导数值。
3
多项式插值定义
在众多函数中,多项式最简单、最易计算,已知函数 y f (x)在n 1
0
0L
0
l1 ( x)
0
1
0
L
0
L
L
L
L
LL
ln (x)
0
0
0
L
1
24
N次插值多项式4
求n次多项式 lk ( x) , k = 0, 1,…, n
1, lk ( xi ) 0,
则
ki ki
n
计算方法Chapter01 - 插值方法

若函数族
中的函数 ( x) 满足条件
( xi ) = f ( xi ),
i = 0,1,, n
( 1)
n ( x ) x f ( x ) 则称 为 在 中关于节点 i i =0 的一个插值函数。
f ( x) ——被插值函数; [a, b] ——插值区间;
xi in=0 ——插值节点; 式(1)——插值条件.
x12 x1n
2 n x2 x2
范德蒙行列式
x
2 n
n n
V=
x
0 i j n
( x j xi )
10
插值多项式的存在唯一性(续)
V= ( x j xi ) 0 i j n
由于 x0 , x1 , x2 , ..., xn 是 n 1 个互异的节点,即:
求插值函数(x)的问题称为插值问题。
5
插值问题
于是人们希望建立一个简单的而便于计算的函数 (x) 使其近似的代替 f (x)。
y 被插值函数 f (x) 插值函数 (x)
插值节点 0 x0 x1 x2 x3
… …… xn x
6
插值区间
多项式插值问题
对于不同的函数族Φ 的选择,得到不同的插值问题
( x0 , y0 ) 0
p2(x)
x0
x1
x2
x
19
抛物线插值(续)
p2 ( x ) = y0l0 ( x ) y1l1 ( x ) y2l2 ( x )
( x x1 )( x x2 ) ( x0 x1 )( x0 x2 )
( x x0 )( x x2 ) ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) ( x2 x0 )( x2 x1 )
多项式插值存在唯一性

)
博学之,审问之,慎寺之,明辩之,
笃行之。精心整理,欢迎收藏
1515/18
Ex7. 2 次埃尔米特插值的适定性问题,给定插值条件: f(x0)=y0,f’ (x1)=m1,f( x2)=y2,插值结点应满足什么 条件能使插值问题有唯一解。
解: 设 H(x) = a0 + a1x + a2x2 , H’(x) = a1 + 2a2x
f(x) = Pn(x) + (x – x0) (x – x1)……(x – xn)
博学之,审问之,慎寺之,明辩之, 笃行之。精心整理,欢迎收藏
1111/18
Ex3. 设 P(x) 是不超过 n 次的多项式,而
n+1(x) =(x – x0)(x – x1)······(x – xn)
证明存在常数Ak( k =0,1,…,n)使得
《数值分析》习题课 III
多项式插值的存在唯一性 拉格朗日插值,牛顿插值 埃米特插值与三次样条 数据拟合的线性模型 两种典型的正交多项式
博学之,审问之,慎寺之,明辩之,
1
笃行之。精心整理,欢迎收藏
多项式插值的存在唯一性定理
若插值结点 x0, x1,…,xn 是(n+1)个互异点,则满足 插值条件P(xk)= yk (k = 0,1,···,n)的n次插值多项式
(2)令 g(n)=n(n+1)(2n+1)/6
则 g ng (n )g (n 1 )n 2
博学之,审问之,慎寺之,明辩之, 笃行之。精心整理,欢迎收藏
1313/18
同理 显然
g kg (k )g (k 1 )k 2 ( k = 1,2,···,n ) g 1 g (1 ) g (0 ) g (1 )
数值分析 多项式插值讲解

一次Lagrange插值多项式
已知函数y f ( x)在点x0 , x1 上的值为y0 , y1 ,要求多项 式y p1( x),使 p1( x0 ) y0 ,p1( x1 ) y1 。其几何意义,就是通 过两点 A( x0 , y0 ), B( x1 , y1 ) 的一条直线,如图所示。
lk ( xi ) ki 0, i k
但与f(x)无关.
则称 lk(x)为节点 x0 , … , xn 上的拉格朗日插值基函数。
由构造法可得
可以证明 l0(x), l1(x), …, ln(x) 线性无关,即它们 构成线性空间 Pn(x) 的一组基。
Lagrange插值
可以计算出 ln11.75 的近似值为:
可见,抛物插值的精度比线性插值要高。 Lagrange插值多项式简单方便, 只要取定节点就可写 出基函数,进而得到插值多项式。易于计算机实现。
求函数 f(x) 的近似表达式 p(x) 的方法就称为插值 法。
插值多项式的唯一性
定理 (唯一性) 满足n+1个插值条件的n 次插值
多项式存在且唯一。
证明: 设所要构造的插值多项式为:
Pn ( x) a0 a1 x a2 x2 an xn 由插值条件 Pn ( xi ) yi , i 0, 1, , n
n+1个互异点 a x0 x1 ... xn b 上的函数值
y0, y1 , … , yn ,若存在一个次数不超过 n 次的多项式
p( x) a0 a1 x ... an xn
满足条件
插值条件
p(xi) = yi (i = 0, … n)
(4-1)
则称 p(x) 为 f(x) 的 n 次插值多项式。
插值方法(1)

合肥学院《数值分析》课程设计报告书题目多项式插值及其应用院系名称合肥学院数学与物理系专业(班级)信息与计算科学一班姓名(学号)钱志海(1007011013)印宛如(1007011016)张鑫(1007011017)指导教师孙梅兰完成时间 2013-3-4一、实验设计目的1、插值多项式的唯一性表明,对同一组节点,它们的插值多项式是唯一的,可能由不同的方法,会得到不同形式的插值多项式,但它们之间可以相互转化,本质相同,当然误差也一样。
2、n +1组节点只能确定一个不超过n次的多项式,若>n次,如设为 n+1(x),则有n+2有待定参数a0,a1,…,an, an+1需确定,而n +1个组节点,只构成n +1个插值条件,即构成n+1个方程,只能确定n+1个变量的方程组。
3、上述证明是构造性的(给出解决问题的方法)即以通过解线性方程组来确定插值多项式,但这种方法的计算量偏大,计算步骤较多,容易使舍入误差增大。
因此实际计算中需要用其它方式进行故不能用解方程组的方法获得插值多项式。
我们利用牛顿插值、哈密尔特插值、分段插值、样条插值的方法可以有效解决n较大,方程组较多的繁琐的严重病态。
二、插值方法的理论基础1、Lagrange插值Lagrange插值是n次多项式插值,其成功地用构造插值基函数的方法解决了求n次多项式插值函数问题。
★基本思想将待求的n次多项式插值函数pn(x)改写成另一种表示方式,再利用插值条件⑴确定其中的待定函数,从而求出插值多项式。
2、牛顿插值Newton插值也是n次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。
★基本思想将待求的n次插值多项式Pn(x)改写为具有承袭性的形式,然后利用插值条件⑴确定Pn(x)的待定系数,以求出所要的插值函数。
3、哈密尔特插值Hermite插值是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的,起其提法为:给定n+1个互异的节点x0,x1,……,xn上的函数值和导数值求一个2n+1次多项式H2n+1(x)满足插值条件H2n+1(xk)=ykH'2n+1(xk)=y'k k=0,1,2,……,n ⒀如上求出的H2n+1(x)称为2n+1次Hermite插值函数,它与被插函数一般有更好的密合度.★基本思想利用Lagrange插值函数的构造方法,先设定函数形式,再利用插值条件⒀求出插值函数.4、分段插值插值多项式余项公式说明插值节点越多,误差越小,函数逐近越好,但后来人们发现,事实并非如此,例如:取被插函数,在[-5,5]上的n+1个等距节点:计算出f(xk)后得到Lagrange插值多项式Ln(x),考虑[-5,5]上的一点x=5-5/n,分别取n=2,6,10,14,18计算f(x),Ln(x)及对应的误差Rn(x),得下表从表中可知,随节点个数n的增加,误差lRn(x)l不但没减小,反而不断的增大.这个例子最早是由Runge研究,后来人们把这种节点加密但误差增大的现象称为Runge现象.出现Runge现象的原因主要是当节点n较大时,对应的是高次插值多项式,此差得积累"淹没"了增加节点减少的精度.Runge现象否定了用高次插值公式提高逼近精度的想法,本节的分段插值就是克服Runge现象引入的一种插值方法.分段多项式插值的定义为定义2: a=x0<x1<…<xn=b: 取[a,b]上n+1个节点并给定在这些节点上的函数值f(xR)=yR R=0,1,…,n如果函数Φ(x)满足条件i) Φ(x)在[a,b]上连续ii) Φ(xr)=yR,R =0,1,…,niii) Φ(x)zai 每个小区间[xR,xR+1]是m次多项式,R=0,1,…,n-1则称Φ(x)为f(x)在[a,b]上的分段m次插值多项式实用中,常用次数不超过5的底次分段插值多项式,本节只介绍分段线性插值和分段三次Hermite插值,其中分段三次Hermite插值还额外要求分段插值函数Φ(x)在节点上与被插值函数f(x)有相同的导数值,即★基本思想将被插值函数f〔x〕的插值节点由小到大排序,然后每对相邻的两个节点为端点的区间上用m 次多项式去近似f〔x〕.5、样条插值样条插值是一种改进的分段插值。
(西南交大戴克俭版)计算方法 多项式插值

(5.7)
其中
x x1 l0 ( x ) x0 x1
x x0 l1 ( x) x1 x0
11
5.2 拉格朗日插值法
已知函数 y f ( x)在x0,x1,x2处的函数值分别为y0, y1,y2在式(5.6)中当n=2时,Lagrange插值多项式为 L2 ( x) f ( x0 )l0 ( x) f ( x1 )l1 ( x) f ( x2 )l2 ( x) ( x x0 )( x x2 ) ( x x1 )( x x2 ) y0 y1 ( x0 x1 )( x0 x1 ) ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) y2 (5.8) ( x2 x0 )( x2 x1 ) 其中
3
5.1 插值法多项式存在性与唯一性
若P(x)是次数不超过n的多项式,即
Pn ( x) a0 a1 x a2 x an x
2
n
(5.2)
其中ai是实数,则称Pn(x)为插值多项式,相应的插值方 法称为多项式插值。 若P(x)是分段多项式,则称为分段插值。 若P(x)是三角多项式,则称为三角插值。
式中(a,b)且与x有关。
(n 1)!
i 0
13
5.2 拉格朗日插值法
⒈ Lagrange插值误差估计
定理5.3 如果f (n+1)(x)在区间(a,b)上有界,即存在常数 Mn+10,使得 | f ( n1) ( x) | M n1, x (a,b) 则有截断误差估计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则由插值条件式Pn(xi)=yi (i=0,1, ..., n) 可得关于系数 a0, a1, … , an的线性代数方程组
数学学院 信息与计算科学系
n a0 a1 x0 an x0 y0 n a0 a1 x1 an x1 y1 n a a x a x 0 1 n n n yn
数学学院 信息与计算科学系
设 y= f(x) 是区间[a , b] 上的一个实函数, xi
( i=0, 1, ... ,n)是[a,b]上n+1个互异实数,已知 y=f(x)
在xi 的值 yi=f(xi) (i=0,1,...,n), 求次数不超过n的多
项式Pn(x)使其满足插值条件 Pn(xi)=yi (i=0,1, ..., n) (5-1)
数学学院 信息与计算科学系
第5章 代数插值
第一节 插值多项式的存在唯一性 第二节 拉格朗日插值多项式 第三节 牛顿插值多项式 第四节 埃尔米特插值
第五节 分段低次插值
数学学院 信息与计算科学系
第一节
插值多项式的存在唯一性
一、插值问题
为了研究函数的变化规律,往往需要求出不 在表上的函数值,因此,我们希望根据给定的函 数表做一个既能反映函数 y=f(x)的特性,又便于 计算的简单函数P(x),用P(x)近似f(x). 通常选一 类较简单的函数(如代数多项式或分段代数多项式) 作为P(x),并使P(xi)=f(xi)对i=0,1,...,n成立. 这样确 定的P(x)就是我们希望得到的插值函数.
述问题就是要求一条多 项式曲线 y=Pn(x), 使
它通过已知的n+1个点
(xi,yi) (i=0,1, … ,n),并用 Pn(x)近似表示f(x).
数学学院 信息与计算科学系
二、插值多项式的存在性和唯一性
定理1 设节点 xi (i=0,1, … ,n)互异, 则满足插值 条件Pn(xi)=yi 的次数不超过n的多项式存在且唯一. 证 设所求的插值多项式为 Pn(x)=a0+a1x+a2x2+...+anxn (5-2)
(5-3)
此方程组有n+1个方程, n+1个未知数, 其系数行 列式是范德蒙行列式,即
Байду номын сангаас
数学学院 信息与计算科学系
1 1 1 x0 x1 xn x0 2 x0 n x12 x1n xn 2 xn n
n j i 0
( x j xi ) 0
因此,线性方程组 (5.3) 的解a0, a1,…, an存在且唯一, 于是插值多项式Pn(x)=a0+a1x+a2x2+...+anxn存在且唯一.
这就是用多项式的插值问题.即代数插值.
数学学院 信息与计算科学系
其中Pn(x) 称为 f(x) 的插值多项式, f(x) 称为被插函 数,xi(i=0,1, ...,n)称为插值节点, (xi, yi) (i=0,1, … ,n) 称为插值点, [a, b]称为插值区间, 式(5-1)称为插值 条件。 从几何意义来看,上