污水处理厂计算书

合集下载

污水厂设计计算书

污水厂设计计算书

目录第一章设计任务书01.1设计题目 01.2设计原始资料 01.3设计容 (1)1.4成果 (1)1.5设计时间 (2)1.6评分标准3第二章设计指导书42.1设计准备 (4)2.2设计步骤 (4)2.3设计进度计划〔不含周末〕...................... 错误!未定义书签。

2.4主要设计参考资料.............................. 错误!未定义书签。

第三章设计容计算说明书53.1 污水厂设计的一般原那么53.2污水厂的设计规模63.2.1 水量确实定63.2.2 水质确实定73.3污水处理厂工艺流程83.3.1 工艺方案分析83.3.2工艺类型的介绍 (9)3.3.3工艺流程确实定 (10)3.4 污水处理构筑物的计算与说明103.4.1格栅113.4.2 污水提升泵房173.4.3 旋流沉砂池183.4.4配水井 (20)3.4.5 A2/O反响池213.4.6 曝气系统工艺计算213.4.7 二沉池错误!未定义书签。

3.4.8消毒设施计算263.4.9 污水计量设备293.5 污泥处理构筑物的计算与说明323.5.1 剩余污泥量计算错误!未定义书签。

3.5.2 污泥井333.5.3污泥浓缩333.5.4 污泥脱水373.6 污水处理厂平面布置403.6.1 平面布置原那么403.6.1厂区平面布置形式说明413.7 污水处理厂高程布置423.7.1 高程布置原那么423.7.2 高程布置计算433.8主要设计参考资料43评分:第一章设计任务书1.1设计题目某城市污水处理厂工艺设计。

1.2设计原始资料〔一〕工程概况拟建污水处理厂地处某城市郊,总占地依据场地情况确定。

〔二〕设计根底资料污水厂设计水量以近期人口和工业污水排放量为依据。

厂区平面布置度预留远期建设用地。

1、设计人口近期设计人口:〔班级人数〕×300+〔学号后四位数-600〕×40〔人〕城镇人口平均综合生活用水定额250L/〔人٠天〕,生活污水排放系数一般为0.8-0.9。

污水处理厂计算书

污水处理厂计算书

污水处理厂计算书设计参数:近期Q=2.5 ×104 m 3/d ,远期Q=4.5 ×104 m 3/d ,K Z =1.47。

污水厂按照近期设计,预留远期用地。

最高日最大时流量:1531.25 m 3/h平均日平均时流量:1041.66m 3/h1、粗格栅(1)尺寸计算设计流量:Q=1531.25 m 3/h ;栅槽道数:N=2道;过栅流速:v=0.80m/s ;安装角度:A=75°;栅前水深:h=0.85m ;栅条间隙:b=20mm ;栅条宽度s=10mm 。

格栅间隙数n==⨯NbhvSINA Q 30.74个,取整31个。

格栅宽度:B==+-⨯bn n s )1(0.01×(31-1)+0.02×31=0.92m 格栅宽度设计值取1m 。

(2)设备选择格栅:选择回转式格栅清污机2套,设备宽度0.94m ,功率2.5kw ,格栅渠道深度8.5m ,排渣高度1m 。

格栅前闸板:铸铁镶铜材质,大小0.8m ×1.2m ,配手动启闭机; 格栅后闸板:铸铁镶铜材质,大小0.8m ×1.2m ,配手动启闭机; 螺旋输送机:输送能力3m 3/h ,长度3.2m ,配用电机功率1.5kW2、提升泵房设计流量:Q=2958.33 m 3/h ;水泵台数:5;旱季四用一备,雨季全部工作。

泵房水池内最低水位标高-3.5m ,提升后水位8.95m ,水泵进口及出口损失1.5m ,管道损失约0.5m ,富裕水头1m 。

水泵扬程为:8.95+3.5+1.5+0.5+1=15.45m水泵选择:Q=592 m 3/h ,扬程h=16m ,功率47kw (参考上海凯泉样本,P66页WQ2445-617型号)3、细格栅(1)尺寸计算设计流量:Q=2958.33 m 3/h ;栅槽道数:N=2道;过栅流速:v=0.80m/s ;安装角度:A=60°;栅前水深:h=1.0m ;栅条间隙:b=5mm ;栅条宽度s=10mm 。

污水处理厂设计计算书(给排水计算书)

污水处理厂设计计算书(给排水计算书)

污水处理厂设计计算书(给排水计算书)目录第一章污水处理构筑物设计计算第二章污泥处理构筑物设计计算第三章高程计算第一章 污水处理构筑物设计计算一、泵前中格栅1.设计参数: 生活排水量3m /d 411102100002.31101000Q ⨯==⨯公共建筑生活污水量3/d 420.6310Q m =⨯ 工业污水量3m /d 43 1.0410Q =⨯总流量4433(2.310.63 1.04)10 3.9810/0.461/Q m d m s =++⨯=⨯=最高日平均时设计秒流量434331.210.46110/ 4.8210/0.557/d Q K Q m d m d m s ==⨯⨯=⨯= 最高日最高时设计秒流量43433max 1.42 4.8210/ 6.8410/0.791/h Q K Q m d m d m s ==⨯⨯=⨯=栅前流速v 1=0.8m/s ,过栅流速v 2=1.0m/s 栅条宽度s=0.01m ,格栅间隙e=20mm 栅前部分长度0.5m ,格栅倾角α=60°单位栅渣量W 1=0.07m 3栅渣/103m 3污水 2.设计计算(1)确定格栅前水深,根据最优水力断面公式2121max vB Q =计算得:栅前槽宽1 1.41B m ==,栅前水深1 1.410.722B h m ===(2)栅条间隙数252.57n === (取n=54),设计两组格栅,每组格栅数n=27条(3)栅槽有效宽度2(1)0.01(271)0.02270.8B s n en m =-+=⨯-+⨯=总水槽宽220.220.80.2 1.8B B m m =+=⨯+=(考虑中间隔墙厚0.2m ) (4)进水渠道渐宽部分长度111 1.8 1.40.552tan 2tan 20B B L m α--===︒(其中α1为进水渠展开角)(5)栅槽与出水渠道连接处的渐窄部分长度120.272L L m == (6)过栅水头损失h 1因栅条边为迎水面为半圆形的矩形截面,取k=3,β=1.83则m g v e s k g v ki h 096.060sin 81.920.1)02.001.0(83.13sin 2)(sin 22343/4122=︒⨯⨯⨯⨯===αβα(7)栅后槽总高度H取栅前渠道超高h 2=0.3m ,则栅前槽总高度H 1=h+h 2=0.7+0.3=1.0m 栅后槽总高度H= H 1+h 1=1.0+0.096≈1.096m ,取1.1m(8)格栅总长度L=L 1+L 2+0.5+1.0+H/tanα=0.55+0.27+0.5+1.0+1.0/tan60°=2.9m (9)每日栅渣量33max 186400864000.7910.073.47/0.2/10001000 1.38z Q W W m d m d K ⨯⨯===>⨯所以宜采用机械格栅清渣(10)计算草图如下:进水二、提升泵站设计流量Q=0.791m 3/s ,选择机器间与集水池合建的自灌式圆形泵站,考虑4台水泵(三用一备)每台水泵容量791/3=263.67L/s ,取264L/s 。

污水处理厂设计计算书 (2)

污水处理厂设计计算书 (2)

第二篇设计计算书1.污水处理厂处理规模1.1处理规模污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。

1.2污水处理厂处理规模污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。

最高日水量为生活污水最高日设计水量和工业废水的总和。

Q设= Q1+Q2 = 5000+5000 = 10000 m³/d总变化系数:K Z=K h×K d=1.6×1=1.62.城市污水处理工艺流程污水处理厂CASS工艺流程图3.污水处理构筑物的设计3.1泵房、格栅与沉砂池的计算3.1.1 泵前中格栅格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。

在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。

3.1.1.1 设计参数:(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ;(4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个max Q n bhv =式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ;(2)栅槽宽度B ,m取栅条宽度s=0.01mB=S (n -1)+bn(3)进水渠道渐宽部分的长度L 1,m式中,B 1-进水渠宽,m ;α1-渐宽部分展开角度,(°);(4)栅槽与出水渠道连接处的渐窄部分长度L 2,m(5)通过格栅的水头损失h 1,m式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ;k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3;1112tga B B L -=125.0L L =αεsin 2201gv k kh h ==ξ— 阻力系数,与栅条断面形状有关; 设栅条断面为锐边矩形断面,β=2.42 v 2— 过栅流速, m/s ; α — 格栅安装倾角, (°);(6)栅后槽总高度 H ,m取栅前渠道超高20.3h m =21h h h H ++=(7)栅槽总长度L ,m112 1.5 2.0tan H L L L α=++++式中,H 1为栅前渠道深,112H h h =+,m (8)每日栅渣量W ,m 3/dmax 1864001000z Q W W K =式中,1W -为栅渣量,(333/10m m 污水),格栅间隙为16~25mm 时为0.1~0.05,格栅间隙为30~50mm 时为0.03~0.01; K Z -污水流量总变化系数3.1.1.3 设计计算采用两座粗格栅池一个运行,一个备用。

污水处理厂计算书(计算式)

污水处理厂计算书(计算式)

四、曝气池1.设计条件曝气池采用平均日流量作为设计基准,并配合检验尖峰小时流量时情形。

依平均日质量平衡计算结果,初沉池出流水性质:Q =24,459CMDTSS =2,069Kg/d =84.6mg/LBOD5 =3,530Kg/d =144.3mg/LTP =183.8Kg/d =7.5mg/L依尖峰小时质量平衡计算结果,初沉池出流水性质:Q =48,763CMDTSS =4,138Kg/d =84.9mg/LBOD5 =7,062Kg/d =144.8mg/LTP =367.6Kg/d =7.5mg/L二沉池设计面积:二沉池面积 =1,257m2 =13,526ft22.计算结果摘要回流污泥(RAS)Q = 3.95MGD =14,962CMD废弃污泥(WAS)Q =287.5CMD =0.076MGDTSS =2,300Kg/dBOD5 =2,002Kg/d反应槽出流水Q =38,581CMDTSS =3,107mg/L二沉池出流水Q =23,331CMD = 6.16MGDTSS =20.0mg/L总非溶解性 BOD5 = 6.7mg/L溶解性 BOD5 = 1.8mg/L总磷 =0.5mg/L3.设计生物反应槽(1)原进流水水质特性基本假设(参考"Theory, Design and Operation of Nutrient Removal-Activated Sludge Process"一书)A.污染负荷平均日流量时:流量,Qin,MGD=24,459CMD BOD5 ,lb/d=144.3mg/L 总悬浮固体物,TSS,lb/d=84.6mg/L 总凯氏氮,TKN,lb/d=40.0mg/L 总磷,TP,lb/d=7.5mg/L 碱度,lb/d as CaCO3=200.0mg/L 硫化氢,lb/d= 1.0mg/L 尖峰小时流量时:流量,Qin,MGD=48,763CMD BOD5 ,lb/day=144.8mg/L 总悬浮固体物,TSS,lb/d=84.9mg/L 总凯氏氮,TKN,lb/d=40.0mg/L 总磷,TP,lb/d=7.5mg/L 碱度,lb/d as CaCO3=200.0mg/L 硫化氢,lb/d= 1.0mg/LB.进流水质特性总 BOD/BOD5, R1 =难分解性总凯氏氮(%), TKN1 =难分解溶解性COD(%), COD1 =总悬浮固体物(TSS)挥发性固体物(VSS) (%), VSS1难分解之挥发性固体物(%), VSS2Volatile content of nonbiodegradable VSS (%), VSS3COD/VSS , R2VSS之氮含量 (%,N/VSS), N1VSSVSS之磷含量 (%,P/VSS), P1VSSCOD/BOD之估计值, R3 2.21溶解性 BOD5/总 BOD5之估计值 (%), R475初沉池中各污染物去除率:TSS 去除率 (%),R TSSBOD5,RBOD = RTSSx进流水TSS/进流水BOD5xVSS1x(1-VSS2)xR2/R1 =总凯氏氮,RTKN = RTSS x 进流水 TSS/ 进流水TKN x VSS1 x N1VSS =总磷,RTP = RTSS x 进流水 TSS/ 进流水TP x VSS1 x P1VSS =(2)曝气池中之生化反应机制常数及水质特性A.喜气槽μmax 20 =-1,Φ forμmax 20 =μmax T =-1Ks =Y g =5Kd 20 =-1,Φ for Kd 20 =Kd T =-1挥发性TSS (%),VSS4 =难分解性VSS (%), VSS5 =VSS之氧当量数 (mg COD/mg VSS) , CODVSS =VSS中之氮含量 (%, N/VSS) N2VSS =BOD5/总磷 (mg BOD5/mg TP-P), R5 =B.硝化槽μmax T =0.28day-1Kn =K DO =Yn =3Kdn T =-1挥发性TSS (%), VSS6 =VSS中之氮含量 (%, N/VSS), N3VSS =VSS中之磷含量 (%, P/VSS), P3VSS =硝化菌之 MCRT ,MCRT N = 4.3dayC.硝化作用单位需氧量(mg O2/mg NO3 generated) =碱度消耗量(mg as CaCO3/mg NO3) =D.脱硝作用单位需氧量 (mg O2/mg NO3 denitrified) =碱度产生量 (mg as CaCO3/mg NO3) =E.硫化氢氧化作用单位需氧量 (lb O2/lb H2S) =(3)操作参数 由于设计一VIP生物处理法所须考虑之设计参数相当多,除一般活性污泥法所常采用之MLSS、F/M及HRT外,尚考虑硝化液回流率(NRCY),厌气池回流率(ARCY),回流污泥(RAS)等,西图公司以多年发展VIP系统之经验,建议各参数之设计准则如下:A.基本设计条件假设水中溶氧 =细胞停留时间(MCRT) = pH =水温 =MLSS =好氧槽脱硝率ANR =废弃污泥浓度NRCY =B.反应槽体积计算依前述设计准则,假设好氧槽之HRT = 6.0hours缺氧槽之HRT = 1.0hours厌氧槽之HRT = 1.0hours则可得好氧槽总体积 (AER Vol)=Qin x TAER = 6.46MGD x 6.0hours= 1.62MG 缺氧槽总体积 (ANX Vol)=Qin x TANX = 6.46MGD x 1.0hours=0.27MG 厌氧槽总体积 (ANA Vol)=Qin x TANA = 6.46MGD x 1.0hours=0.27MG已知初沉池出流水 =24,459CMDRAS =(Q in x MLSS - Q 2nd x BOD out - Q was x WAS) / (WAS - MLSS)= 3.73MGD =14,122CMD总进流量 =24,459CMD +14,122CMD =10.19MGD 选择反应槽池数 =选择反应槽水深 =已知各槽体之体积如下:总体积 (TOT Vol) = 2.15MG =8,153m 3好氧槽总体积 (AER Vol) = 1.62MG =6,115m 3厌氧槽总体积 (ANA Vol) =0.27MG =1,019m 3缺氧槽总体积 (ANX Vol) =MG =1,019m 3选择四个反应槽总宽度 =m 每一反应槽宽度 =m /4=8.0 选择反应槽的渠道数 =每一渠道宽度 =8.0 m /1=8.0每一反应槽之好氧槽长度 ==6,115m 3/ 6.0m /8.0m /4=31.8m 选择好氧槽之长度 =m好氧槽每一分区长度=28.0/4=7.0缺氧槽及厌氧槽长度=1,019.1m 3 /6.0m /4.0m /12= 3.5m选择厌氧槽或缺氧槽之长度为m每一反应槽总长度 ==28.0m + 3.5m + 3.5m + 3.5=38.5m每一渠道长度 =38.5m /1=38.5m厌氧槽总体积 (ANA Vol)= 3.50m x 4.00m x 6.00m x12=1,008m3 =0.27MG缺氧槽总体积 (ANX Vol)= 3.50m x 4.00m x 6.00m x12=1,008m3 =0.27MG好氧槽总体积 (AER Vol)=7.00m x8.00m x 6.00m x16=5,376m3 = 1.42MG反应槽总体积 (TOT Vol)=7,392m3 = 1.95MGCheck :厌氧槽之HRT =ANA Vol/ Q in =0.99hours缺氧槽之HRT =ANX Vol/ Q in =0.99hours好氧槽之HRT =AER Vol/ Q in = 5.27hours反应槽之总 HRT =7.25hoursMLSS = (Total TSS x MCRT)/(8.34 x Total Vol)=3,107mg/L(其中Total TSS系指废弃污泥中之TSS量,请见4.固体物产量)F/M = BOD Loading/ (TOT Vol x MLSS ) =0.11缺氧槽之 F/M =0.81day-1好氧槽之 MCRT AER = (AER Vol/TOT Vol) x MCRT =7.27C.脱氮计算 脱氮速率常数 (Specific Denitrification Rate, SDRN) 系指单位时间之单位MLSS所能去除之氮量,其计算式为:SDNR20 = 0.03 x F/M + 0.029 (在 20o C下)SDNR T = SDNR20 x 1.06 (T-20)因此本反应槽之SDNR15 = 1.87mg/g/hrNOX-N (mg/L)浓度计算:无脱硝反应时DNo=(1+MCRT x Kdn T) x nitrifier TSS/(Qin x 8.34 x Yn) =20.2 (其中 Nitrifier TSS 系指废弃污泥中由硝化反应产生之TSS量,请见(4)固体物产量)考虑好氧槽脱硝反应时DN1=(1- ANR) x DN o =18.2考虑缺氧槽脱硝反应时=DN1 - SDNR x ANX HRT x MLSS / 1000 =12.4考虑回流NRCY时=DN1 /(1+ RAS/Qin + NRCY/100) =8.3D.回流污泥量计算已知假设回流污泥浓度 =mg/LRAS =(Q in x MLSS - Q2nd x BOD out - Q was= 3.95MGD =14,962CMDArea =13,5262SOR =477.7CMD/m2RAS Cap = =19.4SLR =12.4lb/sf-day= 2.52Kg/m2-hr(4)固体物产量,SOLIDS PRODUCTION (lb/d)A.初沉污泥,Primary SludgeTSS = 进流水TSS x RTSS=6,834lb/d =3,107Kg/dVSS = 进流水TSS x RTSS x VSS1=5,126lb/d =2,330Kg/d生物可分解性VSS = 进流水TSS x RTSS x VSS1 x (1-VSS2)=3,075lb/d =1,398Kg/dB.废弃污泥,Waste Activated Sludge (WAS)(a)进流之难分解固体物VSSA= 进流水 TSS x (1-RTSS) x VSS1 x VSS2=1,367lb/d =621.3Kg/dTSS = 进流水 TSS x(1-RTSS)x(1-VSS1/VSS3x(1-VSS2))=2,278lb/d =1,036Kg/d(b)好氧槽之固体物活性TSS = 进流水 BOD5 x (1-RBOD)-Qin x BODeff x 8.34) xYg /(MCRT + (1/MCRT+KdT)=1,849lb/d =840.4Kg/d非活性TSS = 活性TSS x Kd T x VSS5 x MCRT ==823.5lb/d =374.3Kg/d(c)硝化槽TSS = Yn x (1- N3VSS x VSS6) x ( 进流水TKN x (1-RTKN)-VSSA x N1VSS - 好氧槽固体物 x VSS4 x N2VSS - Qin x NH3eff x 8.34 -TKN x TKN1) / (MCRT x (1/MCRT+Kdn T))=108.8lb/d =49.4Kg/d总固体物,Total TSS =5,059lb/d =2,300Kg/d净污泥产生率 = Total TSS / (进流BOD5x(1- RBOD))=0.91lb TSS/lb BOD5 Applied总 BOD5 = 总固体物 / 净污泥产生率=5,578lb/d =2,535Kg/d废弃污泥所含BOD5 ==总固体物 x 0.9 x 1.42 x 0.68 + 液体中所含 BOD5=1,999Kg/d + 2.5Kg/d=2,002Kg/d挥发性固体物比率 ==(VSSA+好氧槽固体物xVSS4+硝化槽TSSxVSS6)/ (Total TSS)=76.5%活性TSS比率 = 活性TSS / Total TSS =36.5%硝化槽污泥比率 = 硝化槽 TSS / Total TSS = 2.2% N-Content = (VSSA x N1VSS+好氧槽固体物 x N2VSS x VSS4+硝化槽TSS x VSS6 x N3VSS) / (硝化槽挥发性固体物比率 x Total TSS)=10.6%,N/VSSP-Content = ( 进流水TP x(1-RTP)- Qin x 出流水之TP) /(硝化槽挥发性固体物比率 x Total TSS)=8.6%,P/VSS(5)出流水水质预估水质项目平均日流量尖峰时流量BOD5 (mg/L)难分解性 6.77.6溶解性 1.8 2.7TSS (mg/L),假设值20.020.0 TKN-N (mg/L) 4.013.1 NH3-N (mg/L)0.89.9NO X-N (mg/L)12.47.9TN (mg/L)16.421.0 Total-P (mg/L)0.50.5 Alkalinity (mg/L as CaCO3)82.6123.2 Note: Residual Alkalinity Less Than 50 mg/L as CaCO3 Indicate Need for Supplemental Alkalinity.附注 :BOD eff=出流水之溶解性BOD=Ks x (1/MCRT+Kd T)/(μmaxT-1/MCRT-Kd T)== 1.8mg/LNH3eff = 出流水之NH3=Knx(1/MCRT AER+Kdn T)/(μmaxT-1/MCRT AER-Kdn T)==0.8mg/LTKNeff = 出流水之TKN=NH3eff +进流水TKN x TKN1 / (Qin x 8.34) + (硝化槽之挥发性固体物比率 x N-Content x 出流水TSS) == 4.0mg/LPeak NO X Possible =23.36Max F/M = 1.62SRDN = 2.72NO X w/ Sim Denite =12.1NO X Based on Denite =7.9NO X Based on Recycle =7.54.空气需求量理论需氧量为碳水化合物分解、硝化作用及硫化氢氧化各项需氧量之和,再扣除脱硝之释氧量,由下表计算:OXYGEN REQUIREMENTS (lb/day)Item日平均值每日尖峰值(Average)(Diurnal Peak) Carbonaceous5,81711,695 Nitrogeneous5,0046,640 Denitrification Credit1,1961,701H2S108215Net9,73316,849 Carbonaceous Oxygen Demand 1.04lb O2/lb BOD5 Applied Total Oxygen Demand 1.74lb O2/lb BOD5 Applied Diurnal Peaking Factor 1.73理论需氧量(取每日尖峰值)TOR =16,849lb/d =7,649Kg/d依下式计算标准需氧量SOR =TORAlpha x (Beta x Cw x Dc)- CL x Theta (Tw-20)C20 x Dc其中:Alpha=Dc=Beta =CL=Cw =C20 =Theta= 1.024Tw =20计算标准需氧量SOR =7,649 /0.64=11,995Kg/d传氧效率OTE设为0.28空气密度为 1.20Kg/m3空气中氧含量为23%(重量比)计算空气量 =11,995Kg/d0.28x 1.20Kg/m3x0.23x1,440=105.6CMM各曝气池需要空气量 =105.6CMM /4=26.428.3 19.0 11.3天℃% %ANA ANX ANXmmmOK ! OK ! OK ! OK !OK ! Days峰值(Diurnal Peak)min/dCMM。

某污水处理厂设计计算书

某污水处理厂设计计算书
6.污泥量计算 干泥量
含固率 泥水密度 湿污泥量 浓缩污泥深度 泥斗大小 泥斗数量 平均一天排泥次数 排泥周期 总泥量 循环污泥系数 运行台数
7.循环排泥泵 单泵流量
扬程 水泵效率η 水泵轴功率
10 mg/L 900 kgSS/d
1% 1000 kg/m3 90.00 m3/d
20 mg/L 0.5 mg/L 1105 kgSS/d
264.00 w/m3 5.50 KW
0.058 m3/s 4 min
13.89 m3 5.40 m 0.50 m 5.50 m
0.058 m3/s 80.00 m/h
2.6 m2 0.5 m 5.5 m
0.058 m3/s 7.00 m3/m2·h 29.76 m2
5.5 m
5.5 m
0.058 m3/s 1.4 L/m.s
1% 1000 kg/m3 110.50 m3/d 0.40 m 12.1 m3
2个 5.00 次 4.80 h 121.00 m3/d
4% 2台 8.33 m3/h 12.00 m 52 % 0.52 kW
不含加药的泥量
含加药的泥量
取值范围0.1-0.5 单池
近期 2%-4% 两用一备 估值
8.PAM加药量
41.3 m 24 块
1.72 m
100 mg/L
备注
单池 单池 单池 单池
单池 取值范围4-8min
单池 单池 单池 单池
单池
单池 取值范围2-4min
单池 单池 单池 单池
单池 单池 单池 单池 单池
单池 取值范围12-25
单池 单池 单池
单池 ≤1.7 单池 单池 单池
出水SS 干泥量 含固率 泥水密度 湿污泥量 PAC加药量 PAM加药量

污水处理厂计算书

精心整理污水厂设计计算书一、粗格栅1.设计流量a.日平均流量Q d=30000m3/d≈1250m3/h=0.347m3/s=347L/sKz取1.40b.最大日流量Q max =Kz·33332.设:3.4.5.L1=6.其中ε=β(s/b)4/3k—格栅受污物堵塞时水头损失增大倍数,一般为3h--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h2=0.4m则:栅前槽总高度H 1=h+h 2=0.8+0.4=1.2m栅后槽总高度H=h+h 1+h 2=0.8+0.18+0.4=1.38m8.格栅总长度(L)L=L 1+L 2+0.5+1.0+H 1/tan α=0.3+0.3+0.5+1.0+1.2/tan60°=2.80m9.每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W 1=05.086400347.0864001⨯⨯=⨯⨯W Q =1.49/d1.2.设:3.4.则:m B L 3.020tan 29.01.1tan 2B 111=︒-=-=α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2)6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 88.060sin 81.929.0)006.0015.0(42.23sin 2234201=︒⨯⨯⨯⨯===αε 其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3h 0--计算水头损失,mε--阻力系数(与栅条断面形状有关,当为矩形断面时形状系数β=2.42),将β值代入β与ε关系式即可得到阻力系数ε的值。

7.栅后槽总高度(H)设:栅前渠道超高h 2=0.4m则:栅前槽总高度H 1=h+h 2=0.8+0.4=1.2m8.L=L 19.量(1)(2)(3) L=A V =43.216.29=12m ,取L=12m (4)每小时所需空气量q :设m 3污水所需空气量d=0.2m 3q=0.2×0.243×3600=174.96m 3/h=2.916m 3/min(5)沉砂池所需容积:式中取T=2d ,X=30污水=1.8m3(6)每个沉砂斗容积(7)沉砂池上口宽度设计取,,(82.71m(9设计中取(10)出水装置,=0.22m四、辐流沉淀池设计中选择两组辐流沉淀池,N=2组,每组平流沉淀池设计流量为0.243,从沉砂池流来的污水进入配水井,经过配水井分配流量后流入平流沉淀池1.沉淀部分有效面积A=——表面负荷,一般采用1.5-3.0设计中取=2A==437.42.沉淀池有效水深t3.=式中Q——平均污水流量;V==10.2辐流沉淀池采用周边传动刮泥机,周边传动刮泥机的线速度为2-3m/min,将污泥推入污泥斗,然后用进水压力将污泥排除池外。

(完整版)污水处理厂设计计算书

2.格栅槽宽度
式中一一格栅槽宽度(m);
S――每跟格栅条的宽度(m)。
设计中取S=0.01m。
3.进水渠道渐宽部分的长度
式中——进水渠道渐宽部分的长度(m);
进水明渠宽度(m;
渐宽处角度(°),一般采用10°〜30
设计中=1.27m,=20°,此时进水渠道内的流速为0.67m/s,介于0.4〜0.9m/s之间。
1.格栅间隙数
式中一一格栅栅条间隙数(个);
3
Q――最大设计流量(m /s);
――格栅倾角(°);
b――栅条净间距(m);
h——栅前水深(m);
v――过栅流速(m/s),宜采用0.6〜1.0m/s。
栅前水深:根据水力最优断面公式计算得,0.57=X0.7/2,=1.28m ,/2=0.64m
设计中取=0.64m,0.9m/s,0.02m,60°。
4.出水渠道渐窄部分的长度
式中一一出水渠道渐窄部分的长度(m;
——渐窄处角度(°),。
设计中=1.27m,=20°。
5.通过格栅的水头损失
式中——水头损失(m;
――格栅条的阻力系数;
――格栅受污染物堵塞时的水头损失增大系数,一般采用=3。
因栅条为矩形截面,取=2.41o
6.栅后明渠总高度
式中 一一栅后明渠总高度(m);
(三)平面布置67
十七、污水处理厂高程布置68
(一)主要任务68
(二)高程布置的原则68
(三)污水处理构筑物的高程布置68
参考文献72
第一部分污水处理
一、
格栅按照远期规划进行设计。
3
Q=8.16万m/d=944.4L/s
总变化系数=1.2,Qmax=944.4X1.2=1133.28 L/s

污水处理厂工程(细格栅、提升泵站及平流沉砂池)计算书

集中区污水处理厂及配套管网工程计算书子项名称:--细格栅、提升泵站及平流沉砂池专业:计算:校对:审核:一、设计规模本次厂区近期规模(2020年)0.1×104m3/d,Kz=2.11,远期期工程总规模(2030年)0.2×104m3/d,Kz=1.93。

二、设计计算1、近期处理水量:最大时处理水量:0.1×104×2.11=2110m3/d=87.91m3/h=0.024m3/s平时处理水量:0.1×104m3/d=41.67m3/h=0.012m3/s2、远期期处理水量:最大时处理水量:0.2×104×1.93=3860 m3/d=160.83m3/h=0.045m3/s平时处理水量:0.2×104m3/d=83.33m3/h=0.023m3/s三、设计计算本工程设一组细格栅,采用提篮格栅。

1.细格栅远期最大处理水量:Q max=3860m3/d,分两格,每格Q1=1930m3/d=0.022m3/s远期平时处理水量:Q平时=2000m3/d,分两格,每格Q2=1000m3/d=0.012m3/s近期最大时处理水量:Q max =2110 m3/d,单格运行,每格=0.024 m3/s近期平时处理水量:Q平时=1000 m3/d,单格运行,每格=0.012m3/s所以每格过水流量为1000~2110m3/d,据此选型号为HF700回转式格栅除污机机,格栅间隙b=20mm,允许过栅流量800~2600m3/d,过栅流速v=0.5~1.0m/s,安装角度α=75º,电机功率1.1kW,渠宽700mm,栅前水位1.00m,过栅水头损失取0.10m。

粗格栅:栅条间隙b=20mm,栅条宽度S=10mm,渠宽B’=700mm;栅槽有效宽度B=700-100=600mm,格栅安装角度75o,经计算得:B=S(n-1)+bn,B Sns b+=+=20.3取栅条间隙数:n=21,栅前水深:h=1.0m;校核栅前渠道内实际流速:v=Q max√sin∝bnℎ=0.55m/s根据厂家提供资料,取h1=0.1m,则栅后水深为:1.0-0.1=0.9m;设栅渣量为每1000m3污水产0.05m3,估算每日栅渣量(近期)W =Q max ×W 1×86400K z ×1000=0.05m 3/d ;2. 提升泵站水泵选型出水采用水泵进行提升,进入旋流沉砂池出水端。

(完整版)污水处理厂设计计算书

污水处理厂设计计算书201x年xx月xx日目录第一部分污水处理 (1)一、格栅设计计算 (1)二、污水泵房 (4)三、平流沉砂池设计计算 (5)四、初沉池(平流沉淀池)设计计算 (9)五、A2/O工艺设计计算 (15)六、曝气系统 (21)七、二沉池(辐流式)设计计算 (27)八、消毒设施计算 (34)九、计量设备计算 (37)第二部分污泥处理 (40)十、污泥量计算 (40)(一)初沉池污泥量计算 (40)(二)剩余污泥量计算 (40)(三)污泥处理的目的 (41)(四)污泥处理的原则 (41)十一、污泥泵房设计 (42)(一)集泥池计算 (42)(二)污泥泵的选择 (42)十二、污泥浓缩池计算 (43)十三、贮泥池计算 (47)十四、污泥消化池计算 (49)(一)容积计算 (49)(二)平面尺寸计算 (52)(三)消化后的污泥量计算 (52)(四)沼气产量计算 (53)(五)一级消化池的管道系统 (54)(六)二级消化池的管道系统 (56)(七)贮气柜 (58)(八)沼气压缩机 (59)(九)混合搅拌设备 (59)十五、污泥脱水计算 (61)(一)脱水污泥量的计算 (61)(二)脱水机的选择 (62)(三)附属设施 (63)第三部分平面及高程布置 (65)十六、污水处理厂平面布置 (65)(一)污水处理厂设施组成 (65)(二)平面布置的原则 (66)(三)平面布置 (67)十七、污水处理厂高程布置 (68)(一)主要任务 (68)(二)高程布置的原则 (68)(三)污水处理构筑物的高程布置 (68)参考文献 (72)第一部分污水处理一、格栅设计计算格栅按照远期规划进行设计。

Q=8.16万m3/ d=944.4L/sQ=944.4×1.2=1133.28 L/s总变化系数=1.2,max设计中选择两组格栅同时工作,每组格栅单独设置,则每组格栅的进水量为566.64L/s。

1.格栅间隙数式中——格栅栅条间隙数(个);Q——最大设计流量(m3/s);——格栅倾角(°);b——栅条净间距(m);h——栅前水深(m);v——过栅流速(m/s),宜采用0.6~1.0m/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水处理厂计算书 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】污水厂设计计算书一、粗格栅1.设计流量a.日平均流量Q d =30000m 3/d ≈1250m 3/h=s=347L/sK z 取b. 最大日流量 Q max =K z ·Q d =×30000m 3/d=42000 m 3/d =1750m 3/h=s2.栅条的间隙数(n )设:栅前水深h=,过栅流速v=s,格栅条间隙宽度b=,格栅倾角α=60° 则:栅条间隙数4.319.08.002.060sin 486.0sin 21=⨯⨯︒==bhv Q n α(取n=32) 3.栅槽宽度(B)设:栅条宽度s=则:B=s (n-1)+en=×(32-1)+×32=4.进水渠道渐宽部分长度 设:进水渠宽B 1=,渐宽部分展开角α1=20°5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m B B L 3.020tan 29.011.1tan 2221=︒-=-=α 6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3 则:m g v k kh h 18.060sin 81.929.0)02.0015.0(42.23sin 2234201=︒⨯⨯⨯⨯===αε 其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=则:栅前槽总高度H 1=h+h 2=+=栅后槽总高度H=h+h 1+h 2=++=8.格栅总长度(L)L=L 1+L 2+++ H 1/tan α=++++tan60°=9. 每日栅渣量(W)设:单位栅渣量W 1=栅渣/103m 3污水则:W 1=05.0100086400347.010********⨯⨯=⨯⨯W Q =m 3d 因为W> m 3/d,所以宜采用机械格栅清渣及皮带输送机或无轴输送机输送栅渣二、细格栅1.设计流量Q=30000m 3/d ,选取流量系数K z =则:最大流量Q max =×30000m 3/d=s2.栅条的间隙数(n )设:栅前水深h=,过栅流速v=s,格栅条间隙宽度e=,格栅倾角α=60° 则:栅条间隙数69.1049.08.0006.060sin 486.0sin 21=⨯⨯︒==ehv Q n α(n=105) 设计两组格栅,每组格栅间隙数n=533.栅槽宽度(B)设:栅条宽度s=则:B 2=s (n-1)+en=×(53-1)+×53=所以总槽宽为×2+=(考虑中间隔墙厚)4.进水渠道渐宽部分长度设:进水渠宽B 1=,其渐宽部分展开角α1=20°(进水渠道前的流速为s ) 则:m B L 3.020tan 29.01.1tan 2B111=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3 则:m g v k kh h 88.060sin 81.929.0)006.0015.0(42.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3h 0--计算水头损失,mε--阻力系数(与栅条断面形状有关,当为矩形断面时形状系数β=2. 42),将β值代入β与ε关系式即可得到阻力系数ε的值。

7.栅后槽总高度(H)设:栅前渠道超高h 2=则:栅前槽总高度H 1=h+h 2=+=栅后槽总高度H=h+h 1+h 2=++=8.格栅总长度(L)L=L 1+L 2+++ H 1/tan α=++++tan60°=9.每日栅渣量(W)设:单位栅渣量W 1=栅渣/103m 3污水则:W=1.0100086400347.010********⨯⨯=⨯⨯W Q =d 因为W> m 3/d,所以宜采用机械格栅清渣三、沉砂池本设计采用曝气沉砂池是考虑到为污水的后期处理做好准备。

建议设两组沉砂池。

每组设计流量Q= m 3/s(1)池子总有效容积:设t=2min,V=max Q t ×60×2=×2×60=(2)水流断面积: A=1max v Q =1.0243.0= 沉砂池设两格,有效水深为,单格的宽度为。

(3)池长: L=A V =43.216.29=12m ,取L=12m (4)每小时所需空气量q :设m 3污水所需空气量d= m 3q=××3600= m 3/h= m 3/min(5)沉砂池所需容积:V =Q ∗X ∗T ∗864006 式中取T=2d ,X=30m 3/106m 3污水V =0.347×30×2×8640010= m 3 (6)每个沉砂斗容积V 0=V n =1.82=0.9m3(7)沉砂池上口宽度α=2h 3,tan α+α1设计取h 3,=1.4m ,α=60。

,α1=0.5mα=2×1.4tan 60+0.5=2.12m(8)沉砂斗有效容积V 0,=h 3,3(α2+αα1+α12) =1.43(2.122+2.12×0.5+0.52) = m 3>0.9m3(9)进水渠道格栅的出水通过DN1000的管道送入沉砂池的进水渠道,然后向两侧配水进入沉砂池,进水渠道的水流流速V 1=Q B 1H 1设计中取B 1=1.8m ,H 1=0.5mV 1=0.2431.8×0.5=0.27m/s(10)出水装置出水采用沉砂池末端薄壁出水堰跌落出水,出水堰可保证沉砂池内水位标高恒定,堰上水头H 1=(Q 1mb 2√2g )23设计中取m=,b 2=1.21H 1=(0.4×1.21×√2×9.8)23= 四、辐流沉淀池设计中选择两组辐流沉淀池,N=2组,每组平流沉淀池设计流量为m 3/s ,从沉砂池流来的污水进入配水井,经过配水井分配流量后流入平流沉淀池 1.沉淀部分有效面积 A=Q×3600q ,q ,——表面负荷,一般采用m 3/(m 2∗h ) 设计中取q ,=2m 3/(m 2∗h ) A=0.243×36002=m 22.沉淀池有效水深H 2=q ,∗tt ——沉淀时间(h ),一般采用 设计中取t=H 2=2×1.5=3.0m3.沉淀池直径D=√4Fπ=24m=√4×437.43.144.污泥所需容积按去除水中悬浮物计算V=Q(C1−C2)86400T100K2γ(100−p0)n×10式中Q——平均污水流量;C1——进水悬浮物浓度;C2——出水悬浮物浓度;一般采用沉淀效率40%-60%K2——生活污水量总变化系数;γ——污泥容重,约为1p0——污泥含水率设计中取T=, p0=97%,V=0.347(407−0.5×407)86400×1×100(100−97)×2×106=m3辐流沉淀池采用周边传动刮泥机,周边传动刮泥机的线速度为2-3m/min,将污泥推入污泥斗,然后用进水压力将污泥排除池外。

5.污泥斗容积h5,α2+α12+αα1,V1=13设计取α=2m,h5=1.35m,α1=0.5m×1.35(2×2+0.5×0.5+2×0.5)V1=13=m3沉淀池底部圆锥体体积×π×h4×(R2+Rr+r2)V2=13设计取h4=0.32,r=1m××0.32×(122+12×1+12)=m3V2=13沉淀斗总容积V3= V1+V2=54.94m3>10.2m311.沉淀池总高度H=h1+h2+h3+h4+h5式中 H——沉淀池总高度h1——沉淀池超高,一般采用h3——缓冲层高度,一般采用h4——污泥部分高度设计中取h3=0.3 , h1=0.3mH=+3++1/+=12.进水配水井沉淀池分为两组,每组分为4格,每组沉淀池进水端设进水配水井,污水在配水井内平均分配,然后流进每组沉淀池。

配水井内中心管直径D,=√4Qπv2v2——配水管内中心管上升流速(m/s),一般≥6设计中取v2=s=D,=√4×0.486π×0.6配水井直径+D,2,D3=√,4Qπv3V3=0.3msD3=13.进水渠道沉淀池分为两组,每组沉淀池进水端设进水渠道,配水井接出的DN800进水管从进水渠道中部汇入,污水沿进水渠道向两侧流动,通过潜孔进入配水渠道,然后由穿孔花墙流入沉淀池。

v1=Q/B1H1式中v1——进水渠道水流流速,一般采用v10.4m/s;B1——进水渠道宽度;H1——进水渠道水深,设计取B1=1.0m,H1=0.6mv1=14.进水穿孔花墙进水采用配水渠道通过穿孔花墙进水,配水渠道宽,有效水深,穿孔花墙的开孔总面积为过水断面6%-20%,则过孔流速为v2=QB2h2n1设计取B2=0.2m h2=0.4m n1=10,v2=0.243/10×0.2×0.4×4=s15.出水堰沉淀池出水经过出水堰跌落进入出水渠道,然后汇入出水管道排走。

出水堰采用矩形薄壁堰,堰后自由跌落水头,堰上水深H为Q=m0bH√2gH式中m0——流量系数,一般采用;b——出水堰宽度;H——出水堰顶水深。

4=×4.8×H√2gHH=出水堰后自由跌落采用,则出水堰水头损失为16.出水渠道沉淀池出水端设出水渠道,出水管与出水渠道连接,将污水送至集水井。

v 3=Q/B 3H 3设计中取B 3=0.7m H 3=v 3=0.243/0.7×0.6=s>s出水管道采用钢管,管径DN=800mm ,管内流速v=s ,水力坡降i=%。

17.进水挡板 出水挡板沉淀池设进水挡板和出水挡板,进水挡板距进水穿孔花墙,挡板高出水面,伸入水下,出水挡板距出水堰,挡板高出水面,伸入水下,在出水挡板处设一个浮渣收集装置,用来收集拦截的浮渣。

18.排泥管沉淀池采用重力排泥,排泥管直径DN300mm ,排泥时间20min ,排泥管流速s,排泥管伸入污泥斗底部。

排泥管上端高出水面,便于清通和排气。

19.刮泥装置沉淀池采用行车式刮泥机,刮泥机设于池顶,刮板伸入池底,刮泥机行走时将污泥推入污泥斗内。

相关文档
最新文档