电容式触屏的分类及工作原理
电容触屏

目前洋华光电19%的营收来自于电容式触摸屏面板,TJ Lin透露,第四季度电容式触摸屏面板将占据该公司 30%左右的市场份额,将增长到40%到50%。
电容触屏(2张)电容触屏的透光率和清晰度优于四线电阻屏,当然还不能和表面声波屏和五线电阻屏相比。 电容屏反光严重,而且,电容技术的四层复合触摸屏对各波长光的透光率不均匀,存在色彩失真的问题,由于光 线在各层间的反射,还造成图像字符的模糊。电容屏在原理上把人体当作一个电容器元件的一个电极使用,当有 导体靠近与夹层ITO工作面之间耦合出足够量容值的电容时,流走的电流就足够引起电容屏的误动作。我们知道, 电容值虽然与极间距离成反比,却与相对面积成正比,并且还与介质的的绝缘系数有关。因此,当较大面积的手 掌或手持的导体物靠近电容屏而不是触摸时就能引起电容屏的误动作,在潮湿的天气,这种情况尤为严重,手扶 住显示器、手掌靠近显示器7厘米以内或身体靠近显示器15厘米以内就能引起电容屏的误动作。电容屏的另一个 缺点用戴手套的手或手持不导电的物体触摸时没有反应,这是因为增加了更为绝缘的介质。电容屏更主要的缺点 是漂移:当环境温度、湿度改变时,环境电场发生改变时,都会引起电容屏的漂移,造成不准确。例如:开机后 显示器温度上升会造成漂移:用户触摸屏幕的同时另一只手或身体一侧靠近显示器会漂移;电容触摸屏附近较大 的物体搬移后回漂移,你触摸时如果有人围过来观看也会引起漂移;电容屏的漂移原因属于技术上的先天不足, 环境电势面(包括用户的身体)虽然与电容触摸屏离得较远,却比手指头面积大的多,他们直接影响了触摸位置 的测定。此外,理论上许多应该线性的关系实际上却是非线性,如:体重不同或者手指湿润程度不同的人吸走的 总电流量是不同的,而总电流量的变化和四个分电流量的变化是非线性的关系,电容触摸屏采用的这种四个角的 自定义极坐标系还没有坐标上的原点,漂移后控制器不能察觉和恢复,而且,4个A/D完成后,由四个分流量的值 到触摸点在直角坐标系上的X、Y坐标值的计算过程复杂。由于没有原点,电容屏的漂移是累积的,在工作现场也 经常需要校准。
电容式触摸原理

电容式触摸原理一、引言电容式触摸技术是目前较为常用的一种触控技术,它既可以被应用于手机等消费电子产品的触摸屏上,也可以被应用于医疗、制造、军事等领域的工业触摸屏上。
本文将介绍电容式触摸技术的基本原理、工作方式、分类及其应用。
二、电容式触摸技术的原理电容式触控是利用手指或其他物体在电容屏表面形成的电荷变化来检测触摸事件,其原理是根据电容效应,在电容屏上建立一个电容场,当手指或其他物体接近或触摸到电容屏的表面时,会改变该电容场的能量分布,这样就会引起电荷的积聚和电势的变化,从而产生信号传递,实现触摸控制。
三、电容式触摸屏的工作方式1. 常规电容式触摸屏电容式触摸屏通常由两层导电玻璃板组成,中间夹层是一层导电的透明涂层,形成一种平行电容,当外界介质(即手指或者导电笔)接触到导电涂层上时,它们的电荷将影响电容场的改变,从而被检测和转化为触摸信号。
2. 非常规电容式触摸屏与常规电容式触摸屏不同,非常规电容式触摸屏在透明导电涂层上附加了电感,通常称为感应屏触摸屏。
当触摸屏上的电流发生变化时,电感的电压也会随之改变,从而产生触摸事件信号。
感应屏触摸屏不仅对电阻性介质(如手指或导电笔)反应快速,而且还可以对最小的物体反应,如手套、带电物体以及断电状态下的物体等。
四、电容式触摸屏的分类电容式触摸屏主要分为五种类型:1. 电容阵列式触摸屏电容阵列式触摸屏通过在显示面板上制造电容矩阵来实现触摸控制。
此类触摸屏不仅可以检测到触摸面积及位置,还可以检测多点触摸,操作手感流畅且对触摸精度要求很高,应用于iPhone、iPad等一线品牌。
2. 电容交叉式触摸屏电容交叉式触摸屏在纵横两个方向上分别布置电极,当触摸屏上的物体在X和Y两个方向上移动时,通过电容变化的方式来控制物体的移动速度。
电容交叉式触摸屏主要用于游戏摇杆、控制旋钮等应用领域。
3. 电容矩形式触摸屏电容矩形式触摸屏的电极通常为银纹或ITO材料,在面板的四周布置,面板上布置有X和Y两个方向上的电场,当手指触摸到屏幕上时,电容效应会使电流沿着手指的两个方向流动,得到X和Y坐标。
手机屏幕感应原理

手机屏幕感应原理手机屏幕感应原理是指手机屏幕能够实时检测和响应用户触摸的动作,并将其转化为电信号传递给手机系统。
目前手机屏幕主要采用电容式触摸屏幕技术,其原理是利用触摸面板上的导电层和控制电路来实现对用户触摸操作的感应。
具体原理如下:一、电容式触摸屏幕构造电容式触摸屏分为玻璃表层、触摸感应层、显示屏和控制电路四个部分。
其中触摸感应层由玻璃或薄膜形成,表面涂有单层或多层导电材料,如导电玻璃或电导膜。
二、感应原理1. 静电感应式电容式触摸屏幕利用静电感应的原理来实现对用户的触摸感应。
当人的手指接触到屏幕时,由于人体带有电荷,会改变触摸屏幕上的电场分布情况,使电场发生变化。
触摸感应层上有的导电薄膜或导电玻璃会在屏幕上形成一个与手指产生的电荷相等但相反的电荷,因此电荷之间会发生排斥作用,从而使触摸感应层的电容发生变化。
2. 容量变化法电容式触摸屏幕还可以通过测量电容的变化来感应用户的触摸操作。
当手指触摸屏幕时,会改变两个电极之间的电容值。
电容与电极之间的距离以及电介质的介电常数有关,而电介质通常是玻璃或空气。
当手指接触到屏幕时,手指和电极之间的距离变小,因此电容值也会相应减小。
三、信号传输与处理电容式触摸屏幕通过触摸感应层上的导电材料将触摸行为转化为电信号,并将其传递给控制电路。
1. 多点触控技术现代手机屏幕往往支持多点触控技术,即能够同时感应到多个触摸点的位置。
这是通过在触摸感应层上设置多个导电电极来实现的。
当多个触摸点同时出现在屏幕上时,电容式触摸屏幕会实时监测和计算每个触摸点的位置,并将其传递给控制电路。
2. 信号处理控制电路会接收到从触摸感应层传递过来的电信号,并通过对信号进行处理和解析,确定用户的触摸点位置以及相应的操作反馈。
然后,将这些信息传递给手机系统,以便进行相应的操作,如屏幕调整、界面切换、图形放大缩小等。
总结起来,手机屏幕感应原理是基于电容式触摸屏的工作原理。
通过感应手指的电荷、电容值的变化等来实时检测和响应用户的触摸操作,从而完成相应的功能。
电容式触控工作原理

电容式触控工作原理
电容式触控是一种常见的人机交互方式,其工作原理基于电容效应。
在一个电容屏上,有一层导电的透明电极板,另一层是玻璃或塑料基板,其表面也涂有导电物质。
当手指接触到电容屏的表面时,由于人体本身具有电荷,手指上的电荷会引起电容屏的电场变化。
控制电路会感知这种变化,并解析出手指的位置,从而实现对屏幕的操作。
电容式触控屏幕有两种主要类型:电阻式和电容式。
电阻式触控屏幕基于触摸屏与人体接触产生的机械压力,而电容式触控屏幕则基于电容的变化来工作。
电容式触控屏幕具有响应速度快、支持多点触控、不需要机械压力等优点,因此在现代智能手机、平板电脑、电视等设备上广泛应用。
同时,随着技术的进步,电容式触控屏幕的分辨率和灵敏度也得到了不断提升,更好地满足了人们对于交互体验的要求。
- 1 -。
电容式触摸屏原理

电容式触摸屏原理
电容式触摸屏(Capacitive Touch Screen)是一种新型的触摸屏,
它通过利用人的手指来进行交互的方式,将触摸转化为电能,并进行按键
操作。
电容式触摸屏由线性电容电路构成,它的工作原理是:当用户用手
指接触触摸屏表面时,就会在触摸屏表面形成一个空心电容,这个空心电
容两端分别与X轴和Y轴电感共振电路相连,当触摸屏表面被触动时,就
可以改变X轴和Y轴电感共振电路的频率,从而改变X轴和Y轴电感共振
电路的电阻大小,这样就可以计算出用户触点的坐标,从而实现触摸操作。
电容式触摸屏还具有低功耗、低延迟等优点,可以将触摸屏速度提高
到微秒级响应,且可以在屏幕上触摸到的每一点都能及时反应,使触摸操
作更加灵敏流畅。
此外,电容式触摸屏还具有结构牢固,抗静电和抗湿度
的功能,同时还可以有效抑制外界的电磁干扰,从而提高了触控的精准度
和可靠性。
电容触摸屏工作原理

电容触摸屏工作原理电容触摸屏是一种常见的触摸屏技术,在现代电子设备中广泛应用。
它使用了电容感应原理,能够实现对触摸动作的高精度检测和交互操作。
本文将详细介绍电容触摸屏的工作原理。
一、电容触摸屏的基本构造电容触摸屏通常由四个基本部分构成:感应电极层、传感器芯片、控制电路和驱动电路。
1. 感应电极层:电容触摸屏中最上层的薄膜通常是感应电极层,由导电材料制成,具有良好的透明性和导电性。
2. 传感器芯片:传感器芯片位于感应电极层下方,主要负责检测触摸信号,并将其转换为电容数值。
3. 控制电路:控制电路连接传感器芯片和显示屏,用于控制触摸信号的采集和处理。
4. 驱动电路:驱动电路提供电源给感应电极层和传感器芯片,确保其正常运行。
二、电容触摸屏的工作原理电容触摸屏的工作原理基于电容感应效应。
当手指或其他带电物体接近触摸屏时,感应电极层和带电物体之间形成了一个电容。
通过测量这个电容的变化,可以确定触摸屏发生触摸的位置和触摸压力。
具体而言,当触摸屏发生触摸时,感应电极层上的电荷会发生变化,形成一个电容变化。
传感器芯片会实时检测这个电容值的变化,并将其转换为相应的电信号。
控制电路接收到传感器芯片传来的电信号后,会对触摸位置进行分析和处理。
通过计算电容变化的大小和分布情况,控制电路可以准确地确定触摸屏上发生触摸的位置。
驱动电路则负责向感应电极层提供适量的电荷,确保触摸屏的正常感应和工作。
三、电容触摸屏的特点和优势电容触摸屏具有以下几个特点和优势:1. 高灵敏度:电容触摸屏对触摸压力非常敏感,能够准确捕捉到细小的触摸动作。
2. 高精度:电容触摸屏可以实现高精度的触摸定位,能够识别多点触控、手势操作等复杂操作。
3. 高透明度:感应电极层采用透明导电材料制成,不会影响显示屏的透明度和显示效果。
4. 耐用性好:电容触摸屏没有物理按钮和机械结构,相比传统触摸屏更加耐用,更不容易出现机械损坏。
5. 支持手写输入:由于电容触摸屏的高灵敏度,可以实现手写输入功能,提供更多的输入方式选择。
电容式触摸屏原理

电容式触摸屏原理⼀、电容屏⼯作原理触摸屏的⼯作原理概括来说就是上报坐标值,X轴、Y轴的值。
前⾯我们分析了电阻触摸屏,它是通过ADC来检测计算X、Y轴坐标值,下⾯我们分析⼀下电容触摸屏的⼯作原理,看它是如何去检测计算X、Y坐标的值。
与电阻式触摸屏不同,电容式触摸屏不依靠⼿指按⼒创造、改变电压值来检测坐标的。
电容屏通过任何持有电荷的物体包括⼈体⽪肤⼯作。
(⼈体所带的电荷)电容式触摸屏是由诸如合⾦或是銦錫氧化物(ITO)这样的材料构成,电荷存储在⼀根根⽐头发还要细的微型静电⽹中。
当⼿指点击屏幕,会从接触点吸收⼩量电流,造成⾓落电极的压降,利⽤感应⼈体微弱电流的⽅式来达到触控的⽬的。
(这是为什么当你带上⼿套触摸屏幕时,没有反应的原因),下图可以清晰的说明电容屏的⼯作原理。
⼆、电容屏模组组成触摸屏:也就是我们⼿触摸操作的透明部分;触摸IC:当电容屏触摸到时,要解析到触点的位置坐标,就是通过这颗芯⽚去计算处理的。
1、电容式触摸屏的类型主要有两种:(1)、表⾯电容式:表⾯电容式利⽤位于四个⾓落的传感器以及均匀分布整个表⾯的薄膜,有⼀个普通的ITO层和⼀个⾦属边框,当⼀根⼿指触摸屏幕时,从板⾯上放出电荷,感应在触屏的四⾓完成,不需要复杂的ITO图案;(2)、投射式电容:采⽤⼀个或多个精⼼设计,被蚀烛的ITO,这些 ITO层通过蛀蚀形成多个⽔平和垂直电极,采⽤成⾏/列交错同时带有传感功能的独⽴芯⽚。
现在平板电脑、⼿机、车载等多⽤投射式电容,所以我们后⾯分析表明投射式电容的构成。
投射电容的轴坐标式感应单元矩阵:轴坐标式感应单元分⽴的⾏和列,以两个交叉的滑条实现 X轴滑条 Y轴滑条检测每⼀格感应单元的电容变化。
(⽰意图中电容,实际为透明的)2、电容触摸屏分辨率,通道数;上图所⽰,X,Y轴的透明电极电容屏的精度、分辨率与X、Y轴的通道数有关,通道越多,分辨率越⾼。
3、电容触屏的结构分类:(1)、单层ITO优点:成本低,透过率⾼,缺点: 抗⼲扰能⼒差(2)、单⾯双层ITO优点:性能好,良率⾼缺点:成本较⾼(3)、双⾯单层ITO优点:性能好,抗静电能⼒强缺点:抗⼲扰能⼒差3、电容式触屏的分类及⼯作原理(1)、⾃⽣电容式触摸屏Cp-寄⽣电容⼿指触摸时寄⽣电容增加:Cp’=Cp/Cfinger检测寄⽣电容的变化量,确定⼿指触摸的位置(2)、互电容式触摸屏CM-耦合电容⼿指触摸时耦合电容减⼩,检测耦合电容变化量,确定⼿指触摸的位置四、为什么会出现⿁点,⿁点如何消除1、为什么会出现⿁点?当⼀个⼿指按下时,X、Y轴只有⼀个交叉点,两个同时按下时就会出现4个交叉点,如下图所⽰,我们不期望得到的点就是所说的⿁点。
电容式触控工作原理

电容式触控工作原理
电容式触控技术是一种现代化的触控技术,它的工作原理是利用电容效应来实现触控操作。
电容式触控技术已经广泛应用于各种电子设备中,如智能手机、平板电脑、电视等。
电容式触控技术的工作原理是利用电容效应来实现触控操作。
电容效应是指当两个电极之间存在电场时,它们之间会产生电容。
当手指或其他物体接触到电容屏幕时,会改变电场分布,从而改变电容值。
电容屏幕会检测这种电容值的变化,并将其转换为触控信号,从而实现触控操作。
电容式触控技术有两种类型:电阻式和电容式。
电阻式触控技术是利用两个导电层之间的电阻来实现触控操作。
电容式触控技术则是利用电容效应来实现触控操作。
相比之下,电容式触控技术更加灵敏和精准,因为它可以检测到非常微小的电容值变化。
电容式触控技术的优点是非常明显的。
首先,它可以实现多点触控,即可以同时检测到多个触控点。
这使得用户可以使用手指进行缩放、旋转等复杂的操作。
其次,电容式触控技术非常灵敏,可以检测到非常微小的触控操作。
这使得用户可以使用手指轻轻触碰屏幕来实现操作。
最后,电容式触控技术非常精准,可以实现高精度的触控操作。
这使得用户可以进行精细的操作,如绘画、书写等。
电容式触控技术是一种非常先进的触控技术,它的工作原理是利用
电容效应来实现触控操作。
它具有多点触控、灵敏、精准等优点,已经广泛应用于各种电子设备中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年3月LG推出Parada 电容触摸屏 多点电容式触摸屏 初见端倪 无需触笔,精度好
电容屏的 新时代
2007年6月至今苹果推出多款 iphone多点电容触屏 电容屏取得飞速的发展
1.2多点触摸手势
2.电容式触摸屏的结构及分类
2.1单层ITO
OCA:optical clear adhesive 特种 粘合剂,无色透明,高透光率,胶 粘强度好 FPC:Flexible Printed Circuit 软性 线路板,聚酰亚胺或聚酯薄膜为基 材制成的一种具有高度可靠性,绝 佳的可挠性印刷电路
内容
电容触屏的相关介绍 电容触屏的结构探究
单层ITO 单面双层ITO 双面单层ITO
电容式触屏的分类及工作原理
自生电容式触摸屏 互电容式触摸屏 信号检测触摸屏位置中心坐标算法
1.1触摸屏在电子领域的发展
电阻式 触摸屏 的出现
1997年摩托罗拉PalmPilot 掌上电脑出现,电阻式触摸 屏,触摸笔输入,不精确
3.电容触屏分类
表面电容式 有一个普通的ITO层和一个金属边框,当一根手 指触摸屏幕时,从板面上放出电荷,感应在触 屏 的四角完成,不需要复杂的ITO图案 投射电容式(感应电容式) 采用一个或多个精心设计,被蚀烛的ITO,这些 ITO层通过蛀蚀形成多个水平和垂直电极 自感应电容式 互感应电容式
平行边电容器
平行班电容器原理 两个带点的导体相互靠近会形成电容 平行板电容的定义 电容C:正比于相对面积A,正比于两导体间的介 质的介电常量K,反比于两导体的相对距离d K=8.85×10-12F/m
3.1自生电容式触摸屏的原理
Cp-寄生电容 手指触摸时寄生电容增加:Cp’=Cp/Cfinger 检测寄生电容的变化量,确定手指触摸的位置
•分区法 将整个触屏物理上分割 几个区域 通过判断触摸进入推出 相应区域,从鬼点中分 出真实点
3.4触摸屏位置中心坐标算法
找到电容最大值和相应 的列Pi, i 用以最大电容值列为中 心的二列求出其加权平 均,即横坐标
其中,K为映射系数
Thanks!& Best wishes! Q&A?
3.2互电容式触摸屏的原理
CM-耦合电容 手指触摸时耦合电容减小 检测耦合电容变化量,确定手指触摸的位置
3.3信号检测
交叉中心=触摸点 一个中心点=单个触摸点
单 个 触 摸 点 点 点 点 摸 点 个 触
个 个触摸=4个交叉点
两
Hale Waihona Puke 除鬼点的方法分时法 基于时间的多点触 摸,假设多点触摸 分时进行,操作间 隔续集毫秒
优点:成本 低,透过率 高,缺点: 抗干扰能力 差
2.2单面双层ITO
优点:性能 好,良率高 缺点:成本 较高
2.3双面单层ITO
优点:性能好,抗静电能力强 缺点:抗干扰能力差
2.4轴坐标式感应单元矩阵
轴坐标式 感应单元 分立的行 和列 以两个交 叉的滑条 实现 X轴滑条 Y轴滑条 检测每一 格感应单 元的电容 变化 行sensor组成Y轴 列sensor组成X轴 行和列在不同的轴