西工大附中初二数学教案模板
八年级数学上册教案(表格式)

八年级数学上册教案(表格式)章节名称:第一章勾股定理及其应用【教学目标】1. 理解勾股定理的表述及证明。
2. 学会运用勾股定理解决实际问题。
【教学内容】1. 勾股定理的表述:直角三角形的两条直角边的平方和等于斜边的平方。
2. 勾股定理的证明:通过几何图形,展示勾股定理的正确性。
3. 勾股定理的应用:解决直角三角形的相关问题。
【教学步骤】1. 引入勾股定理的概念,引导学生思考直角三角形的特点。
2. 讲解勾股定理的表述,让学生理解并记忆。
3. 通过几何图形,引导学生证明勾股定理。
4. 举例讲解勾股定理的应用,让学生学会运用。
5. 布置练习题,巩固所学知识。
【教学评价】1. 检查学生对勾股定理的理解和记忆。
2. 评估学生在实际问题中运用勾股定理的能力。
章节名称:第二章一元一次方程【教学目标】1. 理解一元一次方程的定义及解法。
2. 学会运用一元一次方程解决实际问题。
【教学内容】1. 一元一次方程的定义:形如ax + b = 0的方程。
2. 一元一次方程的解法:通过移项、合并同类项求解。
3. 一元一次方程的应用:解决实际问题。
【教学步骤】1. 引入一元一次方程的概念,引导学生理解方程的形式。
2. 讲解一元一次方程的解法,让学生学会求解。
3. 举例讲解一元一次方程的应用,让学生学会运用。
4. 布置练习题,巩固所学知识。
【教学评价】1. 检查学生对一元一次方程的理解和记忆。
2. 评估学生在实际问题中运用一元一次方程的能力。
章节名称:第三章不等式与不等式组【教学目标】1. 理解不等式的定义及解法。
2. 学会运用不等式解决实际问题。
【教学内容】1. 不等式的定义:形如ax > b的方程。
2. 不等式的解法:通过移项、合并同类项求解。
3. 不等式组的概念及解法:多个不等式的组合。
4. 不等式和不等式组的应用:解决实际问题。
【教学步骤】1. 引入不等式的概念,引导学生理解不等式的形式。
2. 讲解不等式的解法,让学生学会求解。
初中数学八年级教案模板案例

数学(mathematics 或者 maths ,来自希腊语,“máthēma”;经常被缩写为“mat h”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
下面是给大家整理的初中数学八年级教案案例 5 篇,希翼大家能有所收获!初中数学八年级教案案例 1教材分析1、本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
学情分析1、虽然这是一节全新的数学概念课,学生没有接触过。
但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。
3、学生认知障碍点:根据问题信息写出一次函数的表达式。
教学目标1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和普通的辩证关系。
2、能根据问题信息写出一次函数的表达式。
能利用一次函数解决简单的实际问题。
3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
教学重点和难点1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
初中数学八年级教案案例 2一次函数的图象应用》教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的思想,形成良好的函数观点,体味一次函数的应用价值.重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学【例 5】小芳以 200 米/分的速度起跑后,先匀加速跑 5 分,每分提高速度 20 米/分,又匀速跑 10 分,试写出这段时间里她的跑步速度 y(单位:米/分)随跑步时间 x(单位:•分)变化的函数关系式,并画出函数图象.y=【例 6】A 城有肥料 200 吨, B 城有肥料 300 吨,现要把这些肥料全部运往 C、 D 两乡.从 A 城往 C、 D 两乡运肥料的费用分别为每吨 20 元和 25 元;从 B 城往 C、D•两乡运肥料的费用分别为每吨 15 元和 24 元,现 C 乡需要肥料 240 吨, D 乡需要肥料 260 吨,•怎样调运总运费至少?解:设总运费为 y 元,A 城往运 C 乡的肥料量为 x 吨,则运往 D 乡的肥料量为(200-x)吨.B 城运往 C、D 乡的肥料量分别为(240-x)吨与 (60+x) 吨 .y 与 x 的关系式为:y=•20x+25(200-x)+15(240-x)+24(60+x) ,即y=4x+10040(0≤x≤200).由图象可看出:当 x=0 时, y 有最小值 10040 ,因此,从 A 城运往 C 乡0 吨,运往 D•乡200 吨;从 B 城运往 C 乡240 吨,运往 D 乡 60 吨,此时总运费至少,总运费最小值为 10040 元.拓展:若 A 城有肥料 300 吨, B 城有肥料 200 吨,其他条件不变,又应怎样调运?二、随堂练习,巩固深化课本 P119 练习.三、课堂总结,发展潜能由学生自我评价本节课的表现.四、布置作业,专题突破课本 P120 习题 14.2 第 9,10,11 题.板书设计14.2.2 一次函数(4)1、一次函数的应用例:初中数学八年级教案案例 3二次根式一、教学目标1.了解二次根式的意义;2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3. 掌握二次根式的性质和,并能灵便应用;4.通过二次根式的计算培养学生的逻辑思维能力;5. 通过二次根式性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点: (1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启示式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子叫做二次根式.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子惟独在条件a≥0 时才叫二次根式,是二次根式吗? 呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部份.(2) 是二次根式,而,提问学生: 2 是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态” .请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例 1 当 a 为实数时,下列各式中哪些是二次根式?例 2 x 是怎样的实数时,式子在实数范围故意义?解:略.说明:这个问题实质上是在 x 是什么数时, x-3 是非负数,式子故意义.例 3 当字母取何值时,下列各式为二次根式:(1) (2) (3) (4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、 b 为任意实数时,都有a2+b2≥0,∴当 a、 b 为任意实数时,是二次根式.(2)-3x≥0,x≤0,即x≤0 时,是二次根式.(3) ,且x≠0,∴x 0,当 x 0 时,是二次根式.(4) ,即,故 x-2≥0 且 x-2≠0, ∴x 2.当 x 2 时,是二次根式.例 4 下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义, .即:惟独在条件 a≥0 时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解: (1)由2a+3≥0,得 .(2)由,得 3a-1 0 ,解得 .(3)由于 x 取任何实数时都有|x|≥0,因此, |x|+0.1 0,于是,式子是二次根式. 所以所求字母 x 的取值范围是全体实数.(4)由-b2≥0 得b2≤0,惟独当 b=0 时,才有 b2=0 ,因此,字母 b 所满足的条件是: b=0.初中数学八年级教案案例 4探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探索的习惯,进一步体味数学与现实生活的紧密联系。
初二数学教案模板7篇

初二数学教案模板7篇初二数学教案模板篇1教学目的:1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。
2、结合学生的实际情况,让学生填写算式。
3、在教学中渗透数的顺序,并进行社会秩序教育。
4、学会与人合作,体会计算的多样化,发展学生思维。
教学重点:掌握20以内数的顺序。
教学难点:初步建立数的概念教学准备:每组一个数位计数器及40-50根小棒等。
教学方法:抓问题,用多种游戏,把抽象的数位具体化。
教学步骤:一、创设情景,寻找关键问题1、数学课研究数学问题,一些小棒会有什么数学问题。
(每张桌子发40-50根小棒,玩小棒时间为3-5分钟)2、你发现了什么数学问题。
(目的:练习20以内数的顺序,也可以在玩小棒中发现十根捆一捆)3、游戏,看谁的手小巧。
老师报数,学生用棒子表示,讨论:快的同学的诀窍。
出示:十根可以捆一捆。
再进行游戏,让学生习惯中把1捆当作10根用。
4、完成:()个一()个十试一试,在计数器拔出10个位只有几颗珠子,怎么办(10个一是1个10)在个位拔上一颗珠子,表示1个十,也表示10个一。
二、自主合作,解决数位顺序。
在解决了10是1个十也是10个一后,还能过度试一试在计数器上表示。
接下来就是让学生通过自主合作,数位,组成和算式结合,理解11-20各数。
1、11-20各数在计数器上怎么表示呢问题提出后,可以组织学生讨论交流,并加以解决,并结合p68的图示表达自己的想法,学生之间互相交流,实现生生互动。
(这儿注意11-20的表达多样,只要求至少一样,方法选择,方法应用应由学生通过自主交流来确定。
)2、1个十,1个一是1110+1=1110和11,十位上是1,没有变,个位由0变成1,就是11。
3、15、19、20的数位可重点检查。
(20的数位可由10-20,也可19-20来描述。
)4、小结,从右边起,第一位是个位,第二位是十位,数位不一样,数也不一样,十位上1表示1个十,个位上1表示1个一。
数学初二教案(优秀5篇)

数学初二教案(优秀5篇)八年级数学的教案篇一一、内容和内容解析1、内容正比例函数的概念。
2、内容解析一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。
基于以上分析,确定本节课的教学重点:正比例函数的概念。
二、目标和目标解析1、目标(1)经历正比例函数概念的形成过程,理解正比例函数的概念;(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。
2、目标解析达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。
达成目标(2)的。
标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。
三、教学问题诊断分析正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。
八年级数学上册教案(表格式)

八年级数学上册教案(表格式)章节一:勾股定理教学目标:1. 理解勾股定理的定义和证明。
2. 能够运用勾股定理解决实际问题。
教学内容:1. 勾股定理的定义和证明。
2. 勾股定理的应用举例。
教学步骤:1. 引入勾股定理的概念,引导学生思考为什么直角三角形的两条直角边的平方和等于斜边的平方。
2. 讲解勾股定理的证明方法,如几何图形的拼接、勾股定理的证明等。
3. 给出勾股定理的应用举例,如计算直角三角形的边长等。
练习题:1. 证明勾股定理。
2. 已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
章节二:立方根教学目标:1. 理解立方根的概念和性质。
2. 能够运用立方根解决实际问题。
教学内容:1. 立方根的定义和性质。
2. 立方根的计算方法。
教学步骤:1. 引入立方根的概念,引导学生思考一个数的立方根是什么。
2. 讲解立方根的性质,如一个数的立方根与原数的性质关系等。
3. 给出立方根的计算方法,如利用立方根的性质进行计算等。
练习题:1. 求下列数的立方根:27, -8, 125。
2. 已知一个数的立方根是3,求这个数。
章节三:不等式教学目标:1. 理解不等式的概念和性质。
2. 能够运用不等式解决实际问题。
教学内容:1. 不等式的定义和性质。
2. 不等式的解法。
教学步骤:1. 引入不等式的概念,引导学生思考不等式是什么。
2. 讲解不等式的性质,如不等式的两边加减乘除同一个数不等号的方向不变等。
3. 给出不等式的解法,如利用不等式的性质进行解法等。
练习题:1. 解下列不等式:2x + 3 > 7, 5x 4 ≤11。
2. 已知a > b,求下列不等式的解集:3x + 4 > 2a 1。
章节四:函数的性质教学目标:1. 理解函数的概念和性质。
2. 能够运用函数的性质解决实际问题。
教学内容:1. 函数的定义和性质。
2. 函数的图像。
教学步骤:1. 引入函数的概念,引导学生思考函数是什么。
八年级数学教案模板

八年级数学教案模板(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、合同协议、条据书信、规章制度、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, contract agreements, document letters, rules and regulations, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!八年级数学教案模板八年级数学教案模板(精选6篇)下面是本店铺整理的八年级数学教案模板(精选6篇)以供参阅。
八年级数学教案模板5篇

八年级数学教案模板5篇八年级数学教案模板篇1一、教学目标1. 掌握等腰梯形的判定方法.2. 能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.3. 通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想二、教法设计小组讨论,引导发现、练习巩固三、重点、难点1.教学重点:等腰梯形判定.2.教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线).四、课时安排1课时五、教具学具准备多媒体,小黑板,常用画图工具六、师生互动活动设计教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的判定,归纳小结梯形转化的常见的辅助线七、教学步骤【复习提问】1.什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?2.等腰梯形有哪些性质?它的性质定理是怎样证明的?3.在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种? 我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题.【引人新课】等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形.前面我们用等腰三角形的定理证明了等腰梯形的性质定理,现在我们也可以用等腰三角形的判定定理来证明等腰梯形的判定定理.例1已知:如图,在梯形中,,,求证: .分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了.(引导学生口述证明方法,然后利用投影仪出示三种证明方法)(1)如图,过点作、,交于,得,所以得 .又由得,因此可得 .(2)作高、,通过证推出 .(3)分别延长、交于点,则与都是等腰三角形,所以可得 .(证明过程略).例3 求证:对角线相等的梯形是等腰梯形.已知:如图,在梯形中,, .求证: .分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.在和中,已有两边对应相等,别人要能证,就可通过证得到 .(引导学生说出证明思路,教师板书证明过程)证明:过点作,交延长线于,得,∴ .∵,∴∴∵,∴又∵、,∴∴ .说明:如果、交于点,那么由可得,,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.例4 画一等腰梯形,使它上、下底长分别5cm,高为4cm,并计算这个等腰梯形的周长和面积.分析:如图,先算出长,可画等腰三角形,然后完成的画图.画法:①画,使 ..②延长到使 .③分别过、作,,、交于点 .四边形就是所求的等腰梯形.解:梯形周长 .答:梯形周长为26cm,面积为 .【总结、扩展】小结:(由学生总结)(l)等腰梯形的判定方法:①先判定它是梯形②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.(2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形.(三角形奠基法)八、布置作业l.已知:如图,梯形中,,、分别为、中点,且,求证:梯形为等腰梯形.九、板书设计十、随堂练习八年级数学教案模板篇2教学目标知识与技能目标1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。
八年级数学教案模板5篇

八年级数学教案模板5篇八年级数学教案模板5篇八年级数学教案模板1教材分析本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。
本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。
学情分析本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。
学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。
从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。
教学目标1、知识与技能:掌握同底数幂乘法的运算性质,能熟练运用性质进行同底数幂乘法运算。
2、过程与方法:(1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的运用,进一步发展演绎推理能力;(2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。
3、情感态度与价值观:(1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;(2)通过性质的推导体会“特殊。
八年级数学教案模板2一、教学目标1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识.二、重点、难点1.重点:灵活应用勾股定理及逆定理解决实际问题.2.难点:灵活应用勾股定理及逆定理解决实际问题.3.难点的突破方法:三、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.四、例习题分析例1(P83例2)分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12×1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西工大附中初二数学教案模板教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,一起看看西工大附中初二数学教案!欢迎查阅!西工大附中初二数学教案1 一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点:理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解. 3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空: [分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分: [分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分: [分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.西工大附中初二数学教案2教学过程I创设情境,提出问题回顾上节课讲过的等边三角形的有关知识1.等边三角形是轴对称图形,它有三条对称轴.2.等边三角形每一个角相等,都等于60°3.三个角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.II例题与练习 1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?①在边AB、AC上分别截取AD=AE.②作∠ADE=60°,D、E分别在边AB、AC上.③过边AB上D点作DE∥BC,交边AC于E点. 2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°. 3.P56页练习1、2 III课堂小结:1.等腰三角形和性质;等腰三角形的条 V布置作业:1.P58页习题12.3第ll题.2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?西工大附中初二数学教案3教学过程一、复习等腰三角形的判定与性质二、新授:1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等2.等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。
推论3反映的是直角三角形中边与角之间的关系.3.由学生解答课本148页的例子;4.补充:已知如图所示,在△ABC中,BD是AC边上的中线,DB⊥BC于B,∠ABC=120o,求证:AB=2BC分析由已知条可得∠ABD=30o,如能构造有一个锐角是30o的直角三角形,斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了西工大附中初二数学教案4教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC 的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”. 4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是[]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条AB=AC,其他条不变,图6中还有等腰三角形吗? 练习:P53练习1、2、3。
IV课堂小结1.判定一个三角形是等腰三角形有几种方法?2.判定一个三角形是等边三角形有几种方法?3.等腰三角形的性质定理与判定定理有何关系?4.现在证明线段相等问题,一般应从几方面考虑?西工大附中初二数学教案5教学目标1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点:等腰三角形三线合一的性质的理解及其应用.教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?满足轴对称的条的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考: 1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). 如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为所以△BAD≌△CAD(SSS).所以∠B=∠C.]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以△BAD≌△CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.分析:根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出△ABC的三个内角.把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.解:因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习:1.课本P51练习1、2、3.2.阅读课本P49~P51,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.作业:课本P56习题12.3第1、2、3、4题.板书设计 12.3.1.1等腰三角形一、设计方案作出一个等腰三角形二、等腰三角形性质:1.等边对等角2.三线合一[全文结束]第 11 页共 11 页。